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In this study, a wearable exoskeleton arm was designed and controlled with different control methods to help people with muscle
disorders in their arms and support treatment. The developed robot arm was transferred to Simulink software with the Simme-
chanics application. Two electromyography (EMG) muscle sensors and the ADXL335 position and acceleration sensors attach to
the human arm’s biceps and triceps muscle areas. As the human moved the arm, data were obtained from the EMGmuscle sensors
and the ADXL335 position and acceleration sensor. The received data were first trained with the fuzzy logic algorithm. The same
data were then trained with machine learning algorithms in Simulink software. It has been determined that the best result is
the quadratic support vector machine (SVM) algorithm. The fuzzy logic algorithm trained with the PID controller block and the
received sensor data have been added to the degrees of freedom regions that will enable rotation in the block diagram of the
previously exported system. Later, the fuzzy logic block was removed and the machine learning algorithm, the quadratic SVM
algorithm, was added. The designed system was operated with two different control systems, and the control algorithm closest to
the human arm movement was determined. In addition, each part of the system, whose design was prepared, was removed and
assembled separately with a 3D printer. ESP32 microcontroller development board was used to control the system, and it was run
in real-time with EMG muscle sensors and position sensors.

1. Introduction

People working in high-risk jobs may have accidents and
damage their limbs [1, 2]. Depending on the increasing aver-
age age, cerebrovascular and neuromuscular diseases are also
increasing. The use of wearable biomedical sleeves has also
increased in patients who have lost limb skills due to these
diseases and accidents [2, 3]. Since the arms are used exten-
sively in daily life, the quality of life of the people is adversely
affected when any discomfort occurs in the arms due to the
muscles. Clinically, upper extremity disability of neurology
or orthopaedic origin is characterised by insufficient muscle
strength, altered muscle group firing pattern, or inability to
control the joint voluntarily. This problem can worsen pain,
stiffness, or shoulder impingement syndrome. Clinical studies
show that long-term repetitive rehabilitation can help these
patients restore motor function and prevent complications

[4]. However, some individuals with muscle loss in their arm
muscles do not recover with rehabilitation. In these cases,
wearable robotic arms are needed to increase power [1, 3].
Today, with the widespread use of robotics, many studies have
been carried out on exoskeleton robot designs and the limb
designs of these robots [1]. The exoskeleton robot is a type of
wearable robot that incorporates many disciplines, such as
bionics and ergonomics, and can appropriately perform a
combination of human and machine functions.

The purpose of biomedical devices’ production and con-
trol phase is to help people regain their lost physical functions
or improve their rehabilitation processes. Wearable exoskele-
ton robot arms interact between the human and the mecha-
tronic system and should perform human movements as
similarly as possible [5, 6]. However, if the joint angle of the
wearable exoskeleton is greater than the joint range, this dan-
gerous situation should be prevented by making necessary
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restrictions [3]. Human upper limbs consist of six joints.
These six joints are common in both arms. Motors are used
to bringmobility to these joint areas of the wearable robot arm
mechanism. The first movement of the wearable exoskeleton
arm is the angular movement of the arm to the right, left,
forward (flexion), and backward (extension) on the axis
parallel to the ground. With this movement, the human
arm can move angularly 120°. These are 70°−75° forward
and 40°−45° back [7, 8]. The second movement is the rota-
tion of the arm around its axis. This movement takes place up
to 90°. The thirdmovement is parallel to the ground, sideways
opening (abduction) and approaching the arm body (adduc-
tion). The human arm can rotate 120° at the shoulder joint
and be brought up to 15° to the body. Limb-joint models are
preferred for biomechanical human body modelling [6, 9].

Wearable robot arm works should have a control mecha-
nism. Many types of controls can be used to control a system.
One of these control systems is the proportional integral
derivative (PID) controller. PID control consists of propor-
tional, integral, and differential [10]. The control body (con-
troller) ’s task in the closed-loop control system is to compare
the output size (speed, rotational speed, position, etc.) fed back
from the measurement with the reference input size and cal-
culate the difference. The system is controlled by generating
the control signal and giving it to the output again. A PID
controller compares the input (reference) signal with the feed-
back from the output, and an error occurs due to the difference
[11]. PID control has a simple structure for three gains. PID
algorithms control most robot manipulators independently
at each joint [12]. PID controllers are frequently used in speed
and position control of robot arm mechanisms [13].

