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Foreign objects easily attach to the transmission lines because of the various laying methods and the complex, changing environ-
ment. They have a significant impact on the safe operation capability of transmission lines if these foreign objects are not detected
and removed in time. An improved YOLOv5 technique is provided to detect foreign objects in transmission lines due to the low-
foreign object recognition accuracy image detection. The method first reduces the computation and memory consumption by
introducing the RepConv structure, further improves the detection accuracy and speed of the model by embedding the C2F
structure. This method finally is further optimized neural network by the Meta-ACON activation function. The results indicate
that the average detection accuracy of the improved YOLOv5 network can reach 96.9%, which is 2.2% higher than before.
Additionally, corresponding detection speed can reach 258.36 frames/second, which surpasses existing mainstream target detection
models, performing better in terms of the balance of inference speed and detection accuracy. Consequently, the effectiveness and
superiority of the algorithm have been proved.

1. Introduction

Grid transmission lines serve as carriers for the transmission
of the electricity we use every day [1]. How to ensure that the
transmission lines are safe and stable for power transmission
is a necessary condition for the safe and effective operation of
the power grid. Given the significant data statistics, the fol-
lowing kinds of foreign objects often appear on the power
grid: bird nests, kites, balloons, and garbage. The above
objects hanging on the transmission lines or towers can
quickly short-circuit or single-phase faults between trans-
mission lines, leading to all kinds of short-circuit accidents,
severe fires, and widespread power outages, which brings
serious economic losses [2, 3]. The chain reaction caused
by short circuits also threatens the lives and property of
people living around the transmission line [4]. It dramati-
cally threatens the lives of the maintenance personnel who
come to repair the power grid. Transmission lines often span
a variety of complex landscapes. Moreover, the places they
pass through are generally sparsely populated and difficult to
access. On this basis, intelligent inspection technology [5–8]
was developed to inspect transmission lines through aerial

photography by UAVs, which can save a lot of human
resources and material resources with high-detection effi-
ciency compared with the manual labor. However, the data
from aerial photography still need to be distinguished by
human judgement, so the detection efficiency and accuracy
of the whole process still need to be improved.

As the GPU computing power continues to increase,
deep learning is gradually showing its advantages in various
fields of computer vision. Since 2014, deep learning-based
target detection networks erupted, starting with two-stage
networks, such as R-CNN [9], Fast-RCNN [10], Mask-
RCNN [11], Faster R-CNN [12], which have the advantages
of high-detection accuracy and low-leakage rate. However,
the detection speed is slow. The calculation is relatively com-
plicated and challenging for the transmission line foreign
object detection and prevention work. Single-stage detection
algorithms emerged then to integrate the feature extraction
of candidate regions with the positioning of prediction
frames and directly perform the judgment of target catego-
ries and the positioning of detection frames [13–17].

In 2020, YOLOv5 [18] was introduced, shocking the
world with its extremely fast detection speed, making it an
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ideal candidate for real-time conditions and mobile deployment
environments. The related studies [19–24] have made light-
weight improvements to the YOLOv5s version based on differ-
ent domains. Without modifying the subject feature extraction
network, they enhanced feature extraction by improving the
feature pyramid network (FPN) [25–27] in various ways, result-
ing in some improvement in the accuracy of target recognition.
The YOLOv5s regression, however, needs more precision.
Although using more profound levels of YOLOv5m [28],
YOLOv5l [29], and YOLOv5x [30] have better MAP (mean
average precision) [31] compared to YOLOv5s. The amount
of data in the model will be more as well as the demand of the
algorithm for the hardware will be higher. The use of YOLOv5-
Lite version has a faster FPS and can be more easily deployed on
more platforms. However, its accuracymAP has a particular gap
compared to more complex network models. Therefore, it is
challenging to meet scenarios with high requirements for real-
time and target frame regression accuracy. Based on YOLOv5,
this paper proposes a target detection model that is lightweight
and has a faster detection speed in order to better tradeoff speed
and accuracy and tomake the YOLOmodel better applied to the
transmission line foreign object detection task, with the following
main contributions:

