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An enhanced evidence theory-based multisensor data fusion technique is presented to address the problem of poor data fusion
caused by an unknown interference in the fully automated mining face multisensor system of a coal mine. Initially, the set of all
measurement values is considered as the identification framework, and the principles of fuzzy mathematics are applied to introduce
the membership function. This leads to the proposal of a novel method for calculating mutual support among multiple sensors.
Furthermore, the basic belief assignment (BBA) in evidence theory is determined by measuring the confidence distance between
sensors. Subsequently, a divergence measure is employed to assess the level of conflict and difference between BBA functions,
which serves as an indicator of their credibility. The credibility of BBA functions is further adjusted by calculating their information
volume using Shannon entropy. This adjustment aims to increase the weight of BBA functions that exhibit less conflict with other
BBA functions. Ultimately, the fusion result is obtained through an evidence combination rule based on a conflict allocation. The
numerical experimental results demonstrate that the proposed approach achieves higher accuracy, better robustness, and general-

ity compared to the existing methods.

1. Introduction

To ensure the safe advancement of the coal mine compre-
hensive excavation workface, it is necessary to sense the
dynamic information of equipment status and surrounding
environment through a variety of sensors. Because of the
ambiguity in describing the external environment by a single
sensor, it cannot provide accurate information. Therefore, it
is necessary to fuze data from multiple sensors to express the
accurate information of the external environment.

To achieve effective fusion of multisensor data, scholars
at home and abroad have conducted in-depth research. Li
et al. [1] fuzed data from the different sensors based on an
adaptive weighting algorithm which follows the principle of
minimizing the total mean-squared error. The method deter-
mines the weighting factors by seeking the optimal solution
and it is a relatively simple data fusion method. Yu [2] first
uses the correlation function to remove the data with low-
sensor support and then uses the least-squares method to
fuze the remaining data. This algorithm can obtain a

representative value through simple mathematical calcula-
tions. Chen et al. [3] constructed a weight neural network
model with time difference as an input feature by introducing
a compensation strategy based on the previous measurement
update time to solve the asynchronous problem of the multi-
sensor data. Other methods include batch estimation [4],
genetic algorithm [5], particle filter algorithm [6], Kalman
filter algorithm [7, 8], etc. Because of the complexity of the
coal mining environment, limitations of sensors themselves,
noise interference and human intervention, the information
collected by the sensors is characterized by fuzziness, uncer-
tainty, inconsistency, and incompleteness. However, none of
the above-mentioned methods can solve the problem of
uncertainty in the multisensor data fusion.

With more and more experts and scholars delving into
the issue, mature theories have emerged to handle such
uncertain information, among which the most commonly
used are Bayesian theory [9, 10] and Dempster—Shafer evi-
dence theory. However, Bayesian theory requires prior prob-
ability to be obtained before obtaining new probability,
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which is not suitable for the real-time data fusion in com-
prehensive mining works. Evidence theory can express
“uncertainty” and “unknown” of information through its
defined basic belief assignment (BBA) function and likeli-
hood function when prior probability is unknown, making
it an excellent method for dealing with the uncertainty and
incompleteness. The evidence theory has been widely applied
and researched. For example, in order to effectively convert
objective data from the real world into the BBA framework of
evidence theory, Deng and Han [11] proposed a strong con-
straint general BBA method. This method constructs differ-
ent triangular fuzzy number models based on the minimum,
average, and maximum values of the different sample attri-
butes, and determines the BBA by using the intersection
points of the sample and different models. Tang et al. [12]
utilizes Belief Jensen—Shannon (BJS) divergence to measure
the level of conflict among experts and employs Deng
entropy to assess the uncertainty of the risk factors in failure
modes (FM). Finally, Dempster’s combination rule is applied
to generate a fuzed BBA for the three risk levels of the risk
factors in FM. Wang and Tang [13] constructed a Gaussian
distribution based on the mean and variance of the training
samples in the data set, and generated the BBA by calculating
the function value of the test sample on the Gaussian distri-
bution. Fu et al. [14] constructed multiple strong classifiers
through the Adaboost algorithm and recorded the corre-
sponding weights for determining the BBA of singleton pro-
positions and obtained the BBA of composite propositions
by quantifying the cross-sectional area of singleton proposi-
tion intersections. In order to quantify the uncertainty of the
BBA function, Pan et al. [15] proposed a new belief entropy
based on likelihood transformation and weighted Hartley
entropy. The first component of the entropy is used to mea-
sure the inconsistent uncertainty of the BBA, which not only
considers the BBA, but also considers the likelihood trans-
formation. The second component is used to measure the
nonspecific uncertainty of the BBA. On the basis of Deng ’s
[16] entropy, Zhou et al. [17] proposed an improved belief
entropy by considering the size of the identification frame
and the information of the size of the focus element relative
to the identification frame. Yan and Deng [18] introduced
the belief function on the basis of Zhou, which solved the
problem that different subsets interact with each other and
are not measured. Zhu and Song [19] proposed a new mea-
sure of evidence uncertainty from the perspective of the
credibility interval. They used the likelihood functions and
the credibility functions as the upper and lower bounds of
the credibility interval and used the inconsistency of the
median calculation of the interval and the inaccuracy of
the length calculation of the interval to combine the two to
obtain an uncertainty measure. In order to overcome the
counterintuitive results of highly contradictory evidence
combination, Tang et al. [20] introduced the concept of a
complex network, treating each body of evidence (BOE) as a
node and employing correlation coefficients to measure the
degree of correlation between two BOEs. Through direct and
indirect interactions, the weights for each node were deter-
mined. These weights were then used to calculate the total
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weight for each BOE. In the end, the original BOEs were
adjusted using weight factors, and the final result is obtained
after information fusion by using Dempster’s combination
rule. Huang and Xiao [21] proposed a novel measure called
the higher order BJS divergence, marking the first approach
to dynamically measure the discrepancy between BBAs over
the time evolution. Ma et al. [22] introduced the concept of
complete conflict and proposed a flexible combination rule
based on the Dempster combination rule and evidence
weight. Xiao [23] proposed an evidence combination method
based on the prospect theory and evidence credibility mea-
sure. Mi et al. [24] proposed a combination method based on
the soft likelihood function and ordered weighted averaging
operator. However, most of these methods are used for emer-
gency decision [25], state estimation, and fault diagnosis and
cannot fuze multisensor measurements. In order to realize
the fusion of multisensor measurements, Xiong and Yang
[26] proposed a new multisensor data fusion method. The
method converts each measured value into corresponding
BBA function according to its accuracy and the basic belief
distribution of each measured value is recorded as the fusion
weighting coefficient. Finally, the data fusion result can be
obtained by weighted summation of the all measured values.
In order to further improve the accuracy of data fusion
results, this paper proposes an improved multisensor data
fusion method. The main contributions of this study are
summarized as follows:

(1) Treat all real-time measurements as an identification
framework, calculate the inter-support degree among
sensors, and combine it with the confidence distance
between sensors to establish the BBA in evidence
theory.

(2) A divergence measure is employed to assess the
degree of conflict and difference between the BBA
functions, which represents the credibility of a BBA
function. The credibility of a BBA function is
adjusted by calculating the information volume of a
BBA function, which is used to allocate the weight of
a BBA function.

(3) Based on the weights assigned to a BBA function, the
BBA for all measured values is combined to produce
the result of multisensor data fusion.

The organizational structure of this paper is as follows:
Section 2 introduces the preliminary knowledge required for
the proposed method. Section 3 introduces an improved mul-
tisensor data fusion method. In section 4, three comparative
experiments between the proposed method and other data
fusion methods are given. Section 5 gives the conclusion.

2. Preliminaries

2.1. Evidence Theory. As a mathematical method for dealing
with uncertainty reasoning problems, the evidence theory
has been widely applied in fields such as multiattribute
decision-making [27, 28], information fusion [29, 30], target
tracking [31, 32], and fault diagnosis [33, 34], due to its
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flexibility and effectiveness in modeling uncertainty and
inaccuracy without prior information.

Definition 1. Let £2 be a finite set of complete and mutually
exclusive possible hypotheses, denoted by:

92{91,92,...,(9”} N (1)

where Q is called the identification framework. The power
set of 22 is the identification framework, which is denoted as
follows:

—{0.{0,}....{0,}.....{6,.6,. ...

0.}.24  (2)

where @ represents the empty set.

Definition 2. For any proposition A in the identification
framework €2, a mapping m:2?2 — [0,1] is defined, which

satisfies:
X m(A) =
Ae2? , (3)
m(@) =0

where m is called the BBA function, also known as the Mass
function. If m(A)>0, then A is called a focal element.

2.2. Shannon Entropy. In evidence theory, Shannon entropy
is an effective method to measure the uncertainty or infor-
mation volume of the BBA function.

Definition 3. Let m be a BBA function of the discernibility
framework, A; be a set of propositions of the discernibility
framework, then the Shannon entropy H(m) of m is
expressed as follows:

H(m) = - le m(A;)logym(A;) (4)

where the larger the H(m) of the BBA function, the more
information volume the BBA function contains, indicating
that other BBA functions support it more and the BBA func-
tion occupies a higher proportion in the final combination.

Shannon entropy satisfies the following properties:

(1) Nonnegativity, that is, H(m) > 0.

(2) Boundedness, that is, 0 < H(m) <log,(n); where n
represents the number of elements in the identifica-
tion framework.

(3) Determinacy, that is, H(1,0)=H(1,0,0)=H(1,0,
0,0)=...=H(1,0,...,0) =0. This property means
that when a proposition A; is fully supported, the
BBA function has the least information volume.

(4) Symmetry, that is H(m(A;), m(A,),...,m(Ayq)) =
H(m(Ay),...,m(A,)); where can be any arrangement.

