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Assessing the condition of ecosystems is imperative for understanding their degree of degradation and managing their conserva-
tion. The increasing availability of remote sensing products offers unprecedented opportunities for mapping vegetation with high
detail and accuracy. However, mapping complex ecosystems, like grasslands, remains challenging due to their heterogeneity in
vegetation composition and structure. Furthermore, degraded ecosystems affected by invasive vegetation present different condi-
tion levels within vegetation classes, limiting the accuracy of classifications and condition assessment. Here, we evaluated the
capacity of Sentinel-2 multispectral time series imagery as an input for classifying different levels of cover within a vegetation class
to detect the subtle differences needed to assess the condition of degraded ecosystems. Our study was conducted in the iron-
grasslands of South Australia, a perennial tussock grassland dominated by iron-grasses (Lomandra spp.) and severely affected by
invasive annual grasses. We developed random forest models to discriminate classes defined by the cover of iron-grasses, wild oats
(Avena barbata), and woodland (training points= 250). We tested the importance of data seasonality, spatial resolution, spectral
bands, and vegetation indices. The combination of spatial, temporal, and spectral detail produced the best classification results.
Random forest classifications performed best at 10m resolution, suggesting that detailed resolution outweighs spectral detail for
discriminating vegetation patterns in systems with high spatial heterogeneity. The model at 10m resolution combining all periods
and all variables (spectral bands and vegetation indices) produced a mean kappa coefficient of 56% and a mean overall accuracy of
67%. The dry season imagery and vegetation indices emerged as the most informative, suggesting that vegetation classes presented
different phenological properties critical for their discrimination. Our study contributes to mapping complex ecosystems, facili-
tating the discrimination of different levels of condition in grasslands degraded by invasive species, and thus benefits the
conservation of native grasslands and other ecosystems.

1. Introduction

There is an increasing demand to develop accurate maps of
vegetation conditions for biodiversity conservation and land-
scape management [1–3]. Remote sensing methods have been
widely used in vegetation mapping to provide comprehensive
assessments at broad spatial and temporal scales [4, 5]. The
most prominent mapping approach is the classification of
remotely sensed imagery into discrete thematic classes to
represent vegetation in an area of interest [6, 7]. Most clas-
sification techniques are based on the canopy reflectance
capture in the electromagnetic spectrum by satellite sensors
[8]. Reflectance can be sensitive to plant variation in bio-
chemical and biophysical variables [9]. Thus, differences in

phenological properties between plant species provide the
opportunity to discriminate classes in multitemporal datasets
[10]. Several modeling techniques correlate spectral signa-
tures to referenced vegetation site-based data at certain phe-
nological stages [11]. Among these techniques, the machine
learning approaches have become a trending method due to
their flexibility in classifying complex classes without con-
sidering statistical assumptions for data distribution [12].
The recent development of fine spatial, spectral, and temporal
resolutions in satellites has improved machine learning clas-
sifications to unprecedented levels. However, most classifica-
tions have been conducted in agricultural landscapes, forests,
and woodland, leaving a variety of remote scenarios with a
higher level of vegetation complexity to be tested [7].
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The random forest (RF) algorithm is a popular machine
learning classifier for remote sensing classifications. It has
the capacity to handle high-dimensional data and produce
accurate classifications in complex environments [13]. By
producing a high number of decision trees, the RF algorithm
is less sensitive to the quality of training samples and over-
fitting [14]. The RF algorithm also employs training samples
encompassing a wide variety of data, including spectral bands
and vegetation indices [15]. In recent years, the emergence
of open-source high spatiotemporal and spectral resolution
imagery has shown promising results for RF land cover
classifications [6, 7]. The twin platform Copernicus Senti-
nel-2 provides open-source imagery with a high resolution
(10–60m) and short temporal revisit time (5 days), facili-
tating the construction of dense time series over large spa-
tial extents [16–18]. Among Sentinel-2 bands, the red-edge
bands (670–760 nm) are highly sensitive to the leaf chloro-
phyll content and are effective tools for discriminating veg-
etation classes [19, 20]. Employing Sentinel-2 imagery in RF
classifications has shown successful outcomes in agricultural
lands [21], forests [15], wetlands [22, 23], scrubland [7], and
grasslands [24–26]. However, classification accuracy is lim-
ited by plant community complexity in composition and
structure [27].

Native grasslands are diverse ecosystems characterized
by high spatial heterogeneity. Grassland vegetation is com-
posed of graminoids and several interspersed herbaceous
species that are not always distinguishable, even at high spa-
tial and spectral resolutions [28, 29]. Temporal and spatial
dynamics such as rainfall seasonality and physiochemical soil
properties affect vegetation composition and structure, lead-
ing to discontinuous plant cover [30]. Temperate grasslands,
in particular, present dominant perennial and annual grami-
noids whose phenological characteristics are strongly influenced
by rainfall seasonality, increasing the temporal heterogeneity
[31]. Furthermore, invasive exotic species severely impact
most temperate grasslands, presenting heterogeneity in the
proportions of native and exotic species [32]. Consequently,
degraded grasslands exhibit a mosaic of patches with different
levels of degradation, thus complicating the detection of pat-
terns in vegetation composition that ultimately lead to the
dominance of exotic species.

The detection of subtle patterns in plant communities is
required for the assessment of grassland conditions. Com-
positional indicators, such as the cover of dominant native
vegetation, can facilitate the assessment of grasslands con-
dition by contrasting undisturbed and disturbed vegetation
patches [4]. Recent studies have combined multiseasonal
information with phenological properties to improve the
separation of patches dominated by native or invasive spe-
cies [10, 25, 26, 33]. However, due to the small size of
grassland species and high heterogeneity in mixed patches
(native and exotic species), most classifications use coarse
vegetation classes [7]. As a result, classifications often lack
information on the level condition inside classes in terms of
the proportion between native and invasive species. Defin-
ing classes that represent different levels of condition of a
plant community based on the presence or cover of a

dominant native species could improve the assessment of
grasslands impacted by invasive species. Linking informa-
tion on the cover of dominant native species with the spatial
resolution of open-source satellite imagery can enhance our
ability to detect patterns in vegetation communities, pro-
viding a more nuanced and comprehensive understanding
of grassland condition across time and space.