(1) The RepConv [32–35] structure is introduced, which
reduces the computation and memory usage by shar-
ing parameters and adding convolutional layers and
improves the target inference speed while guarantee-
ing the existing target recognition accuracy;

(2) The C2F [36, 37] structure is used to improve the
semantic representation of features, thus enhancing
the feature extraction capability of the network and
thus facilitating the model to detect small targets
more accurately;

(3) The Meta-ACON [38, 39] function replaces the tra-
ditional activation function. The Meta-ACON acti-
vation function adaptively adjusts the activation
function parameters, thus improving the model’s
generalization ability and making the model more
practical.

2. YOLOv5 Network

YOLOv5 is a deep convolutional neural network-based tar-
get detection algorithm. Its network structure mainly con-
sists of three parts: backbone network, feature extraction
network, and prediction network. Among them, the back-
bone network uses CSPDarknet53 as the backbone, which
can effectively extract image features. The feature extraction
network uses feature maps of different scales for effective
target detection, while the SPP structure can improve the
detection accuracy without increasing the computational
effort. The prediction network consists of a series of convo-
lutional and prediction layers to achieve target classification,
position, and scale prediction. YOLOv5 balances speed and
accuracy by optimizing and improving the network struc-
ture, making it an efficient and accurate target detection
algorithm.

2.1. Backbone Network. The backbone network of YOLOv5
uses a combination of CSP and SPP modules, which can
improve detection performance and efficiency. The CSP
and SPP modules are described in detail below.

2.1.1. CSP Module. The CSPmodule is the core module of the
YOLOv5 backbone network, which can reduce the compu-
tational complexity and memory consumption of the model
and improve its accuracy of the model. The structure of the
CSP module is shown in Figure 1.

The CSP module divides the input feature map into two
parts: a branching part and a connecting part. The branching
part comes to perform the convolution operation, and the
connecting part connects directly to the output. Finally, the
feature maps of these two parts are connected. The branch-
ing part usually uses multiple convolutional layers to extract
features. Moreover, these convolutional layers use different
sizes and numbers of convolutional kernels to extract feature
information step by step. The connected part usually uses
1× 1 convolutional layers for feature dimension transforma-
tion to ensure that the feature dimensions of the branch, and
connected parts are the same. This module can significantly
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FIGURE 1: CSP module: (a) ResNe(X)t and (b) CSPResNe(X)t.
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reduce computation and memory consumption while main-
taining high-detection accuracy.

2.1.2. SPP Module. SPP module is a spatial pyramid pooling
module that can pool the feature maps at different scales to
obtain feature information at different scales. The structure
of the SPP module is shown in Figure 2.

The SPP module extracts feature information at multiple
scales from the feature map by pooling operations of differ-
ent sizes. These feature information are then concatenated
together to capture target information of various scales as
input for the next network layer. The resolution of the fea-
ture map will gradually decrease after continuous convolu-
tional pooling, but the number of channels will gradually
increase. This method enhances the receptive field of the
network, which can capture a broader range of the target
information. Eventually, the feature maps are passed to the
prediction network to predict the location and class of the
target.

The input image is passed through a convolutional layer
in the backbone network to get the feature map. A series of
CSP modules then are stacked to form the BottleNeckCSP
structure and SPP module to gradually extract the feature
layer, which is shown in Figure 3.

2.2. Feature Extraction Network. In YOLOv5, the feature
pyramid structure is used to enhance the feature extraction
part to detect targets of different sizes better. The structure
comprises multiple feature layers with different spatial reso-
lutions and semantic information.

Precisely, the feature pyramid structure consists of the
following components:

Base feature layer: features of the image are extracted
using a backbone network (e.g., CSPDarknet53) and down-
sampled through a series of convolutional and pooling layers.

Upsampling module: lower resolution feature maps usu-
ally lose detailed information about the target in the feature
pyramid structure. Therefore, YOLOv5 uses an upsampling
module to recover this detailed information. In the upsam-
pling module, the accuracy of the detected target is improved
by interpolating the lower resolution feature maps so that
they have the same size as the higher resolution feature maps.