Another method used to control robot arm mechanisms
is the fuzzy logic controller. Fuzzy input, represented by an
error in the fuzzy logic controller, regulates the performance
of a system. The fuzzy controller uses variable input–output
information to control the joint speed and position of the
robot mechanisms [8, 14]. Using the advantageous features
of the fuzzy controller scheme, it is also possible to control
systems with a wider range of reference and interference sig-
nals [15]. A fundamental problem in robot control is follow-
ing the desired trajectory with sufficient precision. Controllers
are tuned by changing variables in classic robot manipulator
control. However, in real applications, control systems are
exposed to external effects such as noise and distortion. The
fuzzy control algorithm allows the controlled variables to be
controlled over a wider range to eliminate the undesirable
effects of the inputs [16].

Machine learning, also used as another robot control
method, is an algorithm that teaches machines how to use
data more efficiently. Learning with machine learning takes
place thanks to the data received from the external environ-
ment. The more sensor data received, the better the machine
learns and applies. The machine learning algorithm is a pre-
ferred algorithm for making sense of data. With the abun-
dance of available datasets, the demand for machine learning
is also increasing. Many robotic systems apply machine learn-
ing algorithms to make sense of data [17]. In a machine learn-
ing algorithm, a computer programme performs some task. It

is stated that the machine learns from experience whether its
measurable performance in these tasks improves as it gains
more experience in performing these tasks. Thus, the machine
learning algorithm makes decisions and forecasts based on
data [18].

It has been seen in the reviewed literature that different
control methods were used to control the exoskeleton robot
arm. In the literature studies, it is seen that ready-made robot
arms are used and controlled only with EMG signals or only
with position and acceleration sensors [19–27]. In some
recent studies in the literature, it is seen that only PID con-
trollers [28–31] control robot arms. Again, in some recent
studies in the literature, it is seen that the data obtained from
EMG muscle signals only work with fuzzy controllers or
machine learning algorithms in this direction [32–37]. Many
studies have compared EMG signal data with different con-
trol algorithms. When the studies conducted with fuzzy con-
trollers are scanned, fuzzy logic is used for rehabilitation. It
is used to control the robot’s movement to rehabilitate patients.
The system can effectively adapt to the situation using the fuzzy
logic approach [38–40]. There are studies in which machine
learning algorithms are compared, and the algorithm that gives
the best result is determined. In the literature, there is no study
in which the wearable robot arm, which has an original design,
is controlled and compared with a fuzzy logic controller and
machine learning algorithms as in this study.

The study is quite original regarding the design and com-
parison of current control methods. Contrary to the studies
in the literature, a suitable upper extremity robot arm was
designed, and necessary kinematic analyses and angle analy-
ses were performed in the previous study [41]. The human
anatomy carried out the designed robot arm’s angle limitation
and kinematic analysis. The comparison of control methods
not included in the literature compared with the SVM algo-
rithm, which gives more stable results than both fuzzy logic
algorithms and machine learning algorithms. Unlike the lit-
erature, the study includes control with PID controller, fuzzy
logic control (EMG muscle sensor, position, and acceleration
sensor) trained with actual sensor data, and control with qua-
dratic support vector machine (SVM), a machine learning
algorithm. The purpose of using a PID controller in this study
is to bring themotor angles to the joint position fast and stable
with the robot arm’s real muscle and position data. In addi-
tion, this study contributes to the literature by controlling the
upper extremity robot arm with actual data. It contains infor-
mation about which widely used fuzzy logic algorithms and
machine learning algorithms can be preferred and it leads to
similar studies in the future. The study was also carried out for
the benefit of humanity by providing original design, real
muscle and position data, and appropriate control methods.

2. Materials and Methods

Wearable exoskeleton robot arms, including interdisciplin-
ary studies, emerged as devices that interact between humans
and machines [6]. This study designed the wearable exoskel-
eton arm according to the user, and the necessary kinematic
analyses and angle limitations were made. The wearable
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exoskeleton arm was transferred to Simulink software with
Simmechanics application, and control was realised with
PID controller, machine learning, and fuzzy logic algorithms.
For the exoskeleton robot, machine learning, and fuzzy logic
algorithm, data were taken from the user’s arm via sensors, and
the system was run and compared with these two algorithms.

