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In recent years, the mining industry has encountered challenges, such as a shortage of human resources, an ongoing emphasis on
safety enhancements, and increased ecological preservation requirements. Autonomous mining trucks have emerged as a novel
solution to effectively address these issues within open-pit mining operations. To meet the demanding conditions of open-pit
mines, characterized by intense vibrations and extreme temperature variations, hybrid solid-state LiDAR has emerged as the
primary choice for perception sensors. Recognizing the distinct data structure and distribution disparities between point clouds
obtained through nonrepetitive scanning methods of hybrid solid-state LiDAR and traditional mechanical LiDAR, this paper
proposed an innovative LiDAR 3D object detection model, PointPillars-HSL (PointPillars-Hybrid Solid-state LiDAR). This
approach harmonizes the unique characteristics of open-pit mining environments and hybrid solid-state LiDAR point clouds.
It optimizes the model’s preprocessing methodology, augments the dimensionality of pillar features, fine-tunes the loss function,
and employs transfer learning techniques to reduce the reliance on specific datasets. The result is the effective deployment of a 3D
object detection algorithm customized for hybrid solid-state LiDAR within the specific operational framework of open-pit mining.
This achievement has yielded a noteworthy overall vehicle recognition rate of 89.72%.

1. Introduction

1.1. Application Background. In recent years, the autono-
mous driving industry has prospered, but there are very
few autonomous driving projects that have actually achieved
actual benefits. For short-distance, fixed-site, high-intensity
open-pit mine transportation, autonomous driving technol-
ogy has high practical value, and closed mining areas are also
one of the most likely scenarios for autonomous driving. An
automatic driving system of a mining truck generally con-
sists of an autonomous mining truck, a communication sys-
tem, and a central monitoring system, as shown in Figure 1.
These systems work together to achieve efficient scheduling
and operation in open-pit mining. The advantages of auton-
omous mining trucks are reflected in not only solving the
transportation problems in smart mines and improving the
efficiency of transportation operations in open-pit mines but
also reducing safety accidents in open-pit mines, optimizing
production management, solving the problem of difficult

recruitment of mining truck drivers, and reducing labor
costs.

The transportation road in the open-pit mine is an
unstructured road without obvious road structure character-
istics, and the road surface is relatively undulating. A large
amount of dust in dry weather and accumulated water and
snow after rain and snow will also have a great impact on
road conditions. In such a complex and changeable environ-
ment and nighttime operating conditions without external
lighting, camera-based perception cannot stably obtain sur-
rounding environment information. The LiDAR-based per-
ceptionmethod is more adaptable to the mining environment
and canmeet the 7× 24 hr of autonomous mining truck oper-
ation requirements.

1.2. Hybrid Solid-State LiDAR and Point Cloud. Although
LiDAR is the best perception sensor for autonomous mining
trucks, the production conditions in the open-pit mine are
very harsh. The LiDAR mounted on the mining truck not

Hindawi
Journal of Sensors
Volume 2024, Article ID 5854745, 12 pages
https://doi.org/10.1155/2024/5854745

https://orcid.org/0009-0003-4680-3546
https://orcid.org/0000-0003-4219-8708
https://orcid.org/0000-0003-4443-1438
mailto:yogi@hnu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/5854745


only has to withstand the test of high and low temperatures
and strong vibration but also faces severe mechanical shock
during loading and unloading. Therefore, the performance of
LiDAR directly determines the accuracy and stability of envi-
ronmental perception.