Feature fusion: YOLOv5 uses feature fusion to further
improve the detection performance, where feature maps of
the different resolutions are fuzed through a series of convo-
lution operations to obtain more accurate detection results.

Multiscale prediction: YOLOv5 uses multiple feature
layers for target detection. Each feature layer has a different
resolutions and semantic information to detect targets of the
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different sizes. Specifically, each feature layer generates a set
of prediction frames and then rejects the overlapping predic-
tion frames by a nonmaximum suppression (NMS) algo-
rithm to finally output the final detection results.

In general, the feature pyramid structure in YOLOv5
improves detection performance by using the fusion of mul-
tiple feature layers, especially when detecting targets of dif-
ferent sizes. This structure can improve detection accuracy
and speed and has become one of the mainstream methods
in target detection algorithms.

2.3. Prediction Network. In YOLOv5, the YOLO head is a
network structure containing multiple convolutional and
fully connected layers, which processes the feature extraction
results of each feature map and outputs the detection results.
The prediction process dividing into three steps: (1) feature
mapping: in the YOLO head, the feature extraction results of
each feature map need to be compressed for the output
detection results. The output section of Figure 3 uses a
1× ∗1 convolution layer to compress the number of chan-
nels of each feature map to a certain number of values. (2)
Prediction: in the YOLO head, the prediction is performed
by a set of convolutional layers. These convolutional layers
are responsible for predicting each target’s class, position,
and confidence scores. These scores are used in a subsequent
NMS operation to filter out prediction frames with low-
confidence scores. (3) Decoding: some decoding functions
are used in the YOLO head to convert the predicted results
into actual bounding box coordinates and category probabil-
ities. The decoding process usually includes back-calculating
the network output values, applying anchor boxes and off-
sets, and normalizing confidence scores using the sigmoid
function.

In YOLOv5, detection results are obtained by using the
YOLO head. By processing the feature extraction results of

each feature map, it outputs information such as the posi-
tion, category, and confidence score of each detected object.
It also utilizes decoding to convert this information into
actual bounding box coordinates and category probabilities.
This method allows YOLOv5 to maintain a high-detection
speed while ensuring high-detection accuracy.

3. Improved YOLOv5 Network

This paper makes several improvements to the YOLOv5
network structure, including adding the C2F module, the
RepConv module, and the Meta-ACON loss function. The
C2F module can enhance the semantic correlation between
different categories of targets for efficient feature extraction.
The RepConv can reduce the computation and memory
usage. Furthermore, the Meta-ACON loss function can effec-
tively solve the gradient disappearance and gradient explo-
sion problem, enhance nonlinear expression capability, and
improve detection performance and robustness, thus making
the target detection improve in both accuracy and efficiency.
The improved YOLOv5 network structure is shown in
Figure 4.

3.1. RepConv. RepConv is a convolutional neural network
module based on repeated convolution, which aims to solve
the computational complexity and memory consumption
problems of convolutional operations in traditional convolu-
tional neural networks. RepConv achieves the effect of
reducing the computation and memory consumption by
sharing parameters and adding convolutional layers.

In traditional convolutional neural networks, convolu-
tional operations require much computation and memory.
For instance, in a convolutional layer, for a 3× 3 convolu-
tional kernel and 64 channels of input and 128 channels of
output, 64× 3× 3× 128= 294,912 multiplication and addi-
tion operations are required. The computation mentioned
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above increases with the convolutional kernel size and num-
ber of input and output channels, leading to computational
complexity and memory usage problems.

RepConv reduces computation and memory usage by
adding convolutional layers and shared parameters. Specifi-
cally, RepConv decomposes the original convolutional layer
into multiple smaller convolutional layers, each with smaller
convolutional kernel size and the number of output channels
than the original convolutional layer. Thus, the original con-
volutional operation that requires a large amount of compu-
tation can be turned into multiple small convolutional
operations, reducing computation and memory usage.

Meanwhile, RepConv also adopts a shared parameter
approach. In other words, multiple small convolutional layers
share the same convolutional kernel, which further reduces
the number of parameters and memory usage.