2.1. Design of Wearable Exoskeleton Robot Arm. Wearable
exoskeleton robot arm structures can be designed in different
types according to the work to be done [41]. While there are
robot studies that can move in one direction, there are also
robot arm studies with very different mobility [42, 43]. The
robot arm, made in the previous study, is ergonomically
designed so that the person with a loss of strength in his
arm can perform the activities of daily living (the safety
coefficients of the arm, hand, and shoulder apparatus are
calculated for a maximum load of 250N). Necessary kine-
matic analyses of the wearable robot arm were designed
according to user dimensions and angle limitations suitable
for human anatomy. Maximum displacements were deter-
mined by making force distributions for the system’s arm,
hand, and shoulder parts. SolidWorks 3D design software
was used for the design and angle analysis of the wearable
exoskeleton robot arm [41]. The designed wearable exoskel-
eton robot arm is given in Figure 1.

The angle analysis of the wearable exoskeleton robot arm
structure was made by considering the parts that make up
the system individually. The maximum range of motion of
the exoskeleton robot arm and the joints of the human arm
are limited by values. The motors placed in the three joint
areas of the exoskeleton robot arm structure realise these
movements. Motors have been added to the wrist, elbow,
and shoulder parts. The motion angle values of the wrist,
elbow, and shoulder joints of the realised exoskeleton robot
arm design are given in Figure 2. The wrist angle is given an
angle value similar to the human wrist motion angle in the
design. It has been observed that the backward movement of
the wrist of healthy individuals is between Æ70° and 80°
without difficulty, and the wrist movement of the mecha-
nism is limited to Æ70°. The vertical movement angle of
the arm at the shoulder joint of the exoskeleton robot arm

is 90°. Horizontal angles of shoulder movement are limited
to 15° in the negative direction and 75° in the positive direc-
tion. The maximum vertical movement angle on the front
of the designed and analysed exoskeleton robot system was
determined as 110° [41].

2.2. Control of Exoskeleton Robot Arm with PID Controller.
Control is an important issue in automatic control systems.
Many types of controls can be used to control a system. One
of these control systems is the PID controller. The closed-
loop task of the control system is to compare the output size
(speed, rotational speed, position, etc.) fed back from the
measurement with the reference input size and calculate
the difference. In other words, the difference between the
effect of the control system on the system and the error value
of the system is found. In this way, the system is controlled
by generating and representing a control signal to the output.
P is proportional; I is integral, and D is derivative in PID
control. Most control actions combine to form the PI, PD,
and PID control structures. A PID controller compares the
input (reference) signal with the feedback from the output,
and an error occurs due to the difference. P is the current
error, I is the sum of past errors, and D is an estimate of
future errors. With the weighted sum of these three actions,
the system is controlled and brought to the desired state [44].
In the PID control block diagram given in Figure 3, (r)(t) is
the set point, e(t) error, u(t) is the controller output, and y(t)
is the process variable. There are two types of structures
commonly used for PID controllers. These structures are
serial and parallel-type structures. In proportional P, integral
I, and derivative D parallel-type structures, the action takes
place in separate equations, and their combined effect pro-
duces the total value. In the parallel type, each parameter is
independent of the others, and the corresponding control
structure is given in Equation (1).

u tð Þ ¼ Kc e tð Þ þ 1
Ti

Z
e tð Þdt þ Td

de tð Þ
dt

� �
: ð1Þ

In the equation, the proportional gain is Kp=Kc, the
integral time is Ti and ki ¼ Kc

Ti
the derivative time is Td and

kd=Kc×Td. This is also known as an ideal representation.
The serial-type structure, on the other hand, is derived

from the serial or interactive equation, mainly from the
pneumatic and analogue electronic circuit properties. Like
an ideal PID equation, change in Kc affects all three actions,
but both derivative and integer constants affect proportional
action. PID serial type equation is given in Equations (2)
and (3).

e1 tð Þ ¼ e tð Þ þ Td
de tð Þ
dt

; ð2Þ

u tð Þ ¼ Kc e1 tð Þ þ 1
Ti

Z
e tð Þdt

� �
: ð3Þ

In this equation, the Kc gain affects all three parts of the
PID structure. On the other hand, the values of the integral
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FIGURE 1: Wearable exoskeleton robot design [41].
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and derivative tuning parameters Td and Ti also affect the
proportional term. Thus, changing Td tends towards effects
and actions, both by changing the effect on actions and
the effects of Kc on all three steps [45]. In this study, the
block diagram of the system controlled by PID is shown in
Figure 3.