We aim to explore the suitability of Sentinel-2 time-series
data for characterizing the condition of temperate grasslands,
defined by the cover of a dominant native perennial grami-
noid. Sentinel-2 imagery was selected because it provides
high temporal and spatial resolution with careful spectral
calibration and consistency, which facilitates the applicability
of this study in space and time. Here, we provide an RF
classification of a complex native grassland invaded by exotic
annual grasses. This study focuses on the Iron-grass Natural
Temperate Grassland of South Australia (Iron-grasses lands
henceforth), a vegetation type dominated by slow-growing
large tussock graminoids known as iron-grasses (Lomandra
spp.) and severely affected by invasive species [34]. Our objec-
tives are to (1) assess if Sentinel-2 time series can be used to
discriminate grassland classes defined by iron-grass tussock
cover and (2) test the importance of data seasonality, spatial
resolution, and whether adding spectral bands and/or vegeta-
tion indices would improve classifications.

2. Materials and Methods

2.1. Study Area. The study area (Poonthie Ruwe Conserva-
tion Park) covers over 245 ha (35.2983°S, 139.4897°E), about
90 km SE of Adelaide (Figure 1). The park is located in the
Mediterranean-type climate region of South Australia, char-
acterized by dry summers (December–February) that are
warm to hot and wet winters (June–August) that are mild
to cold [35]. Mean daily temperature ranges between 21.3°C
in February and 10.4°C in July (Tailem Bend weather town
station ID: 95818), with an average annual rainfall of 353.6
mm from 1991 to 2020 recorded by the Australian Bureau of
Meteorology. The Poonthie Ruwe Conservation Park repre-
sents one of the largest remaining iron-grass grassland
patches in South Australia. The study area presents a rela-
tively flat terrain with shallow loam soils over a calcrete rock
layer that is frequently exposed. The northern section of the
study area was used for sheep grazing before the area was
turned into a conservation park in 2003. Graminoids domi-
nate most of the area, with sparse southern cypress pine
(Callitris gracilis) and eucalyptus woodland to the south.
Tussocks of Lomandra effusa are present across the area,
with greater numbers in the south section. The area is
affected by the invasion of wild oats (Avena barbata), a com-
mon annual weed in the region, that is present across the
study site. Other weeds like horehound (Marrubium vulgare)
can be found across the area in lesser abundance.

2.2. Field Data Collection. In 2020 (May–July), we located
250 training points by traversing the study area and assessing
the vegetation approximately every 30m. Areas with large
extents of calcrete rock were avoided to reduce the variability
in the spectral reflectance of vegetation. At each point, we
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assessed the vegetation and assigned a class according to the
dominant vegetation within a radius of 10m. We considered
five vegetation classes that included iron-grass grasslands
with three levels of condition, patches dominated by wild
oats (with no iron-grass present) and woodland. Iron-grass
grassland condition classes considered the iron-grass abun-
dance (IGA) as the number of tussocks (average size: within
10m of the training point and were defined as low IGA:
1–30, medium IGA: 31–100, and high IGA: >100). We
only observed counts without collecting location data for
individual tussocks. We also considered the vegetation clas-
ses wild oats and woodland. We collected 18 points for wild
oats, 52 for low IGA, 73 for medium IGA, 68 for high IGA,
and 39 for woodland. The shape of the field observations is a
circular area (r= 10m). This area is similar to the pixel size
of Sentinel-2 (10 and 20m) and hence facilitates the link to
individual raster cells. The datasets for RF model training
are generated by extracting satellite imagery at the centroids
of the field observations. Model predictions produce rasters
at 10 or 20m pixel sizes, respectively.

2.3. Analysis Overview. In order to evaluate the potential of
multitemporal Sentinal-2 imagery to identify subtle patterns
of plant community composition, we use our field observa-
tions as reference (Figure 1). The guiding principle was to
quantitatively evaluate how well satellite imagery can be used
to discriminate plant community differences. We used RF

classification models with different combinations of spec-
tral bands, vegetation indices, and different time periods.
The different RF models are called “scenarios.” Scenarios
were repeated at two spatial resolutions (10 and 20m),
allowing us to assess spatial, spectral, and temporal satellite
imagery characteristics.

For each scenario, we created k= 40 different random
sets, splitting observations into training (70%) and testing
(30%) points to be used in the RF models. We applied the
Boruta algorithm to each set to simplify the model and
obtain the best RF classification outcomes. In order to assess
the performance of the scenarios, we averaged kappa and
overall accuracy across the 40 classifications done for each
scenario (Figure 2).

2.4. Remote Sensing Data. Sentinel-2 images were acquired
from the European Space Agency Copernicus Open Access
Hub using the packages RGISTools and sen2r in R software
[36]. We downloaded level-2A, which comprises image
orthorectification, along with atmospheric and slope corrections
[37]. Mosaics were masked to the study area polygon in order
to be filtered with a cloud coverage threshold of 0.1% and
shadow masks provided by level-2A images, resulting in a
RasterStack of 35 dates from 2020. This process was followed
by a visual inspection to identify cloud, dust, or smoke-affected
imagery, rejecting eight dates. We considered spectral bands at
10 and 20m resolutions (Table 1). The red-edge bands (B5, B6,
and B7) and short-wave infrared (SWIR) bands (B11 and B12)
were resampled from 20 to 10m resolution, using the nearest
neighbor method from the package Raster in R software
(Table 1).

We used seven spectral indices (Table 2). These included
the normalized difference vegetation index (NDVI) and the
enhanced vegetation index 2 (EVI2), two indices commonly
used in vegetation classification analysis [38, 39]. We also
included indices calculated with the red-edge bands and
SWIR bands due to their importance for vegetation classifi-
cation [38, 40]. These included the normalized difference
red-edge (NDRE) index, the red-edge enhanced vegetation
index 2 (red-edge EVI2), the red-edge chlorophyll index
(CIRE), the SWIR ratio, and the normalized difference water
index (NDWI). All indices were calculated at both resolu-
tions, employing B8 for the 10m resolution and B8a for the
20m scale. The indices employing red-edge bands were cal-
culated with B5, commonly used for red-edge band vegeta-
tion indices [7, 25].

