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The study of bearing fault feature extraction using adaptive Fourier decomposition (AFD) holds significant practical importance.
However, AFD is constrained by its reliance on prior knowledge for determining decomposition levels, which can result in either
underdecomposition or overdecomposition based on a single indicator. Consequently, an improved adaptive Fourier decomposi-
tion (IAFD) is proposed. First, a combined weight index called SP is constructed, and the whale optimization algorithm is
employed to optimize the SP weight parameter. Second, the IAFD decomposition levels can be adaptively determined using the
optimized SP. Finally, a feature extraction method-based IAFD and Teager–Kaiser energy operator is applied in rolling bearing
fault diagnosis. Case studies on the Case Western Reserve University and self-made KUST-SY datasets validate the effectiveness of
the proposed method.

1. Introduction

Rolling bearing is one of the essential components in rotating
mechanical equipment [1], which is widely used in aero-
space, trains, wind turbines, and other equipment, and its
failure will lead to the decline of equipment performance,
resulting in huge safety accidents and economic losses [2].
Therefore, extracting the fault characteristics of rolling bear-
ings is of great significance for the timely and effective deter-
mination of their working conditions and for ensuring
production safety [3].

Existing bearing fault diagnosis techniques mainly include
the vibration signal analysis method, acoustic emission method,
oil contamination analysis method, and so on. However,
the vibration signal of the bearing shows nonstationary
and nonlinear characteristics [4]. At present, the fault fea-
ture extraction methods based on an adaptive decomposi-
tion of vibration signals have attracted more and more
attention [5]. Among them, the most representative decom-
positionmethod is the empirical mode decomposition (EMD)
method, which can adaptively decompose the vibration signal
into several intrinsic mode functions and has been widely
used in engineering [6–8]. However, using the cubic spline

method to construct the mean curve, EMD may suffer from
overenvelopment, underenvelopment, and poor envelope fit-
ting accuracy [9].To improve the accuracy of envelope fitting
and the problem of overenvelope and underenvelope, Smith
proposed the local mean decomposition (LMD) method, in
which a single-component AM-FM signal is viewed as the
product of its own envelope signal and a pure FM signal.
The complete time–frequency distribution can be obtained
by performing a frequency-domain analysis of the PF com-
ponent [10]. The LMD decomposition method retains more
localized information than EMD, which improves the enve-
lope fitting accuracy to some extent and solves the overenve-
lope and underenvelope problems to a certain extent [11].
However, the components obtained by the LMD often have
many spurious frequencies, which can cause abrupt signal
changes and high computational effort [12]. Inspired by EMD
and LMD, Cheng et al. [13] proposed a new nonsmooth, non-
linear adaptive decompositionmethod, local characteristic-scale
decomposition (LCD). The LCD can decompose a complex
signal into the sum of several intrinsic scale components with
the physical meaning of instantaneous frequency [14]. Com-
pared with EMD and LMD methods, LCD not only greatly
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improves the calculation speed but also effectively suppresses
the overenvelope and underenvelope and reduces the fitting
error. However, the key to the LCD method lies in the con-
struction of the mean curve based on a linear transformation
of the signal itself, which results in distortion due to burrs in
the waveforms of the decomposed components [15]. There-
fore, how to effectively characterize the fault characteristics of
rolling bearings becomes particularly important.

To realize adaptive signal decomposition, Qian et al. [16]
proposed a new signal decomposition method, namely the
adaptive Fourier decomposition (AFD) algorithm. AFD pre-
serves the vibrational characteristics of the original signal by
using an adaptive basis function and the energy distribution
of the signal to decompose the signal into elementary seg-
ments containing only positive frequencies and selecting
the effective components according to the principle of energy
maximization. Therefore, its decomposition components not
only have good convergence but also follow the energy extrac-
tion from high to low, which is suitable for nonsmooth and
nonlinear signal analysis. Wang et al. [17] applied the AFD
algorithm to ECG signal denoising and verified the effective-
ness of AFD by testing the arrhythmia database. Because of
the spectral overlap and mutual interference between lung
sounds and heart sounds, Wang et al. [18] used the AFD
algorithm to separate lung sounds and heart sounds with
different frequencies and proposed a separator based on the
AFD algorithm to successfully separate lung sounds and heart
sounds. By calculating the kurtosis value of the AFD decom-
position component, Liang et al. [19] selected the component
that exceeded the set threshold for reconstruction and per-
formed spectrum analysis on the reconstructed signal to
extract bearing fault features. In the above method, it is nec-
essary to rely on manual experience to set the estimated sig-
nal-to-noise ratio, percentage root–mean-square difference,
and other thresholds as the basis for determining the selection
of the number of decomposition levels, which may easily lead
to overdecomposition or underdecomposition of the signal if
it is not properly selected. Literature [20] improved the AFD
algorithm in terms of the computational complexity of the
algorithm and proposed a Jaya-based AFD method to reduce
the computational complexity, but the adaptive criterion of the
decomposition level is not clearly given. Therefore, a feature
extraction method-based improved adaptive Fourier decom-
position (IAFD) and Teager–Kaiser energy operator (TKEO)
is applied in rolling bearing fault diagnosis. The key contribu-
tions of this paper are as follows:

(1) A combined weight index called SP using percentage
root-mean-square difference (PRD) and signal-to-
noise ratio (SNR) is constructed, and the whale opti-
mization algorithm is employed to optimize the SP
weight parameter.

(2) An IAFD based on optimized SP is presented, where the
decomposition levels can be determined adaptively.

(3) A novel feature extraction method-based IAFD and
TKEO is proposed, and the effectiveness of the pre-
sented method is verified with two data sets.

2. Materials and Methods

2.1. AFD Method. In the complex Hardy space, there is the
real number signal f ðtÞ:, which is transformed into the ana-
lytic signal f ðzÞ : and decomposed in the H2ðDÞ :, including,
D¼fz2C : jzj<1g :, shows the open square circle with the
coordinate’s origin at its center, C represents the complex
plane [21, 22]. Make f 2H2ðDÞ :; f ¼ f1, then for any a1 2D,
there is a constant equation as shown in Equation (1).

f zð Þ ¼ f1; ea1

 �

ea1 zð Þ þ r2 zð Þ: ð1Þ

In Equation (1), r2ðzÞ : is the second-order standard error,
which can be expressed as Equation (2).

r2 zð Þ ¼ f2 zð Þ z − a1
1 − a1z

: ð2Þ

In Equation (2), f2ðzÞ : is the second-order standard error,
z−a1
1−a1z

is aH2ðDÞ : space functionwith zero point a1. Equation (3)

can be calculated from Equations (1) and (2).

f zð Þ ¼ f1; ea1

 �

ea1 zð Þ þ f2 zð Þ z − a1
1 − a1z

: ð3Þ

Repeat the above steps for f2 yields Equation (4).

f2 zð Þ ¼ f2; ea2

 �

ea2 zð Þ þ f3 zð Þ z − a1
1 − a1z

: ð4Þ

Equation (5) can be calculated from Equations (3) and (4).

f zð Þ ¼ f1; ea1

 �

ea1 zð Þ þ f2; ea2

 �

ea2 zð Þ z − a1
1 − a1z

þ f3 zð Þ z − a1
1 − a1z

z − a2
1 − a2z

:
ð5Þ

In Equation (5), ai is a complex number (inside the open
unit circle D), eai is the Szegö kernel with ai orthogonal in D,
Bi is the standard rational orthogonal basis, and eai is the first
factor in Bi.

eai zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − aij j2

p
1 − aiz

; i¼ 1; 2L;⋯; nL; ð6Þ

Bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − aij j2

p
1 − aiz

∏
n

i¼1

z − ai
1 − aiz

; i¼ 1; 2L;⋯; nL: ð7Þ

2.2. TKEO Method. TKEO analyzes and tracks signals’ energy
using a nonlinear energy tracking operator, denoted by φ [23].
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φ x tð Þ½ � ¼ dx tð Þ
dt

� �
2
− x tð Þ d

2x tð Þ
dt2

¼ ẋ tð Þ½ �2 − x tð Þẍ tð Þ:

ð8Þ

In Equation (8), ẋðtÞ: and ẍðtÞ: stand for the first and
second order differentials of xðtÞ :, respectively. Employing
difference in place of differential, then φ½xðnÞ� : is defined as
Equation (8).

j x nð Þ½ � ¼ x nð Þ½ �2 − x n − 1ð Þx nþ 1ð Þ: ð9Þ

In Equation (9), φ½xðnÞ� : can be obtained by using three
samples to compute the signal energy during any time n. As a
result, the transient impact component of the signal can be
effectively enhanced by TKEO’s output, extract the rolling
bearing’s early weak fault characteristics.

2.3. Portfolio Weighting Index Construction and Optimization.
The selection of the number of traditional AFD decomposi-
tion levels lacks the necessary theoretical support and easily
leads to overdecomposition or underdecomposition of the
signal. Moreover, in the actual acquired signal, the real signal
is unknown, which leads to the low accuracy of the evaluation
of a single index [17, 24]. To address these limitations, this
study combines the strengths of PRD and SNR (as illustrated
in Table 1) and introduces a combined weight index [25–28],
SP, to enable adaptive selection of AFD decomposition levels.