The block diagram of the robot arm, designed and kine-
matically analysed in the Solidworks programme, was created
with the simmechanics plugin [41]. The designed wearable
robot arm system has four motion zones. These are wrist,
elbow, and horizontal and vertical shoulder movements.
PID controller blocks have been added to the rotary blocks
of the design, the block diagram of which has been drawn to
provide a more stable movement. PID blocks have constant

blocks to provide a continuous angle of motion to the system,
PID and feedback blocks for stable system operation, com-
mon actuators to provide movement, and standard sensor
blocks to receive feedback. PID and feedback blocks added
for stable operation of the system are given in Figure 4.

With PID control, different P, I, and D values are entered
separately for four movements. For the PID control block,
the system’s response time and reference traces are set on the
chart, and the values of each PID control unit are assigned
according to this reference chart. Reference tracking and
response time graphs of wrist, elbow, and shoulder move-
ments are shown in Figure 5. The graph shows that the same
amplitude values for shoulder vertical, shoulder horizontal,
and elbow and wrist movements were reached in different
time intervals. This is due to the angle limitation. Each joint
has a different angle value.

2.3. Acquiring Muscle Data. Electromyography (EMG) is a
method of measuring the electrical activity of muscle fibres
during activation. EMG signals are analogue signals that are
not periodic or deterministic. EMG involves measuring this
action potential, which passes through the muscle fibre at a
speed of 2–6m/s [46]. EMG signals are not repeated at cer-
tain time intervals, and a single mathematical expression
cannot represent EMG signals obtained during a recording
period. EMG signals are non-stationary signals. The charac-
teristics of the EMG signals differ according to the position
of the muscle group being measured [47]. During the
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110°
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15°

90°
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FIGURE 2: Robot arm mechanism positions and angle limitations: (a) wrist movement; (b) elbow movement; (c) shoulder movement [41].
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FIGURE 3: Block diagram of the system controlled by PID.

4 Journal of Sensors



recording of the EMG signal, ambient sound, magnetic effects,
and vibration in the electronic recorder create noise sources
that affect the characteristics of the raw EMG signal. To mini-
mise this situation and improve the sensor’s performance, it
may be necessary to use self-assembling monolayers, porous
materials, and hydrogel or polymeric coatings. Probe materials
support various sensor construction components and provide
flexibility, stability, durability, lightness, and anatomical com-
patibility with the human body. The sensitivity and selectivity
of the sensor are directly dependent on the surface of the

sensor structure [48, 49]. Studies also show that developing
sensor probes can help obtain more accurate data [50]. In
some recent studies, probe designs that affect the detection
time of the sensor, the detection limit, and the sensor’s linear-
ity have been carried out. This allows us to obtain data with a
high accuracy rate [51, 52]. High-order statistics, spectral and
wavelet analysis, etc., for interpreting signal-processing tech-
niques for EMG signals. The process of interpretation of EMG
signals is carried out in three stages. These stages are prepro-
cessing, feature extraction, and classification [49]. This study
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placed EMGmuscle biomedical sensor pads on the upper arm
and forearm. In obtaining data from the sensor, a more pre-
cise and uninterrupted data collection process was carried out
by applying gel to the probes. During the data collection, the
person moved his arm and recorded the data with ESP32.
Fuzzy control and machine learning algorithms were used
to classify the data.