LiDAR mainly includes laser emission, reception, scan-
ner, and signal processing circuits. According to different
scanning methods, LiDAR can be divided into three types:
mechanical LiDAR, hybrid solid-state LiDAR (semi-solid-
state LiDAR), and solid-state LiDAR. The mechanical LiDAR
drives the optical–mechanical structure to rotate 360°
through a motor and can scan the surrounding environment
in all directions to form a point cloud. However, the mechan-
ical LiDAR adopts the traditional discrete design, which is
bulky and relies heavily on moving parts, so it is not suitable
for application in the environment of extreme temperature
variations and strong vibration and shock in open-pit mines.
Compared with mechanical LiDAR, hybrid solid-state and
solid-state LiDAR generally can only achieve a horizontal field
of view of 120°, but hybrid solid-state has fewer rotatable
moving parts, and solid-state has no mechanical movement,
which has higher stability and is shrinking in size and cost.
The hybrid solid-state LiDAR is currently the popular LiDAR
solution for mass-produced vehicles, and its technologies are
relatively mature.

The data collected by LiDAR is called point cloud. A
point cloud is a collection of massive points that express
the spatial distribution of targets and surface characteristics
of objects in a 3D space coordinate system. The content of
the point cloud includes 3D coordinates (XYZ) and reflection
intensity (Intensity). The intensity information is related to
the surface material, roughness, incident angle and direction
of the object, as well as the emitted energy of the laser and the
wavelength of the laser.

The point cloud itself has a natural disorder, which
means that exchanging any point will not affect the 3D
description of the spatial object. Similarly, translation, rota-
tion, and scaling will not affect its 3D description. This fea-
ture can be used to perform data augmentation on point
clouds before network training. In addition, point clouds
are also characterized by sparsity, which has low resolution
in 3D space, so 3D convolutions [1] performed on point
clouds are not as effective as 2D convolutions on images.

The characteristics of the open-pit mine’s lidar point
cloud lie in the significant differences in the distribution of
the z-coordinates of object centers beneath undulating roads,
with object sizes generally larger than those in urban scenes.
The environment is characterized by unstructured roads, and
dust is commonly present. The dust not only introduces
noise to the point cloud data but also accumulates on the
specular surfaces of the lidar, leading to an overall decrease in
the quality of the point cloud data. Additionally, the vibra-
tion during the movement of vehicles in the mining area is
much greater than that in an urban scene, which can inter-
fere with point cloud data, resulting in data distortion.

1.3. LiDAR Perception Algorithm. Open-pit mines generally
have strict restrictions on the entry and exit of vehicles and
pedestrians, so the target obstacles appearing in the mining
stripping section of the open-pit mine are mainly vehicle
types, including electric shovels, mining trucks, bulldozers,
road graders, sprinklers, etc., and the vehicle is large and easy
to detect, and the probability of pedestrians is extremely low,
which is more suitable for the application of object detection
methods in deep learning.

3D object detection methods in deep learning rely on
data-driven [2] input of massive sample data, and the detec-
tion accuracy can exceed the traditional method of feature

FIGURE 1: Automatic driving system of mining truck.
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extraction. Therefore, data become the key to deep learning
algorithms. At present, the public datasets of autonomous
driving containing point cloud data are increasing year by
year and cover tasks such as object detection, object tracking,
semantic segmentation, mapping, and positioning, such as
KITTI [3], SemanticKITTI [4], BLVD [5], Waymo, nuS-
cenes, and so on. However, the cover scenes of these datasets
are mainly on structured roads in cities, while open pit mines
are unstructured scenes. The object types, object sizes, and
perceived environments of the two scenarios are quite differ-
ent, and the existing public datasets cannot be directly used
as training data for 3D object detection on unstructured
roads in open-pit mines. At present, the road conditions of
open-pit mines are complex, and with the advancement of
mining, the road environment will always be changed, which
brings great challenges to data collection. In addition, in the
current open-pit mine dataset, the proportion of mining
trucks in the dataset is very high, reaching more than 50%,
while the proportion of other objects is relatively small,
resulting in poor class balance in the dataset.

The traditional LiDAR point cloud processing method
typically begins by segmenting and extracting nonground
points, then clusters obstacle points to obtain obstacle fea-
tures, and performs multiobject matching and tracking based
on object features. The complex and changeable road condi-
tions of open-pit mines bring challenges to the nonground
point segmentation and extraction of traditional point cloud
detection methods. Moreover, the traditional method cannot
distinguish the types of vehicles in open-pit mines, and the
generalization ability of point cloud features based on rule
extraction is limited. For problems such as false positives of
vehicles caused by street signs and retaining walls, as shown
in Figure 2, traditional point cloud processing methods may
not be as good as deep learning methods.