RepConv is somewhat different in training and inference.
The training has the summed output of three branches. The
deployment will reparametrize the parameters of the
branches to the main branch, as shown in Figure 5.

3.2. C2F Module. The C2F module derives from the C3 mod-
ule and the ELAN module, and the C3 module is shown in
Figure 6. However, the C2F module adopts a more light-
weight design scheme, as shown in Figure 7. This module
includes two submodules: the Bottleneck module and the
CBS module, where two CBS modules stack the Bottleneck
module. The CBS module is stacked by Conv2d, Batch-
Norm2d, and SiLU activation functions. The above modules
can extract features efficiently and reduce computation and
model size.

In addition to the convolutional layers, the C2F module
also uses residual and jump connections to improve the

model performance and enable the network to learn the
features better. The residual connection can avoid the pro-
blems of gradient disappearance and gradient explosion. In
contrast, the jump connection can improve the semantic
representation of the features, thus enhancing the feature
extraction ability of the network. The above structures can
help the network to learn the features better. Thus, it helps
the network to perform better feature extraction and classifi-
cation, which in turn improves the detection accuracy and
speed. Additionally, the C2F module can also improve the
network’s robustness, enabling the network to perform well
when processing various scenes and images.

3.3. Improved Activation Function. Meta-ACON is a nonlin-
ear activation function that is based on the idea of adaptive
normalization (AN). The formula is shown in Equation (1)
as follows:

SM x1; x2;…; xn; βð Þ ¼ 1
β
log ∑

n

i¼1
eβxi

� �
; ð1Þ

where x1; x2; :::; xn is the input and β is a hyper parameter of
“softened parameters.” The adaptive switching between lin-
ear and nonlinear mappings is learned by defining a switch-
ing factor β.

Meta-ACON has the feature of adaptively deciding
whether a neuron is activated. Therefore, unlike traditional
activation such as ReLU, ACON allows each neuron to be
activated or inactivated adaptively. This activation behavior
contributes to the generalization and transmission perfor-
mance of the neural network and avoids the phenomena of
“gradient vanishing,” “gradient explosion,” and “neuron
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necrosis”. In this paper, we use this activation function to
enhance the learning and generalization ability of the model
and replace the ReLU activation function in deep convolu-
tional neural networks, which is shown in Figure 8.

In summary, adding the Meta-ACON activation function to
YOLOv5 effectively solve the gradient disappearance and gradi-
ent explosion problems, enhance the nonlinear expression capa-
bility, and improve the detection performance and robustness,
thus making the network more powerful and effective.

4. Transmission Line Foreign Object
Detection Dataset

Since there is no publicly available data in the field of trans-
mission line foreign object detection, this paper uses the
aerial images of transmission lines collected in a project
with the Suzhou Power Supply Company of the State Grid
Corporation as the basis for constructing the original dataset
of this paper, as shown in Figure 9.
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FIGURE 7: C2F structure.
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The tens of thousands of transmission line pictures col-
lected were screened. The blurred images were excluded, and
the two-dimensional target pictures, with precise shooting and
no evident compression traces, were selected as far as possible.
They are screening a total of 1,564 pictures of everyday foreign
objects. The deep learning training process requires a large
number of training samples. The more data used in the dataset,
the higher the accuracy of the model detection after training.
The number of selected images is still far from the amount of
data in the above common dataset, so the Albumentation
image enhancement techniques are used to expand the foreign

object images, including but not limited to rotation, scaling,
transposition, contrast adjustment, brightness adjustment,
grayscale adjustment, motion blur, and gridding, to ensure
the training effect of the model. Figure 10 shows the enhance-
ment process of the dataset.

5. Experimental Results and Analysis

5.1. Experimental Environment. The experimental environ-
ment used in this paper is a computer with an Intel Xeon
Gold CPU and an NVIDIA GeForce TITAN RTX GPU with

FIGURE 9: Original dataset.