2.5. Selection of Dates. To determine key dates that facilitate
the discrimination by phenology, we analyzed the separabil-
ity of the vegetation classes across an NDVI time series from
2020 at a 10m resolution (Figure 3). NDVI was selected due
to its importance as a standard index for vegetation classifi-
cations [8, 41]. The time series of NDVI averaged for the
vegetation classes revealed three time periods defined as the
early dry season (D1), from January to April. The rainy
season (R) is from May to October. And the late dry season
(D2) is from November to December. We selected two rep-
resentative dates for each of the three time periods: D1: 2 Jan
and 7 March, R: 15 Jul and 14 Aug, and D2: 17 Nov and 27

Training points
Vegetation classes

Low IGA
Medium IGA

High IGA
Wild oats
Woodland
Study area

Adelaide
Poonthie Ruwe

Esri, USGS

N

0 0.1
km

0.2 0.3 0.4

FIGURE 1: Poonthie Ruwe Conservation Park. Training points are col-
ored by vegetation classes. Wild oats in yellow, Low IGA in light green,
medium IGA in green, high IGA in blue, and woodland in red.
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Nov. Dates were enumerated from 1 to 6 according to the
calendar.

2.6. Classification Scenarios. The full dataset contains nine
bands and seven indices at six dates and two spatial resolu-
tions (16× 6× 2 spatial data layers). We grouped these into

21 different scenarios based on combinations of spectral bands
and vegetation indices at selected time periods (Table 3). All
scenarios were developed at 10 and 20m resolutions.

2.7. Modeling Process and Model Performance. We used the
RF Classifier in conjunction with the Boruta algorithm for vari-
able confirmation. The RF classifier is a supervised machine
learning algorithm employed for classification and regression,
which integrates multiple decision trees whose results are com-
bined into one final result [42]. Decision trees are a type of
model that employs randomly selected training samples to learn
the characteristics of the classes that the model will be predict-
ing. Prior to the RF model execution, we conducted a Boruta-
based variable selection to reduce the dimensionality of data due
to the large number of variables considered. Boruta is a feature
selection wrapper algorithm that works around classification
methods like RF [43]. Boruta computes a statistically significant
division between important and irrelevant variables, providing a
set of confirmed variables to be used in modeling. Both analyses
were conducted in R software, using the packages randomForest
and Boruta [43].

For each scenario, we repeatedly selected random subsets
of 70% (n= 175 training points) of the field observations for
training and the remaining 30% (n= 75 testing points) for
model testing. This process was repeated 40 times for each
scenario to reduce any bias caused by the use of a single
training point set. Each training subset was employed in
the Boruta-based variable selection and subsequent RF
modeling training. The trained RF models were applied to

Site-based
sampling

Sentinel-2A
time series

Modeling Best
classifications

9 bands
7 indices
6 dates

21 scenarios
10 m and 20 m

Variable
optimization

Boruta algorithm

Random forest
classification

Model
performance

Separability of the
vegetation classes (NDVI)

Grassland classes based
on vegetation condition

Early
dry

Jan Jun Dec

Late
dry

Rainy

10 m

20 m

70%
training

30 %
validation

km
0 0.1 0.2 0.4

N

40 random sets
(per scenario)

FIGURE 2: Flowchart showing the methodological procedure followed in the study.

TABLE 1: List of spectral bands used in random forest classifications.

Bands Description Central wavelength (nm)

B2 Blue 490
B3 Green 560
B4 Red 665
B5, B6, B7 Red edge 705, 740, 783
B8, B8a Near infrared (NIR) 742,765
B11, B12 Short wave infrared (SWIR) 1,610, 2,190

TABLE 2: List of vegetation indices used in random forest classifications.

Indices Formula

NDVI (NIR−R)/(NIR+R)
EVI2 2.5 · (NIR−R)/(NIR+ 2.4 ·R+ 1.0)
NDRE (NIR−R)/(NIR+R)
Red-edge EVI2 2.5 · (NIR–red edge)/(NIR+ 2.4 · red edge+ 1.0)
CIRE NIR/red-edge-1
SWIR ratio SWIR (B11)/SWIR (B12)
NDWI (NIR–SWIR (B11))/(NIR+ SWIR (B11))
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their corresponding testing subset. To assess the perfor-
mance of the models, we calculated the mean overall accu-
racy (MOA) and mean kappa coefficient (MKC) for each of
the 21 scenarios at both resolutions (10 and 20m). We

selected scenario D1D2R_BI, which considered all variables,
to discuss the importance of variables (bands and indices)
by calculating the mean importance values assigned by the
Boruta-based variable selection. We also employed these
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M
ea
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D
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Vegetation classes
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Low IGA
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High IGA
Woodland

Sentinel-2 derived NDVI—Poonthie Ruwe 2020

FIGURE 3: Vegetation classes spectral responses to the early dry season (D1), rainy season (R), and late dry season (D2) 2020 time periods.

TABLE 3: Scenarios considered for modeling, based on the combinations of time periods (early dry season D1, the rainy season R, the late dry
season D2), bands (B), and vegetation indices (I).

Time periods Number of dates Bands (B) Indices (I) Number of input variables (k) Scenario code

D1D2R 6 9 7 96 D1D2R_BI
D1D2R 6 9 — 54 D1D2R_B
D1D2R 6 — 7 42 D1D2R_I
D1D2 4 9 7 64 D1D2_BI
D1D2 4 9 — 36 D1D2_B
D1D2 4 — 7 28 D1D2_I
D1R 4 9 7 64 D1R_BI
D1R 4 9 — 36 D1R_B
D1R 4 — 7 28 D1R_I
D2R 4 9 7 64 D2R_BI
D2R 4 9 — 36 D2R_B
D2R 4 — 7 28 D2R_I
D1 2 9 7 32 D1_BI
D1 2 9 — 18 D1_B
D1 2 — 7 14 D1_I
D2 2 9 7 32 D2_BI
D2 2 9 — 18 D2_B
D2 2 — 7 14 D2_I
R 2 9 7 32 R_BI
R 2 9 — 18 R_B
R 2 — 7 14 R_I

Empty cells refer to the absence of variable.
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scenarios to discuss the classification accuracy for each vege-
tation class based on the mean accuracy obtained during the
training process. To assess the grassland condition based on
our results, we generated classification maps for the scenarios
with the highest MKC at each spatial resolution. We discuss
the distribution of vegetation classes to identify sections of
our study area in good and bad conditions.