The system simulation with the PID controller was first
performed with fixed values. The position of the joint angles
of the system was determined with fast and stable responses.
Then, two EMG sensors are connected to the ESP32 micro-
controller development board so that the robot arm can work
with real wrist and elbow movement muscle data. The first
EMG sensor is attached to the forearm to receive data from
wrist movement, and the second EMG sensor is attached to
the upper arm for elbow movement. During the contraction
of the muscles, the electric potential difference between the
inside and outside of the muscle cells was measured with the
pads. Two pads of the EMG sensor were connected side by
side, and the other pad was attached to the outer part of the
arm as a reference pad. Two EMG probes detected arm con-
traction and compared it with the reference probe to generate
data. The data were taken with these EMG sensors fitted to the
user. The system has also added the ADXL335 position and
acceleration sensor to keep the arm at a certain angle. With
this sensor, when the user wants to move his wrist and elbow,
the EMGmuscle data are changed, and the angle of the user’s
arm is taken by fixing the position and acceleration sensor in
three axes: x, y, and z. arm. The data obtained with two EMG
sensors and position and acceleration sensors were trans-
ferred toMATLAB software. Data between 0 and 4,096 values
were obtained with the ESP32 microcontroller development
board with 12-bit analogue digital converter channels. The
data recording process with the sensors installed on the user
is given in Figure 6.

The electronic circuit connection of the system was
established in the Proteus ISIS programme, and the printed
circuit board was removed. The electronic circuit drawing of
the study is also shown in Figure 7.

2.4. Integration of Fuzzy Logic Algorithm into the System.
Fuzzy logic applications consist of computer-assisted artifi-
cial intelligence applications that can predict human behav-
iour and the functioning of nature in a way that mimics it.
Fuzzy logic has high, medium, and low values. It also includes
intermediate values such as very low, medium, and high. A
fuzzy set is the foundation of fuzzy logic. In the fuzzy logic
classical set approach, the elements belong either to that set
(1) or (0) [53]. This is called the degree of membership and is
represented by Equation (4).

Ai x; μA xð Þð Þ xj 2 Ai; μA xð Þε 0; 1½ �f g: ð4Þ
Structures called fuzzy controllers are used in fuzzy con-

trol systems. Fuzzy controllers use a collection of rules called
fuzzy rules to produce results. Fuzzy controllers can also use
different membership functions. Membership functions related
to fuzzy logic are necessary for fuzzy controllers to produce
results. The most known fuzzy logic membership functions
are triangle, trapezoid, sinusoid, Cauchy, bell, sigmoid, and
Gaussian. Thanks to the feedbackmechanism in fuzzy logic, it
can be seen which rule system and which membership func-
tion gives more efficient results [54]. Fuzzy Logic is used to
control situations that are nonlinear, complex, and difficult to
model, with ambiguous information properties [55].

A fuzzy control algorithm was added for the motors in
the wrist and elbow joints. For wrist movement of the wear-
able exoskeleton robot arm, the EMG sensor is attached to
the forearm, and the position and acceleration sensor that
receives position information in three axes are determined as
inputs. The output parameter for wrist movement was the
wrist angles of the system trainedwith fuzzy control. For elbow
movement, the data received with the EMG sensor and posi-
tion sensor attached to the upper arm became the input
parameter, and the angle values of the trained data became
the output parameter. The fuzzy control block diagram for
wrist and elbow movement is shown in Figures 8 and 9.

There are various inference methods in fuzzy logic con-
trol systems. The most widely used are the Mamdani, Larsen,
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Tsukamoto, and Takagi–Sugeno methods. Mamdani method
was used in this study. The Mandami method is the most
widely used fuzzy inference method. The main reason is that
the Mamdani inference is more appealing to human percep-
tion because it is relatively easy to design and more interpret-
able. In Mamdani inference, the inputs and outputs are fuzzy
values. Membership values are calculated based on rules trig-
gered by input values. The calculated values are then given to
the maximum or minimum operator according to the rules
and/or their logical connectors. If the facts in the rule are
connected with “and,” the calculated membership values are
given to the minimum operator; If bound with “or,” the max-
imum is given to the operator. As the name suggests, these
operators return the most minor or most significant of the
multiple values they take. The minimisation process is given
in Equation (5) [56].

Rc ¼ μA U1ð Þ ∧ μB U2ð Þ: ð5Þ

To obtain data from different angles in the system, the
data received with two EMG sensors and 3-axis (x, y, z)
ADXL335 position and acceleration sensors were trained
with seven rules for wrist movement and nine rules for elbow
movement. According to the data obtained, the system train-
ing image for the wrist and elbow is given in Figure 7. The
Gaussian membership function is preferred while the data
are trained with rules. It is defined by the parameters c and an
in the Gaussian membership function. The Gaussian mem-
bership function used in the system is shown in Equation (6).