2.3. Belief Divergence Measure. Measuring the differences
and conflicts between BBA functions has always been an
unresolved issue in evidence theory, which is crucial for evi-
dence synthesis [35]. In recent years, there have been many
methods to measure the conflict of BBA functions, such as
generalized evidential Jensen-Shannon (GE]S) divergence
[36, 37], Jensen—Shannon (JS) divergence [38], BRE diver-
gence [39], BJS divergence [40], etc. JS divergence requires
the selection of appropriate parameters to quantify the dif-
ferences and conflicts between BBAs. The selection of these
parameters is influenced by subjective factors and improper
selection of parameters will have a significant impact on the
final data fusion results. BRE divergence is more complex in
terms of calculation and implementation, requiring addi-
tional computational resources and time, particularly in
practical applications of multisensor data fusion where
real-time processing is required. BJS divergence emphasizes
the mutual validation and support among sensors. This
means that when multiple sensors observe the same phe-
nomenon, BJS divergence can better account for the consis-
tency and differences between these observations, thus
enhancing the accuracy of data fusion. This is highly bene-
ficial for improving monitoring and decision support of
fully mined coal mine face. In summary, the proposed
method adopts BJS divergence as a measure of BBA func-
tions conflict.

Definition 4. Let m, and m, be two mutually exclusive BBA
functions of the same identification framework and A; be a
set of propositions of the identification framework, then the
BJS divergence between m; and m, is expressed as follows:

L H(my) - §H<m2>
=3 [Em@on ()

2
2
2m2
+ i l )
Zima(4;)log; <m1 )+ my(A 1))]

(5)

BJS(m, ., my) = H(M)

where H(m;) = =3, m;(A;) log,m(
2) represents Shannon entropy.

A) (i=1.2,....mj=1,

BJS divergence satisfies the following properties:

(1) Symmetry, that is, BJS(m;, m,) = BJS(m,, m,).

(2) Boundedness, that is, 0 <BJS(m;, m,) < 1.

(3) Nondegeneracy, that is, BJS(m,, m,) =0 < m; = m,.

(4) Triangular inequality, that is, BJS(m,, m,) + BJS(m,,
ms) > BJS(my, m;).

3. The Proposed Method

In the system, there are n sensors simultaneously measuring
the target x, with the measurement value of the i-th sensor
denoted as x; (i=1,2...,n). Based on the theory of



i
|
i Calculate the
oo T T ] [ I distance between
:Measurement: : 1 : each measurement
| | 1
i values \ i Determination of | | I value
i i ! membership l i l
\ I | function : :
1 1 1
! 1
I i i ! 1| Normalize weighted
i @ I:> ':> revised membership
: : : v : : matrix
: : \ ! Construct 1 :
i . I | membership | ! l
! @ : : matrix : l
|
! Lo | 1| ObtainBBA for
L. ; L _______! | each measurement
\ value
|
|

Journal of Sensors

________________

Construct distance
metric matrix

¥

Calculate average
distance

1
|
1
1
1
|
|
| !
1
|
|
1
1
1
|
1
1

Adjust the
credibility of the
BBA function

l

Normalize
credibility

l

Obtain weighted
BBA function

Calculate the
support of the BBA
function

v
Calculate the
credibility of the
BBA function

Result

Calculate the
Shannon entropy of
the BBA function

¥

|
I

I

1

1

|

!

| | Obtain information
i volume of BBA
!

1

1

1

1

I

I

1

1

function

¥

Normalize
information volume

FiGure 1: Flowchart of the proposed method.

evidence, all measurement values {x,, x5, ..., x,, } are consid-
ered as the identification framework £ and the BBA of each
sensor’s measurement value is calculated and then combined.

The proposed method consists of five parts: determina-
tion of membership function, BBA function of measurement
value, quantify credibility of BBA function, quantify infor-
mation volume of BBA function, and evidence combination.
First, the membership function is determined and the mem-
bership matrix is constructed based on the distribution char-
acteristics of the sensor measurement errors, reflecting the
degree of support between each measurement value. Second,
based on the membership matrix, the confidence distance
between each measurement value, the average Euclidean dis-
tance from any measurement value to the other measurement
values and the average distance between all measurement
values are calculated. Based to the relationship between the
ratio of BBA of measurement values and the ratio of distance,
a set of weighting coefficients can be derived. The member-
ship matrix is then normalized and weighted using these
coefficients to obtain the BBA for each measurement value.
Subsequently, the credibility of the BBA function is obtained
by calculating the BJS divergence and the information volume
of the BBA function is calculated by using Shannon entropy.
After normalizing the information volume to be used as a
weight, the credibility of the BBA function is adjusted, and
then the adjusted credibility is normalized to obtain the final
weight of the BBA function. Finally, the BBA function is
combined according to this final weight to obtain the combi-
nation result. The flowchart of the proposed method is shown
in Figure 1.

3.1. Determination of Membership Function. Because of the
influence of environmental noise, human interference, and
measurement inaccuracies, the sensor’s measured value can
be considered as the combination of the true target value and
noise interference [35]. All measured values within the nor-
mal deviation range are typically distributed in the vicinity of
the true value. Since the sensor measurement error is approx-
imately normally distributed and the half-normal distribution
function can better reflect the ambiguity of measurement
value errors, the half-normal distribution function is selected
as the membership function.