3. Results and Analysis

3.1. Model Performance. The highest MKC (0.56) and MOA
(67%) were achieved by scenarioD1D2R_BI at a 10m resolution
incorporating all available variables: the three time periods,
bands, and indices (Figure 4). SimilarMKCvalues were achieved
by other scenarios considering the early and late dry seasons
(D1D2): D1D2R_I (0.55), D1D2_BI (0.54), and D1D2_I
(0.53). At 10m resolution, scenarios composed of one or both
dry seasons performed better (MKC values: 0.35–0.54) than
scenarios composed of only the rainy season (MKC values:
0.25–0.31). Using only indices resulted in better MKC and
MOA than using only bands. In contrast, the scenarios at 20
m resolution presented low accuracies. The highest MKC (0.38)
andMOA (53%) were achieved by the D2R_BI scenario at 20m

resolution. Scenarios composed of one or both dry seasons per-
formed better (MKC values: 0.3–0.38) than scenarios composed
of only the rainy season (MKC values: 0.2–0.25). Using only
bands resulted in better performances than using only indices.
However, these differences were minimal. Colors are scaled
across MOA and MKC columns at each resolution, respec-
tively, providing visual accuracies per scenario.

3.2. Variable Importance.We selected the scenario D1D2R_BI
to compare the importance of variables at 10 and 20m reso-
lution. At 10m resolution, 21 variables were confirmed as
relevant in all 40 randomizations, while in the 20m scenario,
only the number of confirmations was not higher than 24
(Table 4). The NDVI and EVI2 indices presented the highest
mean importance values for both scenarios. In the case of the
20m resolution, the red band, Red-edge EVI2, and CIRE were
among the top 10 most important variables. Both scales pre-
sented the early dry season (2 Jan, 7 March) as the most
important, followed by the late dry season (27 Nov, 17 Nov).

3.3. Vegetation Classes Classification Accuracy. A detailed
analysis of the classification accuracy of vegetation classes
from scenario D1D2R_BI revealed that mean accuracies

D1D2R_BI
D1D2R_B

D1D2R_I

D1D2_BI

D1D2_B

D1D2_I

D1R_BI

D1R_B

D1R_I

D2R_BI

D2R_B

D2R_I

D1_BI

D1_B

D1_I

D2_BI

D2_B

D2_I

R_BI

R_B

R_I

Scenario Number of input
variables (k)

Mean number
of confirmed

variables

Mean overall
accuracy (%)

Mean kappa
coefficient

20 m 10 m 20 m 10 m 20 m

96 30.5 28.1 67 52 0.56 0.37
54 21.5 24.9 54 50 0.4 0.35

42 21.3 22.3 66 51 0.55 0.36

64 23.7 23.9 65 52 0.54 0.38

36 16 20 56 48 0.42 0.32

28 22.5 20.1 64 50 0.53 0.35

64 24 20.6 61 49 0.49 0.33

36 17.1 21 55 48 0.41 0.32

28 15.2 12.8 60 46 0.48 0.3

64 24.95 23.3 64 53 0.53 0.38

36 16.5 19.8 54 51 0.39 0.35

28 17.1 15.6 63 48 0.51 0.33

32 16.6 18.1 60 49 0.48 0.34

18 12.6 15.5 57 48 0.43 0.31

14 10.9 11.6 59 46 0.46 0.3

32 16.9 15.7 62 50 0.49 0.35

18 12 12.8 51 49 0.35 0.32

14 11.7 10.2 59 46 0.46 0.3

32 13.8 13.7 47 42 0.31 0.23

18 9.9 11.3 44 42 0.26 0.25

14 10.2 10.5 43 40 0.25 0.2

10 m

FIGURE 4: Summary of efficiency metrics for all scenarios at 10 and 20 m resolutions over 40 random forest models. D1, early dry season; D2,
late dry season; R, rainy season; B, spectral bands; I, vegetation indices. Mean number of confirmed variables by the Boruta algorithm for all
scenarios (colors range from blue (high) to red (low)). Mean overall accuracy (MOA) and mean kappa coefficients (MKC) values for all
scenarios (colors range from green (high) to red (low)).
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were higher in the 10m scale for all classes (Table 5). Wood-
land presented the highest mean accuracy for both scales. In
the case of the 10m scale, the accuracy decreased propor-
tionally to iron-grass cover, presenting the lowest accuracy
for wild oats. The 20m resolution also presented wild oats
with the lowest accuracy, and all IGA classes had an accuracy
lower than 60%.

3.4. Distribution of Grassland Condition. Classification maps
for both scales showed similar patterns. Grasslands with bet-
ter condition (more iron-grass) were located in the south
section of the park, while the north central section was the
most affected by wild oats. Woodland area was located at the
same locations for both scales (Figure 5).

4. Discussion

4.1. Variables Influencing Model Performance. Our results
showed that the 10m resolution outperformed the 20m res-
olution in all scenarios. The inherent heterogeneity of

tussock grasslands and the small size of tussocks compared
to shrubs or trees could have favored the 10m bands. Tus-
socks can present highly variable spatial patterns since fine-
scale environmental or resource gradients influence their
aggregation [44]. Furthermore, invasive species affect native
species increasing, patch heterogeneity. Consequently,
greater spatial resolutions may imply more variability in
the spectral reflectance of vegetation classes. The detail
obtained by the 10m resolution appeared to be efficient for
classifying iron-grass grassland classes despite the variability
present at different levels of tussock cover. A fine spatial
resolution may be necessary to discriminate different levels
of cover in heterogeneous systems like grasslands. Employ-
ing imagery with higher spatial resolution from drones or
commercial satellites could contribute to capturing the het-
erogeneity of tussock grasslands, but it implies more human
and economic resources over time and space.