Function G: x → [0,1];

G x; c; σð Þ ¼ e
− x−cð Þ2
2σ2 : ð6Þ

Two EMG sensors and 3-axis (x, y, z) ADXL335 position
and acceleration sensors were used to obtain data from dif-
ferent angles in the system. The received data were recorded
and trained by creating a function with fuzzy logic. The
image of the system training for the wrist and elbow accord-
ing to the obtained data is given in Figure 10.

Here, the system is determined by four different input
value rules. As a result of this rule, the angle values of elbow
and wrist movement are reported as output. The input param-
eters seen in Figure 7 are the elbow EMG (Dx, Dy, Dz), wrist
EMG (Bx, By, Bz), and the position sensor’s x, y, z data. Angle
values resulting from the rules of the fuzzy logic algorithm
applied to the robot arm are given in Figure 11.

In the fuzzy logic controller created, position and EMG
sensors are determined as inputs, and elbow and wrist motion
angles are shown according to these variables. The maximum
and minimum angle values according to the values taken by
the position sensor in three axes (x, y, z) are also seen in the
graph.

The system was trained with the rules, and the imported
data were used in the previously exported system with the
Simmechanic plugin in Simulink. A fuzzy logic control algo-
rithm has been added to the block diagram that comes with
the Simmechanic application. The chart with the fuzzy logic
block added to the system is given in Figure 12. The block
diagram extracted in Simulink software was run with fuzzy
logic blocks trained with muscle and position data and a PID
controller.

In the system block diagram, a fuzzy block trained with
PID controller and EMG, position, and acceleration sensors
has been added to four rotating blocks.Wrist and elbow blocks
are also added for shoulder movement. The motion angles and
durations of the wearable robot arm were determined by run-
ning the simulation. The image of the running simulation is
given in Figure 13.

2.5. Integrating Quadratic SVM Algorithm into Robot Arm
Mechanism. The quadratic SVM algorithm, a regression anal-
ysis algorithm, is highly accurate. SVM algorithm is a two-
class classifier that fits into a hyperplane that distinguishes
between two classes [57]. Classification methods aim to max-
imise the perpendicular distances of these examples to the
separating surface by finding the closest examples of the
courses while classifying the data. This method is based on
structural risk minimisation and statistical learning theory.
This algorithm can also define nonlinear decision boundaries
in high-dimensional variable space by solving the second-order
optimisation problem. SVM is a supervised learning method
generally used in classification problems. Draws a line to sepa-
rate points placed on a plane. This aims to have the line at the
maximum distance for the points of both classes. Basic SVM
algorithm theory states that an infinite number of lines are
dividing the classes for a nonlinearly separable dataset contain-
ing scores from two courses. A line that best separates the two
classes (i.e., the decision boundary) is selected using a subset of
only training samples known as support vectors. It suits com-
plex but small and medium-sized datasets [11, 58]. It has been
shown to produce lower estimation errors than classifiers based
on other methods, such as artificial neural networks, especially
considering many features for sample identification. The work-
ing state of the SVM algorithm is shown in Figure 14.

Amargin (separation, gap, separation, distance) is defined
as the distance between two classes defined by a hyperplane.
Geometrically, it corresponds to the shortest distance between
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FIGURE 8: Fuzzy control block diagram for wrist movement.
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FIGURE 9: Fuzzy control block diagram for elbow movement.
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the data points closest to the margin and any point on the hyper-
plane. Figure 14 shows a geometric structure of the respective
optimal hyperplane under the above conditions for a two-
dimensional input space. Let’s assume that w and b are the
weight vector and bias in the hyperplane, respectively. The
related hyperplane can be defined as in Equation (7).

wTx þ b¼ 0: ð7Þ

As a result, SVM aims to find the parameters w and b to
maximise the separation margin (H) for the optimal hyper-
plane; this value is found by the shortest geometric distances
d+ and d− from the two classes, respectively, thus the SVM
is also referred to as the “maximal margin classifier” is
named. It is corrected to have a functional margin equal to
1 without loss of generality. Here, Equations (8) and (9) are
obtained.

wTxi þ b ≥þ1when yi ¼þ1; ð8Þ

wTxi þ b ≤ −1when yi ¼ −1: ð9Þ

Equations (10) and (11) describe the H1 and H2 planes.