Some early algorithms based on deep learning, such as
point-based PointNet [6] and PointNet++ [7], these type of
algorithms need to map the point set features back to the
original point cloud after calculating the neighborhood fea-
tures, which have a large time complexity. The voxel-based
algorithm represented by VoxelNet [8] has a small propor-
tion of nonempty voxels, and the data expression is ineffi-
cient. Moreover, the calculation of the 3D convolution
calculation features used is very computationally intensive,

and the reasoning is very time-consuming. Some methods,
such as AVOD [9], project point clouds onto a 2D plane and
employ image-based approaches for object detection. How-
ever, the projection process inevitably leads to the loss of
certain geometric spatial information, resulting in shortcom-
ings in depth prediction. In this context, PointPillars [10, 11]
has garnered widespread attention due to its ability to strike a
favorable balance between inference speed and detection
accuracy. PointPillars achieves efficient object detection by
converting point cloud data into a compact voxel represen-
tation and employing a columnar structure-based processing
approach. Compared to other Bird’s Eye View (BEV)-based
methods, PointPillars demonstrates a significant advantage
by consistently improving inference speed to 60 frames per
second (60Hz) while maintaining a certain level of detection
accuracy. Figure 3 illustrates a comparison between Point-
Pillars and other BEV-based methods, such as Frustum
PointNet [12] and PIXOR++ [13] in terms of detection
accuracy and speed. It is evident that PointPillars manages
to achieve higher inference speed while maintaining a certain
level of detection accuracy. Baidu Apollo 6.0 has pioneered
the adoption of the PointPillars-based algorithm for LiDAR
point cloud detection, achieving a threefold increase in
detection frequency compared to SECOND [14].

However, although the object features extracted by
PointPillars include the relative distances of each point to
the arithmetic mean of all points within the pillar, the subse-
quent pooling operations do not effectively preserve this
feature. A major feature of the open-pit mine dataset is
that the obstacles are concentrated as vehicles, and the target
size is large. The pillar that contains the point cloud of the
vehicle is quite different from other Pillars that do not con-
tain obstacles in point cloud density and point cloud distri-
bution in the z-direction.

In light of the challenges posed by the complex and
dynamic nature of unstructured road environments in

FIGURE 2: False detection of vehicle (taken from a continuous frame).
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FIGURE 3: Performance comparison between PointPillars algorithm
and other algorithms based on BEV perspective.
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open-pit mining, as well as the harsh operating conditions
and lack of suitable datasets, this paper presents a novel 3D
object detection model for LiDAR, named PointPillars-HSL
(PointPillars-Hybrid Solid-State LiDAR). This model is
designed by taking into account the characteristics of hybrid
solid-state LiDAR point clouds in practical applications.
This approach builds upon the foundation of the PointPillars
model by optimizing the preprocessing structure and loss func-
tion, enhancing the dimensions of point cloud features, and
utilizing transfer learning [15] methods to mitigate the need
for specific datasets. As a result, improved detection perfor-
mance is achieved on both the training and deployment
platforms.

2. PointPillars-HSL Object Detection Algorithm

2.1. Data Preprocessing. The three elements of artificial intel-
ligence are data, algorithms, and computing power, and data
plays a leading role in the three elements. The detection
dataset of the open-pit mine comes from the LiDAR of Inno-
vusion mounted on the mine truck and Figure 4 shows a

frame of mining area point cloud data collected by Innovu-
sion. The LiDAR has a maximum detection range of 500m,
with a detection range of 250m at 10% reflectivity. It features
a 120° horizontal field of view, a 25° vertical field of view, and
a resolution of 0.18° × 0.24°. The ranging accuracy achieves
Æ5 cm.