The multitemporal datasets composed of the three time
periods (early and late dry season and rainy season)

TABLE 4: Top 20 variables with the highest number of confirmations by the Boruta algorithm for scenario D1D2R_BI at 10 and 20m
resolutions for 40 RF models.

D1D2R_BI (10m) D1D2R_BI (20m)

Variable
Mean number of

confirmations (0–40)
Mean Boruta
importance

Variable
Mean number of

confirmations (0–40)
Mean Boruta
importance

ndvi.2 40 12.2 evi2.2 24 7.29
evi2.2 40 12.1 ndvi.2 24 7.13
ndvi.6 40 9.3 evi2.5 24 6.79
evi2.6 40 9.3 ndvi.5 24 6.75
ndvi.1 40 9 cire.2 24 6.62
evi2.1 40 9 ndre.2 24 6.6
evi2.5 40 8.5 red_evi2.2 24 6.55
ndvi.5 40 8.5 SWIR11.2 24 6.23
B.3 40 7.1 R.5 24 5.69
B.2 40 6.8 ndwi.2 23 5.59
G.3 40 6 cire.1 24 5.36
R.5 40 5.8 ndre.1 24 5.35
R.3 40 5.5 red_evi2.1 24 5.35
G.4 40 5.3 red_evi2.5 24 5.15
B.1 40 5.1 cire.5 24 5.13
cire.2 40 5 ndre.5 24 5.09
red_evi2.2 40 4.9 SWIR11.5 23 4.87
ndre.2 40 4.9 RE5.5 20 4.81
R.2 40 4.9 cire.6 20 4.33
evi2.3 40 4.8 red_evi2.6 21 4.33
ndvi.3 40 4.8 ndre.6 21 4.32

Number of confirmations range from 0 to 40. Each variable presents a mean boruta importance value (n= 40). Numbers in variables correspond to the image
date. 2 Jan= 1, 7 March= 2, 15 Jul= 3, 14 Aug= 4, 17 Nov= 5, and 27 Nov= 6. D1, early dry season; D2, late dry season; R, rainy season; B, spectral bands; and
I, vegetation indices.

TABLE 5: Mean overall accuracies of each vegetation class for the D1D2R_BI scenario at 10 and 20m scales (n= 40).

Resolution (m) Scenario Wild oats (%) Low IGA (%) Medium IGA (%) High IGA (%) Woodland (%)

10 D1D2R_BI 51 55 62 75 90
20 D1D2R_BI 40 50 46 58 73

D1, early dry season; D2, late dry season; R, rainy season; B, spectral bands; I, vegetation indices.
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contributed to better performances at both scales. However,
excluding the rainy season resulted in similar MOA and
MKC, indicating that dry season imagery is key for the dis-
crimination of iron-grasses. High leaf area in all vegetation
classes during the rainy season increases homogeneity of
reflectance. These results are consistent with the importance
of data seasonality for the discrimination of perennial

graminoids reported in other studies [10, 25]. However,
the importance of seasonality for grassland classifications
may vary depending on the type of climate [45] or the phe-
nological properties of dominant native vegetation and inva-
sive species [46]. In South Australian temperate grasslands,
perennial tussocks become more visible during the dry sea-
son, contrasting to annual graminoids, which are either

Vegetation classes

Wild oats

Low iron−grass abundance

Medium iron−grass abundance

High iron−grass abundance

Woodland

ðaÞ

Vegetation Classes

Wild oats
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ðbÞ
FIGURE 5: (a) Map of vegetation classes derived from the classification of Sentinel-2 time series using a random forest classifier for scenario
D1D2R_BI at 10m resolution. (b)Map of vegetation classes derived from the classification of Sentinel-2 time series using a random forest classifier
for scenario D1D2R_BI at 20m resolution. D1, early dry season; D2, late dry season; R, rainy season; B, spectral bands; I, vegetation indices.
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absent or present as dead biomass [47]. Model performance
increased with the number of time periods used. The better
results obtained by the combinations of all time periods
could be linked to the detection of less pronounced pheno-
logical differences.

The red-edge band had a surprisingly low performance.
Most studies consider the red-edge bands over the RGB or
NIR bands for their capacity to capture and record variations
in vegetation pigment concentration [40]. However, the red-
edge bands have mainly been used in cropland and wood-
land systems with a more even canopy structure than grass-
lands [38]. In the case of grasslands, other studies showed
that red-edge bands have a limited capacity to discriminate
between target vegetation, even when rescaled to 10m reso-
lution [10, 25].

Our results showed that the number of variables strongly
influences model performance. The D1D2R_BI scenario with
the maximum (96) number of variables had the best perfor-
mance with a MOA of 67% at the 10m scale. Previous studies
have reported that multidimensional datasets improve clas-
sification accuracy in RF classifications of land types [13, 48].
However, big datasets can contain variables that are of little
importance. The Boruta algorithm only kept ∼30% of the
variables in the D1D2R_BI scenario. Scenarios with smaller
datasets than D1D2R_BI had similar MOA andMKC (>60%).
Application of the Boruta algorithm improved our results,
indicating the presence of redundant variables and the impor-
tance of variable reduction in our study. Scenarios consider-
ing spectral bands and indices had a better performance at
both scales. At 10m resolution, scenarios based on indices
performed better than those using bands, with little improve-
ment in including both. In contrast, at 20m resolution, scenar-
ios based on bands or indices presented similar performances.

4.2. Variable Selection and Importance. The Boruta algo-
rithm applied to the D1D2R_BI scenario enables analysis
of variable importance. The algorithm selected NDVI and
EVI2 as the two most important variables for both scales.
These indices have been widely used to discriminate crops
and woodlands [7]. The importance of other variables dif-
fered between scales. The good performance of dry-season
RGB bands at 10m resolution can be explained by the dif-
ferences in red reflectance of iron-grasses (green vegetation)
compared with dead biomass and bare soil. The importance
of the green band is related to chlorophyll content differences
between vegetation classes [49]. The blue band distinguishes
vegetation and soils [50]. Red-edge bands and indices showed
less relevance at 10m but were more important at the 20m
scale scenario. The low performance of red-edge bands at
10m is likely because they were resampled from 20m pixel
size and thus present lower spatial detail than the other bands.