H1 :wTxi þ b¼þ1; ð10Þ

H2 :wTxi þ b¼ −1: ð11Þ

The points in the H1 and H2 planes are the ends of the
support vectors; the H0 plane is the median in between,
denoted wTxi+ b= 0. d+ is the shortest distance from the
nearest positive point and d− is the shortest from the near-
est negative point. The margin of a separating hyperplane is
d++ d–. The form of the equation separating the classes
and defining the decision surface is a hyperplane of this
form:

wT
x þ b ≥ 0 for di ¼þ1; ð12Þ
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wT
x þ b <0 for di ¼ −1: ð13Þ

The working state of the SVM algorithm is given in
Equations (14) and (16).

d ¼ 2ffiffiffiffiffiffiffiffiffi
w:w

p f min wð Þw:w
2

; ð14Þ

di w × xi þ bð Þ ≥ 1; 1 ≤ i ≤ N; ð15Þ

L w; b; αð Þ ¼ w:w
2

− ∑αi; ð16Þ

where di is calculated from the equation ((wTxi+b)−1) [59, 60].
Elbow and wrist angle values were obtained from the data

obtained with two EMG sensors: position and acceleration
sensors. Angle values are limited to the motion angles of
the human anatomical structure specified in the literature.
An angle-finding function was created in MATLAB software,
and the angle value was calculated according to the received
data. System angle values trained with the quadratic SVM
algorithm were transferred to Simulink software as output.
The training of muscle and position data for wrist and elbow
movements with quadratic SVM and the graph of response
functions are given in Figures 15 and 16. It is seen that the
prediction and response points of the data obtained here show
a normal distribution. In addition, it was determined that the
validity estimation for wrist and elbow motion settled in the
linear direction.

Many machine learning algorithms were tested in the
system for the joint angular movements of the wearable exo-
skeleton robot arm, which was trained with the data obtained
from the EMG muscle and the ADXL335 position and accel-
eration sensor. It has been determined that the quadratic
SVM algorithm gives the most stable result. Therefore, the

FIGURE 13: Image of the simulation run with fuzzy logic.
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FIGURE 14: SVM algorithm state.
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system was trained with the quadratic SVM algorithm and
added to the block diagram. In addition to the PID control in
the system, which was previously designed and whose block
diagram was extracted in Simulink, the system was operated
in line with the data received with the quadratic SVM algo-
rithm. With its original design and kinematic analysis, the
system works both stable and with the PID controller and
feedback blocks. The instantaneous muscle can work at the
closest right angle to the human arm and position data with
the quadratic SVM algorithm. The block diagram of the
system realised with the quadratic SVM algorithm in Simu-
link is given in Figure 17.

Many machine learning algorithms were tested in the
system for the joint angular movements of the wearable exo-
skeleton robot arm, which was trained with the data obtained
from the EMG muscle and the ADXL335 position and accel-
eration sensor. It has been determined that the quadratic
SVM algorithm gives the most stable result. The accuracy
rate was 99% with the data trained on the quadratic SVM
algorithm. Therefore, the system was trained with the qua-
dratic SVM algorithm and added to the block diagram. In

addition to the PID control in the system, which was pre-
viously designed and whose block diagram was extracted
in Simulink, the system was operated in line with the data
received with the quadratic SVM algorithm. With its orig-
inal design and kinematic analysis, the system works both
stable and with the PID controller and feedback blocks.
The instantaneous muscle can work at the closest right
angle to the human arm and position data with the qua-
dratic SVM algorithm. The block diagram of the system
realised with the quadratic SVM algorithm in Simulink is
given in Figure 18.

In the MATLAB software, a function called angular find
was created for the system, and the fuzzy logic algorithm in
the wrist and elbow rotary blocks was removed and replaced
with the quadratic SVM algorithm with the PID controller.
The system was run in a simulation environment, and angle
values were determined with EMG and position sensor data.
The system’s Angle values realised with the fuzzy logic algo-
rithm and the quadratic SVM algorithm were compared.
Figure 19 shows the angle values of wrist movement and
the angle values obtained in the simulation from these two
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algorithms. When the human anatomy is examined, the max-
imum angle of the wrist movement to the horizontal is 45°. In
the system controlled by the fuzzy logic algorithm, the maxi-
mum angle is determined as 61°. The graph concludes that the
angle values of the system realised with the quadratic SVM
algorithm are very close to the actual angle values. The same
procedure was repeated for the elbow movement, and the
angle values were found.