ðaÞ ðbÞ

ðcÞ ðdÞ
FIGURE 10: Expansion of transmission line foreign object dataset. (a) Original image, (b) rotate 180°, (c) 30° rotation, and (d) grayscale
processing.
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32GB of RAM. The operating system used in this paper is
Ubuntu 20.04 LTS, Python version 3.8.5. PyTorch 1.7.1 is
used as the deep learning framework. Furthermore, other
commonly used Python libraries, such as NumPy, Pandas,
and Matplotlib.

This paper uses a self-built transmission line foreign
object dataset as the training and testing dataset. The com-
mon types of foreign objects on transmission lines: bird nests,
balloons, kites, and garbage, are included. Moreover, 4,517
photos after expansion are used as the dataset. The data set
is divided using a stratified sampling method in the ratio of
8 : 2. The training set and test set are included, with 3,613
images in the training set and 904 images in the test set.
The training set is the data samples fitted to the model. The
test set is the samples kept separately in the model training for
model hyperparameter tuning and preliminary assessment of
the model capability.

5.2. Evaluation Metrics. Accuracy and recall are two evalua-
tion metrics commonly used in deep learning to assess the
performance and accuracy of classification models. Accuracy
and recall are often used together with the confusion matrix.

The confusion matrix is a 2× 2 matrix in which each
element represents the match between the actual and pre-
dicted categories. Each of the four elements of the matrix
represents:

(1) TP (true positive): the actual is positive and the pre-
dicted is positive.

(2) FP (false positive): the actual negative and predicted
positive cases.

(3) FN (false negative case): actual positive case pre-
dicted negative case.

(4) TN (true negative): actual negative case and pre-
dicted negative case.

Among them, precision refers to the proportion of the
actual positive samples among the predicted positive sam-
ples, which is calculated as follows:

Precision¼ TP
TPþ FP

: ð2Þ

The recall is the number of positive samples correctly
identified by the model as a percentage of all positive sam-
ples. The calculation formula is as follows:

Recall ¼ TP
TPþ FN

; ð3Þ

where TP denotes true examples and FN denotes false coun-
terexamples. The higher the recall, the better the model can
identify the positive cases.

In practical applications, accuracy and recall rates usually
need to be considered balanced. For example, the recall rate
is more important than the accuracy rate because a higher
misdiagnosis rate may lead to missing the disease in oncol-
ogy diagnosis, while a higher miss rate allows for a second

examination. Conversely, in some scenarios, such as financial
fraud detection, the accuracy rate is more important than the
recall rate because a misdiagnosis can lead to financial loss.

In conclusion, accuracy rate and recall rate are standard
evaluation metrics in deep learning to assess the perfor-
mance and accuracy of the classification models. In practi-
cal applications, suitable evaluation metrics need to be
selected according to the specific scenarios and balanced
considerations.

5.3. Experimental Design and Experimental Results. The same
data set and the same parameter settings are used in this
experiment in order to examine the performance of the
improved model in this paper more intuitively. The training
loss graph of the model is drawn based on the log files saved
during the training process, it is compared with the training
loss graph of the YOLOv5 model before improvement, as
shown in Figures 11 and 12. From left to right, each image
represents Box_Loss, Obj_Loss, Cls_Loss, Precision, and
Recall in turn.

5.3.1. Ablation Experiments. RepConv is a repeatable convo-
lutional structure, which can increase the depth and width of
the network without increasing the computational effort due
to its discretization of the convolutional layers as well as the
shared parameter property, and also improve the perfor-
mance of the model while keeping the model size constant.
The C2F module, on the other hand, compared to the C3
module, is designed to pay more attention to the richness of
the gradient flow, which can better extract image features
and thus improve the performance of the model. In addition,
the C2F module adjusts different numbers of channels for
different scale models, which further improves the perfor-
mance of the model. Therefore, the C2F module can obtain
richer gradient flow information while ensuring lightweight.
In addition, RepConv can reduce the number of parameters
in the model, thus reducing the risk of overfitting. Finally,
regarding the Meta-ACON function, it can dynamically
learn (adaptively) the linearity/nonlinearity of the activation
function and control the degree of nonlinearity at each layer
of the network, which significantly improves the model’s
generalization performance. Therefore, theoretically all three
modules can improve the performance of the YOLOv5
model.