4.3. Vegetation Classes Detection. The discrimination accu-
racy of vegetation classes from the D1D2R_BI scenario dif-
fered between woodlands and graminoids. The high accuracy
(>70%) for woodland at both scales could be related to their
distinct spectral signatures and the spatial and temporal homo-
geneity of woodland patches. In contrast, grassland patches are
characterized by a high spatiotemporal heterogeneity, forming

complex vegetation patterns that limit predictive accuracies
[7, 27]. Invasive species in degraded environments not only
affect the composition of native vegetation but modify the
spectral reflectance of vegetation, complicating remote sens-
ing classifications. In our study site, wild oats grow in the
spaces between iron-grass tussocks, increasing the vegetation
heterogeneity as tussock cover decreases. Wild oats become
the dominant vegetation when iron-grass tussocks become
sparser. These changes in vegetation composition could have
increased the variability in spectral reflectance, especially in
classes with lower iron-grass presence. At 20m resolution,
patchiness of iron-grass makes this pattern appear less pro-
nounced, which reduces classification accuracy.

Other sources of heterogeneity across our study could influ-
ence classification accuracies. These sources include native and
invasive perennial graminoids, young native pines, and exposed
calcrete rock layers. Invasive perennial graminoids do not have
an extensive cover in our study site but are often present in
patches with few iron-grass tussocks. Native perennial species
such as the black grass saw-sedge (Gahnia lanigera), wallaby
grass (Rytidosperma spp.), speargrass (Austrostipa spp.), and
groundsels (Senecio spp.) are usually present in good condition
areas that present a medium to high iron-grass cover. The spec-
tral similarity between iron-grass and other perennial vegetation
can lead to the iron-grass overestimation and misclassification
of wild oats. However, the usefulness of the presented classifica-
tion approach for condition assessment is not substantially
impacted because the classes portrayed the dominant vegetation
in the system.

4.4. Implementation of Grassland Mapping in Conservation.
This study illustrates a methodology that predicts the distri-
bution of iron-grass grassland condition based on the cover
of iron-grass tussocks. We also predict the distribution of
patches dominated by wild oats and woodland, facilitating
the assessment of degraded patches. Our results show that
the south section of Poonthie Ruwe Conservation Park
had the best condition, presenting patches with a high cover
of iron-grass. In contrast, the north-mid part of the park
appeared to be more affected by wild oats and had a low
iron-grass cover. The distribution of grassland condition is
consistent with the area’s grazing history and vegetation sur-
veys conducted by the Department of Environment and
Water Resources over the last decade. The analysis proposed
in our study can help managers to produce a detailed map of
the condition of iron-grass grasslands, enabling the identifi-
cation of different condition levels and the identification of
patches impacted by exotic species.

5. Conclusions

This study has demonstrated the potential of the RF classifier
to map iron-grass grassland condition using Sentinel-2 tem-
poral information. We discriminated three classes of iron-
grass grassland, facilitating the detection of subtle differences
within a vegetation class, which could be used as an indicator
of condition in degraded systems. Furthermore, we also dis-
criminated woodland and grassland patches dominated by
wild oats, an invasive species of substantial management
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concern. The consideration of spatial, temporal, and spectral
detail in classification models is relevant for the performance
of RF classifications.

RF performed better at 10m pixel size compared to 20m,
suggesting that higher spatial resolution in the imagery is
critical for detecting condition patterns at scales under 30m.
Increasing resolution seems to outweigh the benefits of using
higher spectral detail for classifications in systems with high
spatial heterogeneity. Consequently, the advantage of red-edge
bands (20m resolution) to detect physiological differences in
plants does not improve classification performance in these
environments.

Scenarios with multiple datasets that include dry and rainy
seasons performed better than single-season and single-date
scenarios. The early and late dry seasons were the most infor-
mative periods, with minor contributions from the rainy sea-
son. The associated vegetation indices were more relevant than
spectral bands (including red-edge bands). Vegetation classes
presented different phenological properties critical to their
discrimination, confirming the relevance of the multiseasonal
information provided by Sentinel-2. Conducting RF classi-
fications employing Sentinel-2 temporal information showed
effectiveness in discriminating dominant vegetation cover,
enabling the mapping of multiple levels of grassland condi-
tion, and thus facilitating the identification of degraded
patches. Mapping critical areas that require restoration or
conservation actions is imperative for managing biodiversity,
as it offers valuable information to guide the prioritization
of interventions, thus benefiting the conservation of native
grasslands.

Data Availability

The data that support the findings of this study will be openly
available in a public repository.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Diego R. Guevara-Torres originally conceived the idea and
collected the data, including fieldwork (vegetation sampling).
Diego R. Guevara-Torres, JoséM. Facelli, and BertramOsten-
dorf contributed to the study design. Diego R. Guevara-Torres
and Bertram Ostendorf analyzed the data. The first draft of
the manuscript was written by Diego R. Guevara-Torres with
the advice of Bertram Ostendorf. All authors contributed
critically to the drafts and gave final approval for publication.

Acknowledgments

We wish to thank Nicola Barnes and Kate Graham from the
Murraylands and Riverland Landscape Board for their local
knowledge and advice with the production of this manu-
script. A special thanks to all the volunteers who participated
in the fieldwork. This research was supported by the Uni-
versity of Adelaide International Postgraduate Scholarship
Award. Transport to the study site was supported by the

Murraylands and Riverland Landscape Board from The Land-
scape Boards South Australia, as part of the grant “Increasing
understanding of the dynamics of Iron-grass temperate grass-
lands to improve their management and conservation.” Open
access publishing facilitated by the University of Adelaide, as
part of the Wiley—The University of Adelaide agreement via
the Council of Australian University Librarians.

References

[1] C. Corbane, S. Lang, K. Pipkins et al., “Remote sensing for
mapping natural habitats and their conservation status—new
opportunities and challenges,” International Journal of Applied
Earth Observation and Geoinformation, vol. 37, pp. 7–16,
2015.

[2] S. Ferrier and V. Funk, “Mapping spatial pattern in biodiversity
for regional conservation planning: where to from here?”
Systematic Biology, vol. 51, no. 2, pp. 331–363, 2002.