2.3.1. SP Portfolio Weighting Index Construction. SNR can
enhance signal quality and minimize the impact of noise on
fault signals, and PRD can assess the divergence between the
original and reconstructed signals. Drawing from the con-
struction principles outlined in Sun et al. [29], and to further
enhance the index’s trend of change, we introduce the com-
bined weight index SP, as shown in Equation (10).

SP¼ log2⁡ 1 − aSNR þ bPRDð Þ: ð10Þ

Including a and b are greater than 0, which represent the
weight coefficients of SNR and PRD, respectively, and aþ
b¼ 1.

The combined weight index SP is a dimensionless param-
eter that fully integrates the advantages of SNR and PRD.
Equation (10) satisfies that the denoising efficiency and recon-
structed signal quality improve with lower SP.

2.3.2. SP Portfolio Weighting Indicator Optimization. To obtain
the optimal parameter combination for SP, we employ the
whale optimization algorithm (WOA) [30] to optimize the
constructed SP weight index. The specific process is outlined
as follows:

Step 1: Determining the population size X and randomly
generate the position of each whale, parameter initialization
settings a, b are 0. Depending on the bearing signal’s prop-
erties, the parameters of the whale algorithm are: a1 ¼ 2
(initial swimming factor), b1 ¼ 3 (spiral coefficient), whale
number N is 30, iteration 100 times.

Step 2: According to the optimization objective function
minSP¼ log2⁡ð1− aSNRþ bPRDÞ :, identify the individual
with the greatest value for fitness by computing their value.

Step 3: Enter the main loop; the value of a1 drops from 2
to 0. Including, the random number p2 ½0; 1� :, A is a random
value in ½− a1; a1� :. If p<0:5 and jAj:<1, the whale updates its
position by swinging; otherwise, the individual position is
randomly updated. If p≥ 0:5, the whale updates position in
spiral mode.

Step 4: Reevaluate whale populations to find the best
individual and location.

Step 5: The loop ends if the stop target is satisfied; other-
wise, move on to Step 2 and continue the loop.

Step 6: Output the global optimal solution.

3. The Proposed Method

The overall IAFD bearing fault feature extraction approach is
depicted in Figure 1. These are the precise steps:

Step 1: Parameter initialization, decomposition levelN= 1,
SP=∞. The traditional AFD is used to decompose the vibra-
tion signal into several individual components and a residual
component, r.

Step 2: The individual components obtained from Step 1
are reconstructed by adding all the individual components
together.

Step 3: Calculating the PRD and SNR of each individual
component separately.

TABLE 1: Single indicators.

Indicators Formulas Implication

SNR SNR¼ 10× log
∑N
n¼1 Xs nð Þ−Xð Þ2

∑N
n¼1 Xs nð Þ−Xr nð Þð Þ2

� �
:

SNR is the ratio of useful signal to noise signal. It can be used to measure
the quality of the signal. Generally speaking, the signal quality is greater
the higher the signal-to-noise ratio, where XsðnÞ: displays the initial signal,
XrðnÞ: symbolizes the signal that was rebuilt, and X represents the mean of
the original signal

PRD PRD ð%Þ : ¼ 100×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N
n¼1ðXsðnÞ−XrðnÞÞ2
∑N
n¼1ðXsðnÞÞ2

r PRD identifies the variation between the original and recreated signals.
The quality of the reconstructed signal often improves with a decreasing
root mean square error percentage
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PRD %ð Þ ¼ 100 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

n¼1
Xs nð Þ − Xr nð Þð Þ2

∑
N

n¼1
Xs nð Þð Þ2

vuuuuut ; SNR ¼ 10 × log
∑
N

n¼1
Xs nð Þ − X
À Á

2

∑
N

n¼1
Xs nð Þ − Xr nð Þð Þ2

0
BB@

1
CCA: ð11Þ

Vibration signal G(t)

Vibration signal

Initialization parameter
Decomposition level N = 1, SP = ∞

AFD decomposition

Single component

Reconstruction signal xnew

Calculate SNR Calculate PRD

Construct the joint index
SP = log2 (1−aSNR + bPRD)

WOA optimize SP weight
coefficient a, b 

Optimum value new_SP

new_SP ≥ SP

N is the optimal
decomposition level

Reconstruction signal xnew

Reconstruction signal xnew

TKEO demodulation

Judge the fault type

N = N +1
SP = new_SP

Function G(t), assign a1, use
G(t), a1 to calculate ea1, B1

Substitute ea1, B1 into equation f1 = <G1 ,ea1> B1(z)
To get the first component f1

Combine G1, a1, ea1, for G2

Find a2 according to the maximum projection
principle, then find B2, ea2

Equation f2 = <G2, ea2> B2(z)
To get the second component f2

Known Gk, ak, eak, get Gk + 1, then
get ak + 1, Bk + 1, ea(k + 1), fk

By analogy, calculate all single
components f1, f2, … , fN

Using the first N single
components reconstruct signal

Yes

No

FIGURE 1: IAFD and TKEO-based rolling bearing defect feature extraction.
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Step 4: Construct a joint index SP using the calculated
PRD and SNR, SP¼ log2ð1− aSNRþ bPRDÞ :.