Next, we further verified this with an ablation test. In the
ablation experiments, the C2F module, the RepConv module,
and the Meta-ACON module are added to the YOLOv5
model. The performance improvement of these modules is
evaluated by comparing them with the original YOLOv5
model. The results reveal that the models with the addition
of the C2F module, RepConv module, and Meta-ACON
module all achieve performance improvements compared
to the original YOLOv5 model. The experimental results
are shown in Table 1.

Specifically, the mAP scores improved by 0.6 percentage
points in the C2F group, 0.3 percentage points in the
RepConv group, and 0.3 percentage points in the Meta-
ACON group. This result indicates that adding the C2F,
RepConv, and Meta-ACON modules to the YOLOv5 model

8 Journal of Sensors



TABLE 1: Results of ablation experiments.

Group C2F RepConv Meta-ACON P R mAP@.5 mAP@.5:.95 FPS

G1 — — — 0.962 0.925 0.947 0.688 269.72
G2 √ — — 0.988 0.927 0.963 0.692 265.08
G3 √ √ — 0.978 0.94 0.966 0.691 282.62
G4 √ √ √ 0.964 0.949 0.969 0.686 258.36
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can improve the model performance and make it more accu-
rate in detecting target objects. Although it is a minor
enhancement, it can still improve the model’s performance.

Overall, the results of this ablation experiment show that
adding the C2F module, RepConv module, and Meta-ACON
module can make the YOLOv5 model perform better in the
target detection task, with higher detection accuracy and
better performance. The experimental results are shown in
Figure 13.

5.3.2. Comparison Experiments. This paper compares the
accuracy and inference speed of several target detection
models, YOLOv5, YOLOv4, YOLOv3, SSD, and Faster
R-CNN, in constructing foreign object datasets under the
same test environment, which aims at verifying the effective-
ness of the improved YOLOv5 algorithm on the scale of
model parameters to reduce model complexity and improv-
ing model detection speed.

With regard to inference speed, the inference speed of
these models was tested using a computer equipped with an
NVIDIA GPU. The experimental results show that YOLOv5
has a faster inference speed than faster R-CNN and SSD’s
inference speed lies between them. The same images for each
model is used in the test for inference and recorded the
average inference time for each model.

In the test, the inference speed was 3.7-ms per image,
corresponding to a frame rate of 269.72 frames/second
when using the YOLOv5 model for image inference. In com-
parison, the inference speed of the SSD model is 13ms/
image. The corresponding frame rate is 75 frames/second
under the same hardware environment. In contrast, the

inference speed of the Faster R-CNN model is 91ms/image,
corresponding to a frame rate of 11 fps.

As can be seen from Table 2, the improved YOLOv5
achieves a balance between accuracy and inference speed
with high performance. While SSD provides a balanced
choice between speed and accuracy, YOLOv5 slightly out-
performs SSD on the dataset of this paper. In addition,
YOLOv5 employs certain new techniques, such as SPP and
PAN, enabling it to improve accuracy and speed. As seen
from the Table 2, the improved version of YOLOv5 performs
significantly better than SSD on the dataset of this paper.
Furthermore, some image enhancement techniques, such
as Albumentation image enhancement, are used in this
paper, making the improved version of YOLOv5 improve
accuracy and robustness. Table 2 suggests that the improved
YOLOv5 is much faster than Faster R-CNN in terms of
speed. Although the accuracy of the improved YOLOv5 is
slightly inferior to that of Faster R-CNN, speed is a more
critical factor in some scenarios, in real-time object detection
or large-scale target detection tasks, for example. Therefore,
an improved version of YOLOv5 is more suitable for these
scenarios. Faster R-CNN can be a more accurate model
choice if time and resources allow. This paper also compares
the performance of two models of the YOLO family such as
YOLOv3 and YOLOv4. On the dataset of this paper, the
experimental results are shown in Table 2. The improved
YOLOv5 also significantly improves computational speed,
with an increase in FPS of 223.36 and 232.36 compared to
YOLOv3 and YOLOv4, respectively. The improved YOLOv5
is more accurate for feature extraction of different target
categories and more sensitive than YOLOv3 and YOLOv4.