Definition 5. For any measurement value x; (i=1,2...,n) in
the identification framework £2, the degree of membership of
the measurement value Xj (j=1,2...,n) to that measure-
ment value is defined as y;; and its mathematical expression

is as follows:
(" (nx)
= (2) ’

where x; and x; represent the measurement values of the i-th

and j-th sensors, respectively.

(6)

The larger the value of y;;, the higher the degree of sup-
port of x; for x;; Conversely, the lower the degree of support.
For the identification framework £2, the degree of member-
ship matrix I composed of the degree of mutual support

between each measurement value is expressed as follows:
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Y11 Y12  Vin
r— 7.21 }’?2 V?n (7)
Ynl  Vn2 t Yun

3.2. BBA Function of Measurement Value. Based on the
membership matrix, let vector p; (i=1,2...,n) be the i-th
row of I, that is, p; = (¥i1. V2, ---» Vin)» representing the mem-
bership degree vector of mutual support between the mea-
surement values of the i-th sensor and the measurement
values of the other sensors. Let dj; represents the confidence
distance from measurement value x; to measurement value
x;. d; represents the average value of the i-th row of d;;. And d
represents the average distance between the all measurement
values. This is defined as follows:

d=lp-pll =L w2, @

1 n
d==-34d.
=2 ©)
H—lid 10
_I’lizli’ ( )

where the distance between any two measured values in
Equation (8) is symmetrical, that is, d;; = d;;.

Measurement values within the normal deviation range
should be clustered in the vicinity of the true value, while
measurement values with large deviations are relatively far
from the normal measurement values. Therefore, the follow-
ing definitions are given.

Definition 6. All measurement values are located on the real
axis and all normal measurement values are always distrib-
uted in a specific neighborhood near the true value. If the set
@ satisfies the following conditions:

di>d(Vx o)

where it is called the set of small deviation measurements for
@ and the set of large deviation measurements for ¢. Here, ¢
represents the complement of ¢, that is, p U p = Q.

Taking into account the deviation level of the sensor
measurements, the following method is provided to obtain
the BBA for the sensor measurement value x;.

(1) Vx;,x; €@, the ratio of the obtained BBA is as
follows:

ﬂ%(xb)::g?. (12)

1

(2) Vx; € ¢, x; €@, the ratio of the obtained BBA is as
follows:

= (13)

Amax = max{x;} — min{x;} , (14)

where max{x;} represents the maximum value in the sensor
measurement and min{x; } represents the minimum value in
the sensor measurement.

During the computation phase, a series of weighting
coefficients {w,} (p=1,2,...,n) can be generated using
Equations (12)—(14). Using these coefficients, the member-
ship matrix can be normalized and weighted, that is:

w;j X 7ij

m(%) =, .
l 2w X7y

(15)

At this point, the BBA for each sensor’s measurement
value is obtained and the conversion from measurement
values to BBA functions is completed.

3.3. Quantify Credibility of BBA Function. By employing the
BJS divergence to measure the difference and conflict degree
between BBA functions, one can obtain the credibility of the
BBA functions, which is used to represent their reliability.
When a BBA function receives sufficient support from the
other BBA functions, it has fewer conflicts with other BBA
functions, so it should be given a higher weight. Conversely,
when a BBA function does not receive support from other
BBA functions, it is considered to have a higher conflict with
other BBA functions, so it should be given a lower weight.
The credibility Crd(my) of the BBA function m is calculated
by the following four steps:

Step 1: The distance between BBA functions my (k=1,2,
...,n) and m, (t=1,2,...,n) is represented by BJS,. The
BJS divergence measure-ment matrix, that is, the distance
measurement matrix DMM = (BJSy,) ,.x, is defined as fol-
lows:

0 BJS;, BJS,,
BJS 0 BJS,,
DMM — ]' 21 . ]'2 (16)
B]Snl BISnZ =0

Step 2: The average distance BJS(my) of the BBA func-
tion my is defined as follows:
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TasLE 1: Roof pressure measurement values.

Number Measurement value (MPa) Number Measurement value (MPa)
1 3491 5 35.05
2 35.11 6 34.85
3 35.18 7 35.58
4 34.88 8 34.97

- Z?:L[#kBISkt
- n-—1

BJS (my.) (17)

Step 3: The support degree Sup () of the BBA function
my is defined as follows:

1
BA]/S(mk) '

Sup(my) = (18)

Step 4: The credibility Crd(m,) of BBA function my is
defined as follows:

Sup ()

Crd = .
rd(me) iy Sup (my)

(19)

3.4. Quantify Information Volume of BBA Function. Shan-
non entropy is used to express the uncertainty of the BBA
function, from which the information volume of the BBA
function is calculated and normalized. The following three
steps are used to calculate the normalized information vol-
ume IV (my) for the BBA function my:

Step 1: Calculate the Shannon entropy E(m;) of the BBA
function m; by Equation (4).