The PointPillars algorithm filters out point clouds that
are projected outside the image bounds based on their pro-
jection in the image. However, due to distortion and insta-
bility in the fisheye cameras on the mining trucks, the
PointPillars-HSL algorithm cannot perform filtering based
on images. During the data preprocessing, an appropriate
region of interest for point clouds is defined, allowing for
initial downsampling of the point cloud data.

Due to the point clouds captured by the fixed-position
LiDAR on mining trucks being influenced by the uneven
terrain and steep road conditions in the open-pit mine, there
is a wide distribution range of the Z-coordinates of the
detected objects. If a small point cloud filtering range is
applied in the z-direction, it will result in the exclusion of
many obstacle targets. This article analyzes and counts the
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FIGURE 4: Point cloud of innovusion.
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object height of the mining truck dataset to obtain the point
cloud height range of the vehicle and dynamically adjusts it
in the data preprocessing step of the model training process.

Compared with the anchor-free algorithm [16], the
PointPillars-HSL algorithm is particularly sensitive to the
setting of anchor boxes. It is difficult for the detection net-
work to learn the object bounding box directly from the data.
The role of the anchor is equivalent to giving the network a
learning template about the object size in advance. Building
upon this foundation, the network undergoes further learn-
ing to accurately derive 3D boundingbox boxes. The anchor
parameters in the general PointPillars model are representa-
tive of vehicles in urban road scenarios and may differ from
the vehicles encountered in open-pit mines. Consequently,
after performing precise point cloud annotation on a subset,
anchor box dimensions for different vehicle categories in the
open-pit mine were determined.

2.2. Transfer Learning. Open-pit mines have a limited num-
ber of vehicles, and the close relationship between vehicle
categories and operational scenarios leads to a relatively
low efficiency in data collection. Additionally, the steep
and unstructured terrain in open-pit mines introduces chal-
lenges in annotation. At present, the number of dataset sam-
ples in open-pit mines is relatively limited. If training is
started from scratch, the stability and reliability of the model
cannot be guaranteed. Therefore, this paper uses the transfer
learning method to reduce the number of training data.
Transfer learning is a branch of machine learning that
exploits the similarity between data or tasks to apply a model
trained in an old domain to model initialization in a new
domain. The transfer learning approach utilized in this study
is based on parameter transfer within a supervised learning
framework. Given that shallow networks possess generic fea-
tures and strong transferability, the model parameters
trained on the KITTI urban road dataset were employed in
the training of a detection model tailored to open-pit mining
scenarios. The pretrained model serves as the starting point

for model learning, with further adjustments to the
parameters of the deep network aimed at enhancing the
model’s generalization performance.

Transfer learning is founded on two fundamental con-
cepts: domain and task. Domains are divided into source and
target domains. In this paper, the source domain is the urban
road scene, while the target domain is the open-pit mine. The
task being learned in both domains is consistent, involving 3D
object detection. Moreover, the designed model structures are
highly similar, making them suitable for parameter-based
transfer learning. Leveraging the abundant labeled samples
and domain adaptation available in the urban road scene,
transfer learning can alleviate the challenges associated with
learning vehicle features in the open-pit mine.

2.3. Model Structure. The PointPillars-HSL network struc-
ture proposed in this paper is mainly divided into three parts:
PFN+ (Pillar Feature Net+), 2D Backbone [9], and SSD
detection head, as shown in Figure 5.

In the PFN+module, the downsampling of point clouds is
achieved by adjusting the division of Pillars (cuboidal point
cloud segments). This approach effectively addresses the issue
of nonuniform distribution of distant and nearby point
clouds. Compared to the 360° rotating scan of mechanical
LiDARs, the nonrepetitive scanning approach of hybrid
solid-state LiDAR ensures that the scanning path does not
repeat and the illuminated area within the field of view
increases over time. Figure 6 illustrates the accumulation of

PFN+ Backbone
(2D CNN)

Detection
head (SSD)

FIGURE 5: PointPillars-HSL network structure.