FIGURE 13: Model recognition effect.
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It indicates that the improved YOLOv5 has fully considered
the characteristics of different target classes in the network
design and training process to improve the recognition and
classification ability of the model. Compared with YOLOv5
models of different sizes, the accuracy of the improved
YOLOv5 is similar to YOLOv5l, but the detection speed is
much higher than YOLOv5l.

The characteristic heat map is shown in Figure 14. The
improved version of YOLOv5 can more accurately deter-
mine the target location and size information during the
detection of targets in images, thus improving the position-
ing and detection capability of the model.

Overall, this experiment validates the superior perfor-
mance of the improved YOLOv5 in the target detection task
through a comprehensive comparison with multiple target
detection models on the dataset used in this paper. The com-
parison focuses on accuracy, recall, and computation speed,

highlighting the improved YOLOv5′s exceptional perfor-
mance in these areas. Meanwhile, the analysis of feature
heat maps also provides a more intuitive observation of the
advantages of the improved YOLOv5 in feature learning and
target detection, which provides valuable references for the
subsequent research and applications.

The loss plots of training SSD, Faster R-CNN, and YOLO
series training multiple epochs are shown in Figure 15.

Some commonalities and differences in the training pro-
cess of different models can be observed from the loss curves.
The YOLOv3 and YOLOv4 models have faster decreasing
loss values in the first few epochs after the training starts. The
decline of these models slows down after the 120-th epoch.
SSD still has a slight decline around the 150-th epoch and
finally stabilizes at a smaller value. However, the two-stage
Faster R-CNN model has a significant increase in the loss
value after the start of thawing training. Although a similar

FIGURE 14: Improved YOLOv5 heat map.

TABLE 2: Comparative experimental results.

Algorithm P R mAP@.5 mAP@.5:.95 FPS Inference/ms

Yolov3 0.98 0.94 0.97 0.70 35 27
Yolov4 0.92 0.88 0.96 0.624 26 38
Yolov5s 0.962 0.925 0.947 0.688 269.72 3.7
Yolov5m 0.968 0.949 0.963 0.694 178 5.6
Yolov5l 0.99 0.939 0.964 0.697 126 7.9
Yolov5x 0.967 0.937 0.957 0.689 79 12.6
SSD 0.76 0.71 0.73 0.53 75 13
Faster R-CNN 0.969 0.90 0.967 0.637 11 91
Ours 0.964 0.949 0.969 0.686 258.36 3.9
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situation occurred in the SSD model, the Faster R-CNN was
significantly more drastic in degree. Eventually, the loss
values of all models stabilized.

6. Conclusion

This paper addresses the problem that transmission lines are
often hung with foreign objects. Furthermore, traditional
manual inspection is complicated, inefficient, and inaccurate.
It improves YOLOv5′s ability to extract features at different
scales, introduces the RepConv structure, reduces computa-
tion and memory consumption by sharing parameters and
increasing convolutional layers, and improves target infer-
ence speed while ensuring the accuracy of existing target

recognition. C2F structure is used to improve the semantic
expression of features, thus enhancing the feature extraction
ability of the network, which is conducive to the model’s
more accurate detection of small targets. Finally, the Meta-
ACON activation function is used to replace the traditional
activation function, which can adaptively adjust the parame-
ters of the activation function, thus improving the generali-
zation ability of the model and making it more practical. The
experimental results show that the improved YOLOv5 model
can effectively improve the performance and robustness of
the target detection model and has a better balance between
inference speed and detection accuracy, which has specific
practical application value and can be better applied to the
field of transmission line foreign body detection. Future
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FIGURE 15: Loss curves of different models. (a) Graph of experimental results of SSD, (b) graph of experimental results of Faster R-CNN,
(c) graph of experimental results of YOLOv3, and (d) graph of experimental results of YOLOv4.
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research directions can further explore more effective model
structures and activation functions to meet the continuous
demand for target detection models in the practical
applications.
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