Step 2: In order to avoid assigning a zero-value weight to
the BBA function in special cases, the information volume IV
is used to measure the uncertainty of the BBA function .
The information volume IV(my) of the BBA function my is
defined as follows:

IV (my) = eF0mo) = e Zimbxlogomi(x) (20)

Step 3: Normalize IV(m;) to obtain the normalized
information volume IV (my) of the BBA function m; and
denote it as follows:

(21)

3.5. Evidence Combination. The credibility of the BBA func-
tion is adjusted using the information volume of the BBA
function to determine the final weight, and then the initial
BBA function is combined. The steps to combine the initial
BBA functions are as follows:

Step 1: Adjust the credibility Crd () of the BBA func-
tion based on the information volume IV (m;) and denote it
as ACrd(my):

ACrd (my) = Crd (my) X IV (my) - (22)

Step 2: Normalize the adjusted credibility ACrd(my) to
obtain the normalized credibility ACrd(my) of the BBA
function my, which serves as the final weight of the BBA
function my. The normalized credibility ACrd(my) is
denoted as follows:

~ ACrd(my)

ACrd(mk) = m .

(23)

Step 3: According to the final weight Aad(mk), obtain
the weighted BBA function m(x;), denoted as follows:

m(x) = Ty (ACrd(my) xmy(x)) . (24)

Step 4: Obtain the combination value x; as follows:

xp = Sy (m(x) X x,) (25)

4. Experiments

To demonstrate the universality and superiority of the pro-
posed algorithm, two examples of single-sensor multiple
measurements data fusion and one example of multisensor
single measurement data fusion are provided to analyze the
performance of the method.

4.1. Experiment 1. Fusion processing of roof pressure data for
a comprehensive mining face. To evaluate the fusion accu-
racy of this method, roof pressure was measured 50 times,
with an average value of 35.00 MPa serving as the reference.
Eight measurement values were randomly selected from the
50 datas, as shown in Table 1. This method was used for the
data fusion.

The membership matrix I = (y;) . is constructed from
Equation (7) as follows:
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TaBLE 2: BBA of roof pressure measurement values.
Measurement values
BBA
*1 X2 X3 X5 X6 X7 Xs

my(x;) 0.1494 0.1394 0.1184 0.1406 0.1513 0.1272 0.0177 0.1560
my(x;) 0.1470 0.1421 0.1223 0.1375 0.1526 0.1238 0.0197 0.1551
ms(x;) 0.1461 0.1431 0.1236 0.1364 0.1530 0.1226 0.0204 0.1548
my(x;) 0.1498 0.1390 0.1178 0.1410 0.1510 0.1277 0.0175 0.1562
ms(x;) 0.1477 0.1413 0.1211 0.1384 0.1522 0.1248 0.0191 0.1554
meg(x;) 0.1502 0.1386 0.1172 0.1415 0.1508 0.1282 0.0172 0.1563
m;(x;) 0.1410 0.1484 0.1315 0.1302 0.1553 0.1157 0.0251 0.1527
mg(x;) 0.1487 0.1402 0.1196 0.1396 0.1517 0.1262 0.0183 0.1558
i 1 0.9821 0.9912 0.9984 The result x, =35.0024 is obtained from Equation (25)
0.9821 1 0.9984 0.9912 and the fusion results of the proposed method and other
methods are shown in Table 5. It can be seen from Table 5
0.9676 0.9978 0.9924 0.9803 that the fusion accuracy of the proposed method is higher.
0.9996 0.9764 0.9870 0.9963 The higher accuracy of the fuzed results obtained by the
r= 09912 09984 ... 1 0.9971 proposed method is attributed to its utilization of BJS diver-
gence and Shannon entropy to, respectively, assess the cred-
0.9984  0.9699 0.9821 0.9935 ibility and information content of BBA functions. This
0.8165 0.9051 0.8809 0.8453 approach enhances the weights of reliable BBA functions
09984 09912 0.997] .- 1 while diminishing the wgights of less reliable. ones, leading
- - to a more reasonable fusion outcome. To verify the robust-
(26)  ness of the method, an experiment was conducted by adding

Using d to represent the vector composed of d;, it can be
obtained from Equations (8) to (10) thatd =[0.1061,0.1117,
0.1296,0.1128,0.1039,0.1245,0.3641,0.1015], d =0.1443.
According to Equation (11), o = {x;} (i #7), ¢ = {x; }. A set
of weighted coefficients {w,} = {0.1476,0.1402,0.1209,
0.1389,0.1507,0.1259,0.0215,0.1544} is generated from
Equations (12) to (14) and the BBA of roof pressure mea-
surement values are normalized and modified through
Equation (15), as shown in Table 2.

The distance metric matrix DMM = (BJS;) _ is con-
structed from Equation (16) as follows and the credibility
of the BBA function my calculated by from Equations (17)
to (23) are shown in Table 3.

0 0.0001 0.0001 0.0000 ]
0.0001 0 0.0000 0.0001
0.0002 0.0000 0.0000 0.0001
DMM — 0.0000 0.0001 0.0001 0.0000
0.0001 0.0000 0 0.0000
0.0000 0.0002 0.0001 0.0000
0.0013 0.0006 0.0008 0.0011
. 0.0000 0.0001 0.0000  --- 0 ]
(27)

The values of the weighted BBA function m. calculated
by Equation (24) are shown in Table 4.

a set of significantly large interference values to the sensor
measurements. The fusion results of different methods on
the roof pressure data are compared in Figure 2.