Integration time: T Integration time: 2T Integration time: 3T Integration time: 4T

FIGURE 6: The coverage of point clouds from nonrepetitive scanning
varies over time.
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point clouds from the hybrid solid-state LiDAR as time
progresses.

The hybrid solid-state LiDAR point clouds exhibit a distinct
characteristic of being sparse in distance and dense in proximity.
To optimize the pillar generation in the PointPillars-HSLmodel,
a different approach is taken during the pillar generation phase.
Instead of discretizing the point clouds into a grid with uniform
spacing, the model adapts to the actual characteristics of the
point clouds in the open-pit mine. In this paper, smaller pillar
sizes are selected for denser point clouds in closer proximity,
leading to the generation of more features and achieving finer
localization. Sparse point clouds in the distance are mapped to
larger pillars. This strategy not only reduces the number of pillars
but also enhances the features of distant point clouds, thus
improving the detection performance. The entire process and
details can be seen in Figure 7.

Due to the presence of pooling operations causing sparse
features in the PFN+module, the proposed PointPillars-HSL
approach introduces additional features at each individual
point to retain the pillar density and point cloud’s z-direction
distribution information extracted from all points within a
pillar. Specifically, the process involves concatenating the
offsets of each point within every pillar to both the center
point of the pillar and the arithmetic mean point of all points
within the pillar, along with the x, y, z coordinates, intensity
values, density features, and z-direction characteristics of
each point. After partitioning the point cloud into Pillars,
constraints are applied to the nonempty pillar count (P)
per sample and the point count (N) per pillar. This is done
to construct a tensor of size (D, P, N), where D= 12, repre-
senting the feature dimensionality of points within Pillars.
This augmented feature set includes the original 10 dimen-
sions and incorporates density features and distribution
characteristics. Subsequently, the tensorized point cloud
data undergoes processing and feature extraction to yield a

tensor of size (C, P, N). Finally, a max-pooling operation is
applied along the third channel, resulting in an output tensor
of size (C, P). This encoded feature is then redistributed back
to the original pillar positions, forming a pseudo-image of
dimensions (C, H, W), where P=H×W.

The density calculation formula for each pillar is as fol-
lows, where N represents the number of points within each
Pillar:

Pdensity ¼min 1;
lg N þ 1ð Þ
lg 150ð Þ

� �
: ð1Þ

The vertical distribution of the point cloud can be
reflected by the variance of the z coordinates of all points
within each Pillar:

S2 ¼ ∑
N

i¼1

xi − xð Þ2
N

: ð2Þ

The Backbone (2D convolution) consists of two compo-
nents: one sub-network performs progressive downsampling
on the pseudo-image to extract features at different scales, while
another network performs upsampling on features extracted
from top to bottom, resizing the feature maps to match the
original pseudo-image size. This facilitates channel-wise concat-
enation at a consistent scale. The PointPillars-HSL algorithm
continues to adopt the SSD detection head [17], predicting the
categories, positions, and orientations of the objects.

2.4. Loss Function and Model Training. By analyzing the
object categories within the training dataset, it is evident
that the category of mining trucks has the highest occurrence
probability, while categories like water trucks, graders, and
bulldozers have lower proportions. This imbalance in class
distribution might lead to a bias toward predicting mining
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FIGURE 7: Pillar grid division and PFN+ module.
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trucks in the final predictions, consequently impacting the
overall detection accuracy. In order to address the problem
of imbalanced object categories within the training dataset,
the algorithm employs Focal Loss [18] in the loss function.
This allows for assigning higher weights to challenging sam-
ples, which are those that are prone to being misclassified.
The key concept of Focal Loss involves introducing a tuning
factor (focusing parameter) to adjust the weights of samples.
This tuning factor results in low-difficulty samples contrib-
uting less weight in the loss calculation, while high-difficulty
samples contribute greater weight. By utilizing Focal Loss,
the weight of easily classifiable samples can be reduced,
allowing the model to focus more on learning from challeng-
ing samples. This approach helps mitigate the impact of class
imbalance in object detection tasks. The Focal Loss is as
follows:

Ըcls ¼ −αa 1 − pað Þγ logpa: ð3Þ

In the equation, pa represents the predicted probability
by the model, and γ is the tuning factor used to control the
weight of challenging samples. When γ is set to 0, Focal Loss
becomes equivalent to the cross-entropy loss function.
Increasing the value of γ can further enhance the weight of
difficult samples.