The maximum angle of elbow movement in human anat-
omy is determined as 110°. Here, the maximum angle value
of the system controlled by fuzzy logic has been determined
as 77° in the horizontal. Again, in this algorithm, the elbow
angle, which should be 1°, is in the negative direction. It is
seen that the system controlled by the quadratic SVM algo-
rithm is very close to the actual angle values. Error percentages
of wrist and elbow movement angle values were calculated.

FIGURE 18: Simulation image of the system with angle value with quadratic SVM.
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The graph of fuzzy logic control and quadratic SVMcontrol error
percentages is shown in Figure 20. Here, the error percentage for
the smallest value of wrist movement is 164.25% for fuzzy logic
and 10.9% for quadratic SVM. As the angle value approaches the
maximum angle, the error percentage of the fuzzy logic controller
is 35.90%, and 0.21% for the quadratic SVM controller. This ratio
of elbow movement is 29.27% in the Fuzzy Logic controller
for the maximum angle value and 0.0006% in the quadratic
SVM controller. The error rate decreases for both controllers
as the wrist and elbow angles increase.

The simulated robot arm design was controlled with a
fuzzy logic algorithm and quadratic SVM algorithm, which is
a machine-learning algorithm. These two algorithms were
compared with the human arm angle values analysed in
the literature before, and it was determined that the closest
angle value was realised by machine learning. In vertical
motion, the human arm angle value was simulated as 70°
from the wrist, 130° from the elbow, and 110° from the
shoulder. The simulation’s actual human arm angle values
were the same as those obtained from the 1,880 EMG sensors
and the position sensor. In addition, the parts of the designed
system (hand, forearm, shoulder) were printed separately

from the 3D printer. EMG muscle sensors and position sen-
sors were added to the realised design and placed on the
previously designed electronic circuit. With the design tested
on the user’s arm, the motion angles have been determined.
Servo and linear motors placed in the design were operated
according to the EMG muscle sensors and position sensor
values. When the user wears the designed upper limb robot
arm and tries to lift a load (max 25 kg), the arm muscles
contract, and the load is lifted easily by working the motors.
The images of the system performing the design are shown in
Figure 21.

3. Conclusions

In this study, the wearable exoskeleton robot arm designed
for individuals with arm disorders was controlled in a simu-
lation environment, and the designed robot arm was realised.
The designed robotic arm was transferred to Simulink soft-
ware with the Simmechanics application, and the block dia-
gram was created. When the robot arm is simulated, it has
been observed to work unbalanced and move very fast. PID
controller blocks have been added to the block diagram to
provide stability and balance in elbow and wrist movements.
The P, I, and D values of the PID controller are entered sepa-
rately for the movement of the simulated wearable exoskeleton
robot arm. It was determined that the robot arm in the simu-
lation reached the manually entered angle values. For the sys-
tem to work stably with real muscle and position data, a lot of
data were taken from the user’s arm at different angles for wrist
and elbow movement with EMG muscle sensors and position
sensors. The system was first run with a fuzzy logic algorithm,
and angle analysis was done. It was determined that some
angle values could not be reached in the system realised with
fuzzy logic. Then, the system was tested with machine learning
algorithms in MATLAB software with the same data. It was
determined that the quadratic SVM algorithm gave the best
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FIGURE 21: Image of the wearable exoskeleton robot arm.
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accuracy among the machine learning algorithms. Angle anal-
ysis was performed by training the same data with the qua-
dratic SVM algorithm. It has been determined that the system
trained with quadratic SVM in the simulation works very
stable and gives the same results when the angle values are
taken. The angle analysis performed with two different algo-
rithms determined that the system trained with the second-
order SVM algorithm gave movement angles closer to human
limb movements compared to the fuzzy logic algorithm. In
addition, when the simulation image is examined, it is
observed that the system with the quadratic SVM algorithm
is less jittery and stable than the fuzzy logic system. This study
compares the fuzzy logic and quadratic SVM algorithms in
robotic arm simulation. The study also shows the literature
that the quadratic SVM algorithm gives the best results for
robotic arm operation. In addition, the reality of the robot
arm designed and controlled in the simulation environment
has been created. According to the sensor data, it has been
observed that it works stably in daily work.
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