4.2. Experiment 2. Using a single sensor, dust concentration
near the rear drum of the shearer was collected 50 times, and
the average value of 1.406 g/m” was used as the reference
value. Eight values were randomly selected from the 50 col-
lected data as experimental data for data fusion using this
method. The experimental data are shown in Table 6.

The membership matrix I" = (y;) . is constructed from
Equation (7) as follows:

1 0.8920 0.9349 0.9986
0.8920 1 0.6998 0.8688
0.9782 0.9647 0.8467 0.9662
_ | 09967 09245 0.9043 0.9911
0.9349 0.6998 - 1 0.9517
0.8532 0.5813 0.9808 0.8775
0.9776 0.7877 0.9882 0.9872
| 0.9986 0.8688 0.9517 - 1
(28)

Using d to represent the vector composed of d;, it can be
obtained from Equations (8) to (10) that d =[0.2136, 0.4467,
0.2702,0.2261, 0.2938, 0.4250, 0.2405, 0.2144], d=0.2913.
According to Equation (11), ¢ = {x;,x3, x4, %7, %3}, @ =
{x2. %5, %6 }. A set of weighted coefficients {w,} = {0.1921.
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TasLE 3: Credibility of the BBA function for the roof pressure measurements.
BBA function ﬁf/s(mk) Sup(my) Crd(my,) E(my,) IV (my) f\?(mk) ACrd(my) Aad(mk)
m 0.0002 4,239.8915 0.1212 2.8803 17.8202 0.1244 0.0151 0.1208
m, 0.0002 6,101.2474 0.1745 2.8864 17.9292 0.1252 0.0218 0.1749
m; 0.0002 5,055.3676 0.1446 2.8885 17.9664 0.1254 0.0181 0.1452
My 0.0003 3,736.3295 0.1068 2.8794 17.8035 0.1243 0.0133 0.1064
ms 0.0002 6,268.3118 0.1792 2.8846 17.8969 0.1250 0.0224 0.1794
M 0.0003 3,281.0770 0.0938 2.8784 17.7867 0.1242 0.0117 0.0933
m; 0.0010 984.1100 0.0281 2.8997 18.1680 0.1269 0.0036 0.0286
mg 0.0002 5,304.9868 0.1517 2.8822 17.8533 0.1247 0.0189 0.1514
TasLE 4: Weighted BBA function of the roof pressure measurements.
Measurement values m(x;) Measurement values m(x;)
X 0.1480 X5 0.1520
X, 0.1410 X 0.1252
X3 0.1207 X, 0.0189
x4 0.1387 X 0.1555
TasLE 5: Fusion results of different methods on roof pressure.

Method Fusion result (MPa) Absolute error (MPa) Relative error (%)
Arithmetic mean 35.0663 0.0663 0.1894
Xiong and Yang [26] 34.9944 0.0056 0.0160

Qu et al. [41] 34,9918 0.0082 0.0234
Proposed method 35.0024 0.0024 0.0069

35.10 T T T T T T
A AN

35.08
35.06
35.04

35.02

Roof pressure (MPa)

35.00

34.98

34.96

34.94
1

Number of experiments

—— Proposed method -%- Xiongand Yang [26]
-A Arithmetic mean -+ Quetal. [41]

FiGURE 2: Comparison chart of roof pressure data fusion results.
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TasLE 6: Dust concentration measurement values.

Number Measurement value (g/m3) Number Measurement value (g/m3)
1 1.431 5 1.045
2 1.934 6 0.838
3 1.652 7 1.207
4 1.517 8 1.376
TaBLE 7: BBA of dust concentration measurement values.
Measurement values

BBA

X1 X2 X3 X4 X5 X6 X7 Xg
my(x;) 0.1961 0.0341 0.1516 0.1846 0.0357 0.0326 0.1703 0.1950
my(x;) 0.1966 0.0430 0.1681 0.1925 0.0301 0.0250 0.1542 0.1907
ms(x;) 0.1965 0.0378 0.1588 0.1882 0.0332 0.0290 0.1632 0.1933
my(x;) 0.1963 0.0355 0.1544 0.1860 0.0347 0.0312 0.1675 0.1944
ms(x;) 0.1945 0.0284 0.1393 0.1777 0.0405 0.0398 0.1826 0.1972
meg(x;) 0.1932 0.0257 0.1328 0.1738 0.0433 0.0441 0.1892 0.1980
m;(x;) 0.1953 0.0307 0.1444 0.1807 0.0385 0.0366 0.1774 0.1964
mg(x;) 0.1959 0.0332 0.1498 0.1837 0.0364 0.0335 0.1720 0.1954

TasLE 8: Credibility of the BBA function for the dust concentration measurements.