[3] Y. Xie, Z. Sha, and M. Yu, “Remote sensing imagery in
vegetation mapping: a review,” Journal of Plant Ecology, vol. 1,
no. 1, pp. 9–23, 2008.

[4] V. Lawley, M. Lewis, K. Clarke, and B. Ostendorf, “Site-based and
remote sensing methods for monitoring indicators of vegetation
condition: an Australian review,” Ecological Indicators, vol. 60,
pp. 1273–1283, 2016.

[5] B. D. Sparrow, W. Edwards, S. E. M. Munroe et al., “Effective
ecosystem monitoring requires a multi-scaled approach,”
Biological Reviews, vol. 95, no. 6, pp. 1706–1719, 2020.

[6] L. Royimani, O. Mutanga, J. Odindi, T. Dube, and
T. N. Matongera, “Advancements in satellite remote sensing
for mapping and monitoring of alien invasive plant species
(AIPs),” Physics and Chemistry of the Earth, Parts A/B/C,
vol. 112, pp. 237–245, 2019.

[7] P. Macintyre, A. van Niekerk, and L. Mucina, “Efficacy of
multi-season Sentinel-2 imagery for compositional vegetation
classification,” International Journal of Applied Earth Observa-
tion and Geoinformation, vol. 85, Article ID 101980, 2020.

[8] J. R. Xue and B. F. Su, “Significant remote sensing vegetation
indices: a review of developments and applications,” Journal of
Sensors, vol. 2017, Article ID 1353691, 17 pages, 2017.

[9] Y. F. Xiao, W. J. Zhao, D. M. Zhou, and H. L. Gong,
“Sensitivity analysis of vegetation reflectance to biochemical
and biophysical variables at leaf, canopy, and regional scales,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 52,
no. 7, pp. 4014–4024, 2014.

[10] C. Shoko, O. Mutanga, and T. Dube, “Optimal season for
discriminating C3 and C4 grass functional types using multi-
date Sentinel 2 data,” GIScience & Remote Sensing, vol. 57,
no. 1, pp. 127–139, 2020.

[11] B. A. Bradley, “Remote detection of invasive plants: a review of
spectral, textural and phenological approaches,” Biological
Invasions, vol. 16, no. 7, pp. 1411–1425, 2014.

[12] A. E. Maxwell, T. A. Warner, and F. Fang, “Implementation of
machine-learning classification in remote sensing: an applied
review,” International Journal of Remote Sensing, vol. 39, no. 9,
pp. 2784–2817, 2018.

[13] M. Belgiu and L. Drăguţ, “Random forest in remote sensing: a
review of applications and future directions,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 114, pp. 24–31,
2016.

[14] E. W. Fox, R. A. Hill, S. G. Leibowitz, A. R. Olsen,
D. J. Thornbrugh, and M. H. Weber, “Assessing the accuracy
and stability of variable selection methods for random forest

10 Journal of Sensors



modeling in ecology,” Environmental Monitoring and Assess-
ment, vol. 189, Article ID 316, 2017.

[15] Y. Liu,W. Gong, X. Hu, and J. Gong, “Forest type identification
with random forest using Sentinel-1A, Sentinel-2A, multi-
temporal Landsat-8 and DEM data,” Remote Sensing, vol. 10,
no. 6, Article ID 946, 2018.

[16] Y. Cheng, A. Vrieling, F. Fava, M. Meroni, M. Marshall, and
S. Gachoki, “Phenology of short vegetation cycles in a Kenyan
rangeland from PlanetScope and Sentinel-2,” Remote Sensing
of Environment, vol. 248, Article ID 112004, 2020.

[17] W. J. Frampton, J. Dash, G. Watmough, and E. J. Milton,
“Evaluating the capabilities of Sentinel-2 for quantitative
estimation of biophysical variables in vegetation,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 82,
pp. 83–92, 2013.

[18] D. Phiri, M. Simwanda, S. Salekin, V. Nyirenda, Y. Murayama,
and M. Ranagalage, “Sentinel-2 data for land cover/use
mapping: a review,” Remote Sensing, vol. 12, no. 14, Article ID
2291, 2020.

[19] M. E. D. Chaves, M. C. A. Picoli, and I. D. Sanches, “Recent
applications of landsat 8/OLI and Sentinel-2/MSI for land use
and land cover mapping: a systematic review,” Remote Sensing,
vol. 12, no. 18, Article ID 3062, 2020.

[20] J. Delegido, J. Verrelst, L. Alonso, and J. Moreno, “Evaluation of
Sentinel-2 red-edge bands for empirical estimation of green
LAI and chlorophyll content,” Sensors, vol. 11, no. 7, pp. 7063–
7081, 2011.

[21] J. Segarra, M. L. Buchaillot, J. L. Araus, and S. C. Kefauver,
“Remote sensing for precision agriculture: Sentinel-2 improved
features and applications,” Agronomy-Basel, vol. 10, no. 5,
Article ID 641, 2020.

[22] Z. Gong, C. Zhang, L. Zhang, J. Bai, and D. Zhou, “Assessing
spatiotemporal characteristics of native and invasive species
with multi-temporal remote sensing images in the Yellow River
Delta, China,” Land Degradation&Development, vol. 32, no. 3,
pp. 1338–1352, 2021.

[23] C. Jara, J. Delegido, J. Ayala, P. Lozano, A. Armas, and
V. Flores, “Study of wetlands in the ecuadorian andes through
the comparison of Landsat-8 and Sentinel-2 images,” Revista
De Teledetección, no. 53, pp. 45–57, 2019.

[24] N.Huber, C. Ginzler, R. Pazur et al., “Countrywide classification
of permanent grassland habitats at high spatial resolution,”
Remote Sensing in Ecology and Conservation, vol. 9, no. 1,
pp. 133–151, 2023.

[25] C. Tarantino, L. Forte, P. Blonda et al., “Intra-annual Sentinel-
2 time-series supporting grassland habitat discrimination,”
Remote Sensing, vol. 13, no. 2, Article ID 277, 2021.

[26] D. Yan and K. M. de Beurs, “Mapping the distributions of C3
and C4 grasses in the mixed-grass prairies of southwest
Oklahoma using the random forest classification algorithm,”
International Journal of Applied Earth Observation and
Geoinformation, vol. 47, pp. 125–138, 2016.