The loss function includes the position regression loss
function, classification loss function, and orientation regres-
sion loss function.

The position regression involves components (x, y, z, w, l,
h, θ). Taking the center point coordinate x as an example, xgt

represents the true value of the center point x in the anno-
tated target, while xa represents the predicted x value of the
3D anchor, with da ¼ ffiffiffiffiffiffiffiffiffiðwaÞp

:

2 þ ðlaÞ :

2. The calculation of the
components for the position regression loss is as follows:

Δx ¼ xgt − xa

da
;  Δy ¼ ygt − ya

da
;  Δz ¼ zgt − za

ha
; ð4Þ

Δw¼ log
wgt

wa ;  Δl¼ log
lgt

la
;  Δh¼ log

hgt

ha
;  Δθ¼ sin θgt − θað Þ;

ð5Þ

Ըloc ¼ ∑
b2 x;y;z;w;l;h;θð Þ

SmoothL1 Δbð Þ: ð6Þ

Smooth L1 [19] is defined as follows:

SmoothL1¼ 0:5x2 xj j<1

xj j − 0:5 xj j> ; 1

(
: ð7Þ

The position regression loss function incorporates orienta-
tion regression loss. If only the angle difference Δθ¼ θgt − θa is
computed, situations can arise where the position prediction is
correct but the orientation is opposite, leading to a situation
where the angle loss is excessively high and affects the overall
loss function value Ըloc. Therefore, the sine function is applied to

the angle difference to address this issue. However, solely using
the sine functionmay not distinguish and penalize two predicted
angle values that are opposite in orientation. The algorithm
proposed in this paper introduces an orientation regression clas-
sifier, defining two directions as positive and negative, constrain-
ing the angles within the (0, 2π) interval, mapping angles in the
range [0, π) to 0 and angles in the range (π, 2π) to 1, representing
them using one-hot encoding [20]. Subsequently, it employs the
softmax and cross-entropy loss functions to compute another
orientation regression loss value, denoted as Ըdir.

In summary, the entire algorithmmodel’s loss function is
composed of as follows:

Ը¼ 1
Npos

βlocԸloc þ βclsԸcls þ βdirԸdirð Þ; ð8Þ

where Npos represents the number of positive samples, and in
training, the values for βloc, βcls, and βdir are set to 2, 1, and
0.5, respectively.

The training process adjusts the batch size based on the
GPU configuration of the training platform. A larger batch
size means that a greater number of samples are fed into the
network at once, allowing the determined directions to better
represent the overall dataset. However, it also requires a
larger GPU memory capacity. Indeed, with a larger batch
size, while keeping the overall dataset size constant, there
will be fewer iterations per epoch. Therefore, it’s necessary
to increase the number of epochs to achieve more iterations
and potentially better results.

3. Model Evaluation and Deployment

3.1. Model Optimization Evaluation Results. The final detec-
tion results of the PyTorch Model are Shown in Figure 8.

From Figure 8, it can be observed that the model per-
forms well in detecting vehicles of different classes, even
when they are occluded or partially visible. According to
the analysis of the test dataset, the model also exhibits a
certain degree of dust-resistant detection capability, with
high confidence in vehicle detection, which makes it suitable
for vehicle detection in complex and dynamic environments
such as open-pit mines. The effect of dust suppression detec-
tion is shown in Figure 9.

The loss function curve during model training is depicted
in Figure 10.

To evaluate the performance of the PointPillars-HSL
model with optimized feature preprocessing, a comparison
was made against the PointPillars model without pretrained
parameters on the same batch of mining area dataset, using
identical batch size and learning rate strategy. The detection
metrics on the open-pit mine dataset are shown in Table 1.