BBA function BJS (my) Sup(my) Crd(my,) E(my) IV (my) IV (my) ACrd(my,) ACrd(my)
m 0.0008 1,273.9942 0.1870 2.7172 15.1378 0.1249 0.0234 0.1868
m, 0.0030 333.5024 0.0490 2.7031 14.9253 0.1231 0.0060 0.0482
m; 0.0013 758.6873 0.1114 2.7112 15.0475 0.1241 0.0138 0.1106
my 0.0009 1,099.4713 0.1614 2.7149 15.1033 0.1246 0.0201 0.1609
ms 0.0015 645.3294 0.0947 2.7267 15.2820 0.1261 0.0119 0.0955
M 0.0029 348.5009 0.0512 2.7312 15.3511 0.1266 0.0065 0.0518
my 0.0010 1,038.8645 0.1525 2.7229 15.2237 0.1256 0.0192 0.1532
mg 0.0008 1,313.9660 0.1929 2.7186 15.1594 0.1250 0.0241 0.1930

0.0374,0.1519, 0.1815, 0.0374, 0.0374, 0.1706, 0.1914} is gen-
erated from Equations (12) to (14) and the BBA of the
dust concentration measurement values are normalized
and modified through Equation (15), as shown in Table 7.

The distance metric matrix DMM = (BJS;) . is con-
structed from Equation (16) as follows and the credibility
of the BBA function my calculated by from Equations (17)

to (23) are shown in Table 8.

0 0.0016 0.0010 0.0000 T
0.0016 0 0.0050 0.0019
0.0003  0.0005 0.0023 0.0005
DMM — 0.0000 0.0011 0.0014 0.0001
0.0010 0.0050 - 0 0.0007
0.0023 0.0076 0.0003 0.0019
0.0003 0.0033 0.0002 0.0002
L 0.0000 0.0019 0.0007  --- 0

(29)

The values of the weighted BBA function m calculated
by Equation (24) are shown in Table 9.

The result x, = 1.4135 is obtained from Equation (25)
and the fusion results of the proposed method with other
methods are shown in Table 10. From Table 10, it can be
seen that the proposed method has higher fusion accu-
racy. Due to the fact that the proposed method does not
exclude anomalous measurement values in the final evi-
dence combination, the fuzed results exhibit higher cred-
ibility. The robustness experimental results of different
methods on the dust concentration data are shown in
Figure 3.

4.3. Experiment 3. By measuring the angles with eight incli-
nation sensors installed in different positions, the height of
the hydraulic support can be calculated. Each sensor mea-
sures five times, resulting in 40 measurements. Eight of these
measurements are randomly selected for data fusion and the
average of the forty measurements, which is 623.00 mm, is
used as a reference. The experimental data are shown in
Table 11.
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TasLe 9: Weighted BBA function of the dust concentration measurements.

Measurement values m(x;) Measurement values m(x;)
x, 0.1957 Xs 0.0364
X 0.0335 X 0.0337
X3 0.1501 X, 0.1719
Xy 0.1836 Xg 0.1952
TaBLE 10: Fusion results of different methods on dust concentration.
Method Fusion result (g/m3) Absolute error (g/m3) Relative error (%)
Arithmetic mean 1.3750 0.0310 2.2048
Xiong and Yang [26] 1.4184 0.0124 0.8819
Qu et al. [41] 1.4296 0.0236 1.6785
Proposed method 1.4135 0.0075 0.5334

Dust concentration (g~m‘3)

—— Proposed method
-Ac- Arithmetic mean

The membership matrix I" = (y;),  is constructed from

Equation (7) as follows:

1 0.9210
0.9210 1
0.7447 0.9366
0.9741 0.9845
0.8834 0.6647
0.5549 0.3290
0.7662 0.5247
0.9830 0.8397

Number of experiments

-%- Xiong and Yang [26]
-+- Quetal. [41]

Ficure 3: Comparison chart of dust concentration data fusion results.

nx

0.8834
0.6647
0.4488
0.7678
1
0.8416
0.9735
0.9523

0.9830
0.8397
0.6349
0.9177
0.9523
0.6670
0.8622
1

(30)

Using d to represent the vector composed of d;, it can be
obtained from Equations (8) to (10) that d =[0.5658, 0.6854,
0.9175,0.6115,0.6397,0.9893, 0.7448, 0.5686), d=0.7153.
According to Equation (11), ¢ ={x;, %, x4, x5, %3}, @ =
{x3, X6, x7}. A set of weighted coefficients {w,} = {0.1818,
0.1501,0.0528,0.1682,0.1608, 0.0528,0.0528,0.1809}  is
generated from Equations (12) to (14) and the BBA of the
hydraulic support height measurement values are normal-
ized and modified through Equation (15), as shown in
Table 12.

The distance metric matrix DMM = (BJS;) . is con-
structed from Equation (16) as follows and the credibility
of the BBA function m;, calculated by from Equations (17)
to (23) are shown in Table 13.
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TasLe 11: Hydraulic support height measurement values.