[27] S. Rapinel, C. Mony, L. Lecoq, B. Clement, A. Thomas, and
L. Hubert-Moy, “Evaluation of Sentinel-2 time-series for
mapping floodplain grassland plant communities,” Remote
Sensing of Environment, vol. 223, pp. 115–129, 2019.

[28] M. Fauvel, M. Lopes, T. Dubo et al., “Prediction of plant diversity
in grasslands using Sentinel-1 and -2 satellite image time series,”
Remote Sensing of Environment, vol. 237, Article ID 111536,
2020.

[29] Y. Zhao, Z. Liu, and J. Wu, “Grassland ecosystem services: a
systematic review of research advances and future directions,”
Landscape Ecology, vol. 35, no. 4, pp. 793–814, 2020.

[30] I. C. Burke, W. K. Lauenroth, M. A. Vinton et al., “Plant-soil
interactions in temperate grasslands,” Biogeochemistry, vol. 42,
no. 1/2, pp. 121–143, 1998.

[31] E. L. Fry, P. Manning, D. G. P. Allen et al., “Plant functional
group composition modifies the effects of precipitation change
on grassland ecosystem function,” PLOS ONE, vol. 8, no. 2,
Article ID e57027, 2013.

[32] D. E. Pearson, Y. K. Ortega, D. Villarreal et al., “The
fluctuating resource hypothesis explains invasibility, but not
exotic advantage following disturbance,” Ecology, vol. 99,
no. 6, pp. 1296–1305, 2018.

[33] D. Dahal, N. J. Pastick, S. P. Boyte, S. Parajuli, M. J. Oimoen,
and L. J. Megard, “Multi-species inference of exotic annual
and native perennial grasses in rangelands of the western
United States using harmonized landsat and Sentinel-2 data,”
Remote Sensing, vol. 14, no. 4, Article ID 807, 2022.

[34] N. Williams, A. Marshall, and J. Morgan, Land of Sweeping
Plains: Managing and Restoring the Native Grasslands of
South-Eastern Australia, CSIRO Publishing, 2015.

[35] C. S. Hallett, A. J. Hobday, J. R. Tweedley, P. A. Thompson,
K. McMahon, and F. J. Valesini, “Observed and predicted
impacts of climate change on the estuaries of south-western
Australia, a Mediterranean climate region,” Regional Environ-
mental Change, vol. 18, no. 5, pp. 1357–1373, 2018.

[36] L. Ranghetti, M. Boschetti, F. Nutini, and L. Busetto, ““sen2r”:
an R toolbox for automatically downloading and preprocessing
Sentinel-2 satellite data,” Computers & Geosciences, vol. 139,
Article ID 104473, 2020.

[37] F. Gascon, C. Bouzinac, O. Thepaut et al., “Copernicus Sentinel-
2A calibration and products validation status,” Remote Sensing,
vol. 9, no. 6, Article ID 584, 2017.

[38] G. Misra, F. Cawkwell, and A. Wingler, “Status of phenological
research using Sentinel-2 data: a review,” Remote Sensing,
vol. 12, no. 17, Article ID 2760, 2020.

[39] C. Shoko and O. Mutanga, “Examining the strength of the newly-
launched Sentinel 2 MSI sensor in detecting and discriminating
subtle differences betweenC3 andC4 grass species,” ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 129, pp. 32–40,
2017.

[40] H. A. Imran, D. Gianelle, D. Rocchini et al., “VIS-NIR, red-
edge and nir-shoulder based normalized vegetation indices
response to co-varying leaf and canopy structural traits in
heterogeneous grasslands,” Remote Sensing, vol. 12, no. 14,
Article ID 2254, 2020.

[41] O. Löfgren, H. C. Prentice, T. Moeckel, B. C. Schmid, K. Hall,
and D. Murrell, “Landscape history confounds the ability of the
NDVI to detect fine-scale variation in grassland communities,”
Methods in Ecology and Evolution, vol. 9, no. 9, pp. 2009–2018,
2018.

[42] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[43] M. B. Kursa and W. R. Rudnicki, “Feature selection with the
boruta package,” Journal of Statistical Software, vol. 36, no. 11,
pp. 1–13, 2010.

[44] Y. Dickinson and D. A. Norton, “Divergent small-scale spatial
patterns in New Zealand’s short tussock grasslands,” New
Zealand Journal of Ecology, vol. 35, no. 1, pp. 76–82, 2011.

[45] A. J. Rebelo, S. Gokool, P. B. Holden, and M. G. New, “Can
Sentinel-2 be used to detect invasive alien trees and shrubs in
savanna and grassland biomes?” Remote Sensing Applications:
Society and Environment, vol. 23, Article ID 100600, 2021.

[46] P. B. Holden, A. J. Rebelo, and M. G. New, “Mapping invasive
alien trees in water towers: a combined approach using satellite

Journal of Sensors 11



data fusion, drone technology and expert engagement,” Remote
Sensing Applications: Society and Environment, vol. 21, Article ID
100448, 2021.

[47] T. I. Lenz and J. M. Facelli, “Correlations between environ-
mental factors, the biomass of exotic annual grasses and the
frequency of native perennial grasses,” Australian Journal of
Botany, vol. 54, no. 7, pp. 655–667, 2006.

[48] P. Lou, B. Fu, H. He et al., “An optimized object-based
random forest algorithm for marsh vegetation mapping using
high-spatial-resolution GF-1 and ZY-3 data,” Remote Sensing,
vol. 12, no. 8, Article ID 1270, 2020.

[49] E. R. Hunt Jr., C. S. T. Daughtry, J. U. H. Eitel, and D. S. Long,
“Remote sensing leaf chlorophyll content using a visible band
index,”Agronomy Journal, vol. 103, no. 4, pp. 1090–1099, 2011.

[50] C. D. Elvidge and R. J. P. Lyon, “Influence of rock–soil
spectral variation on the assessment of green biomass,” Remote
Sensing of Environment, vol. 17, no. 3, pp. 265–279, 1985.

12 Journal of Sensors