To verify the added pillar internal density features and z-
direction point cloud distribution features, an ablation study
was designed, as shown in Table 2. Feature Enhancement
means adding density features and z-direction point cloud
distribution features to the original 10D features. We can see
that the model’s mean average precision (mAP) for all classes
improves about 8.13% for added 2D features.

Journal of Sensors 7



To verify the impact of pillar grid division on model
detection accuracy and speed, an ablation study, as shown
in Table 2, was designed, and the detection results were mea-
sured on a device equipped with anNvidia GeForce RTX 3050
Ti using the test dataset. The PointPillars model takes about
98.5ms (10.15Hz) to process each sample, and PointPillars-
HSL uses a novel pillar grid division method to reduce the
detection time by 11.3ms without significant loss of accuracy.

3.2. Model Deployment. The model is deployed on an
NVIDIA Tegra Xavier. After training, the PyTorch model
file is converted to an ONNX file, and then inference
acceleration is achieved using TensorRT to obtain the
detection results.

The detection results of the PyTorch model, as shown in
Figure 11, are based on a coordinate system defined in the
OpenPCDet framework: with the positive x-axis representing

FIGURE 8: Mining truck detection performance.
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the forward direction, clockwise as positive, and angles rang-
ing from (−π, π).

In contrast, the reference coordinate system for the
deployed inference results, as shown in Figure 12, is consis-
tent with the training annotation data reference system. It
uses the rightward direction as a reference, clockwise as pos-
itive, and also has an angle range of (−π, π). The two coordi-
nate systems differ by 90°.

The inference detection speed on the NVIDIA Tegra
Xavier development board is approximately 65ms/frame.

4. Discussion

In summary, our research is the first to implement a sensing
solution based on hybrid solid-state LiDAR in an open-pit
mining scene. Due to the low probability of auxiliary vehicles

FIGURE 9: The effect of dust suppression detection.
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TABLE 1: The effectiveness of model feature optimization.

3D AP (%) Mining truck Bulldozer Car mAP

PointPillars 83.63 78.49 75.73 79.28
PointPillars-HSL 93.86 90.72 84.58 89.72

TABLE 2: Ablation study for PointPillars-HSL.

Model Feature enhancement Pillar size Loss function optimization mAP (%) Speed (Hz)

PointPillars ✗ 0.162 ✗ 79.28 10.15

PointPillars-HSL

✓ 0.162 ✗ 87.41 —

✗ 0.162+ 0.322 ✗ 79.05 11.47
✓ 0.162+ 0.322 ✗ 87.21 —

✓ 0.162+ 0.322 ✓ 89.72 11.47

FIGURE 11: Detection results of PyTorch model.
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such as sprinklers and command vehicles appearing in open-
pit mines, sufficient data are lacking. In the future, with
enough data, the detection solution can cover all types of
vehicles in the mine. Combined with the traditional point
cloud detection and segmentation algorithm, it can detect
irregular objects such as stones and walls, taking the autono-
mous driving of mining trucks one step further.

5. Conclusions

This paper addresses the challenges faced in the perception of
autonomous driving environments in mining, characterized
by harsh operating conditions and complex, ever-changing
road environments. We propose the PointPillars-HSL 3D
object detection algorithm, which is suitable for mining envir-
onments and utilizes a hybrid solid-state LiDAR system. After
analyzing the data from the hybrid solid-state LiDAR point
cloud and by implementing downsampling and feature optimi-
zation based on Pillars, along with data preprocessing and trans-
fer learning techniques, we have effectively addressed the issues
of overly dense point clouds in open-pit mine and the significant
slopes in unstructured road scenes. Through the optimization of
the loss function, the stability of the model in predicting obstacle
orientation and category has been enhanced. Furthermore,
deploying the well-trained algorithm model on the NVIDIA
Tegra Xavier has enabled real-time inference for 3D point cloud
object detection.
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