11

Number Measurement value (mm) Number Measurement value (mm)
1 622.928 5 623.452
2 622.501 6 624.070
3 622.120 7 623.696
4 622.687 8 623.123
TasLE 12: BBA of hydraulic support height measurement values.
Measurement values
BBA
1 X2 X3 X4 X5 X6 X7 Xg
my(x;) 0.1992 0.1514 0.0430 0.1795 0.1556 0.0321 0.0443 0.1948
my(x;) 0.2002 0.1795 0.0591 0.1980 0.1278 0.0208 0.0331 0.1816
ms(x;) 0.1968 0.2044 0.0767 0.2115 0.1049 0.0138 0.0250 0.1670
my(x;) 0.2004 0.1672 0.0516 0.1903 0.1397 0.0252 0.0377 0.1879
ms(x;) 0.1907 0.1185 0.0281 0.1534 0.1910 0.0527 0.0610 0.2046
meg(x;) 0.1713 0.0838 0.0161 0.1204 0.2298 0.0896 0.0841 0.2049
m;(x;) 0.1842 0.1041 0.0227 0.1405 0.2070 0.0655 0.0698 0.2063
mg(x;) 0.1970 0.1389 0.0369 0.1701 0.1688 0.0388 0.0501 0.1994
TasLEe 13: Credibility of the BBA function for the hydraulic support height measurements.
BBA function BJS (my) Sup(my,) Crd(my) E(my) IV (my) IV (my) ACrd(m;.) ACrd(my)
m, 0.0120 83.0551 0.1886 2.7519 15.6727 0.1257 0.0237 0.1889
m, 0.0211 47.4925 0.1079 2.7181 15.1509 0.1215 0.0131 0.1044
m; 0.0370 27.0459 0.0614 2.6784 14.5617 0.1168 0.0072 0.0572
my 0.0159 62.8659 0.1428 2.7343 15.3990 0.1235 0.0176 0.1405
ms 0.0155 64.5276 0.1466 2.7747 16.0340 0.1286 0.0189 0.1502
Mg 0.0419 23.8409 0.0541 2.7677 15.9226 0.1277 0.0069 0.0551
m; 0.0230 43.4939 0.0988 2.7768 16.0680 0.1289 0.0127 0.1014
mg 0.0114 87.9685 0.1998 2.7631 15.8483 0.1271 0.0254 0.2023
TasLE 14: Weighted BBA function of the hydraulic support height measurements.
Measurement values m(x;) Measurement values m(x;)
X1 0.1945 0.1648
X 0.1436 0.0399
X3 0.0408 0.0496
Xy 0.1718 0.1950
i 0 0.0047 0.0076 0.0010 T The values of the weighted BBA function m; calculated
0.0047 0 0.0240 0.0101 by Equation (24) are shown in Table 14.
The result x, =623.0003 is obtained from Equation (25)
0.0163 0.0035 0.0451 0.0253 and the fusion results of the proposed method with other
DMM — 0.0015  0.0009 0.0158 0.0051 methods are shown in Table 15. From Table 15, it can be
0.0076  0.0240 0 0.0030 seen that the proposed method has higher fusion accuracy.
0.0367 0.0660 0.0113 0.0257 Through three comparative experiments with other data
0.0164 00381 0.0017 0.0093 fusion method.s,.lt ha.s been demonstrated that the p.roposed
approach exhibits high levels of accuracy, generality, and
| 0.0010 0.0101 0.0030 0

. robustness. The robustness experimental results of different



12 Journal of Sensors
TasLE 15: Fusion results of different methods on hydraulic support height.

Method Fusion result (mm) Absolute error (mm) Relative error (%)

Arithmetic mean 623.0721 0.0721 0.0116

Xiong and Yang [26] 622.9730 0.0270 0.0043

Qu et al. [41] 622.9648 0.0352 0.0057

Proposed method 623.0003 0.0003 0.0001

623.6 . . .

623.5
623.4
623.3
623.2

623.1
X

Hydraulic support height (mm)

623.0
¥
622.9

622.8

622.7 ! ! .
1

Number of experiments

—— Proposed method
- Arithmetic mean

-% - Xiong and Yang [26]
-+ Quetal. [41]

FiGure 4: Comparison chart of hydraulic support height data fusion results.

methods on the hydraulic support height data are shown in
Figure 4.

5. Conclusion and Future Work

To solve the problem of poor fusion accuracy caused by the
uncertainty of real-time measurement values in the process
of multisensor data fusion, an improved evidence theory-
based multisensor data fusion method is proposed. By intro-
ducing membership functions and measuring confidence
distances between sensors, the BBA in evidence theory is
determined. The BJS divergence is used to assess the conflict
and difference between BBA functions, generating the credibil-
ity of BBA functions to represent their reliability. Then, Shan-
non entropy is employed to calculate the information volume
of BBA functions, providing an indication of their relative
importance. Based on the information content, the credibility
of BBA functions is adjusted to calculate the final weights for
evidence combination, resulting in effective fusion results. The
experimental results demonstrate that the method proposed in
this paper can achieve higher fusion accuracy with relatively

fewer measurement data, without the need for obtaining prior
information of the sensors through historical data. This
approach is beneficial for engineering implementation and
can be applied to multisensor data fusion in fully mechanized
mining faces in coal mines. Given that the proposed method is
built on the principles of evidence theory, future research will
primarily concentrate on achieving more precise measure-
ments of the mutual support degree between sensors and its
conversion into BBA functions. Additionally, there will be a
focus on adjusting the evidence combination rules based on the
inconsistency degree between BBA functions, with the aim of
further enhancing the fusion performance of the algorithm.
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