Step 5: Using the WOA to optimize the weighting coeffi-
cients a and b for SP. Based on the characteristics of the
bearing signal, set the parameters of the whale algorithm as
follows: a1= 2 (initial swimming factor), b1= 3 (spiral coef-
ficient), N= 30 (number of whales), and perform 100 itera-
tions. Obtain the optimal weighting coefficients and calculate
the joint index new_SP.

Step 6: Compare new_SP and SP; if new_SP≥ SP, then N
is the optimal decomposition layer; otherwise, new_SP value
is assigned to SP, N=N+ 1, and Step 6 is repeated until the
optimal decomposition layer N is found.

Step 7: The decomposed first N single components are
recombined, and the recombined signal is demodulated by
TKEO. The feature frequency is extracted according to the
demodulated signal to judge the fault.

4. Experimental and Comparative Analysis

4.1. Case 1: Case Western Reserve University (CWRU) Data
Analysis. This approach is tested and validated using data
obtained from the inner and outer rings of bearings provided
by CWRU [31]. Figure 2 and Table 2 depict the bearing test
platform and relevant bearing parameters. The analyzed data
have a sampling frequency of 12 kHz and a data length of
4,096. Based on Table 2 and the principles of rolling bearing
vibration theory [32], the characteristic frequencies of
inner and outer ring faults are calculated as follows: BPFI=
162.185Hz and BPFO= 107.305Hz, respectively.

4.1.1. Outer Ring Fault Signal Analysis. Figures 3 and 4 depict
the bearing’s time-domain and frequency-domain wave-
forms under fault-free and normal operating conditions.
Figure 4 shows how it compares to the regular working state.

Motor Torque transducer/encoder Dynamometer Rolling
element

Outer
ring

Inner
ring

FIGURE 2: Bearing experiment platform of CWRU.

TABLE 2: Parameters of deep groove ball bearing.

Model
Number of scrolling

bodies (Z)
Inner ring

diameter (mm)
Outer ring

diameter (mm)
Contact
angle (θ)

Rolling body
diameter (mm)

Nodal
diameter (mm)

Motor speed
(rpm)

6205-2RS
JEM SKF

9 25 52 0° 7.94 39.04 1,797
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FIGURE 3: Time domain and frequency domain waveform of normal signal: (a) time domain waveforms; (b) frequency domain waveform.

Journal of Sensors 5



The fault state’s time domain waveform clearly exhibits a
periodic pulse fluctuation law, and the abnormal component
appears in the frequency domain waveform, which can pre-
liminarily determine that the bearing has failed. But only
through this phenomenon cannot get the specific fault type
and location of the rolling bearing; the signal needs further
analysis and processing to determine the fault type. So, IAFD
is utilized to break down the bearing vibration signal.

When the optimal decomposition level is obtained by
WOA, the SP weight coefficient is a= 0.51 and b= 0.49. As
shown in Figure 5, the number of decomposition levels affects
both the single index and the combined index. The optimal
decomposition levels of AFD are determined according to SP,
PRD, and SNR, respectively. In order to keep track of the
index’s change trend, when the optimal decomposition levels
appear, the decomposition is continued to 30 levels. Figure 5
shows that the joint index SP determined that there are 10
breakdown levels. But only 18–19 breakdown levels are iden-
tified by a single index. The fault signal is further decomposed
by AFD.

Whenever there are 10 decomposition levels, the recon-
structed signal xnew is shown in Figure 6. The recovered signal
xnew is modulated using TKEO, and the resulting TKEO spec-
trum is shown in Figure 7(a). From Figure 7(a), there is a
significant peak phenomenon at 105.5Hz, in proximity to
the bearing outer ring fault’s theoretical value of 107.305
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FIGURE 4: Time domain and frequency domain waveform of fault signal: (a) time domain waveforms; (b) frequency domain waveform.
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FIGURE 5: Changes of single index and combined index SP with the number of decomposition layers for rolling bearing outer ring faults.
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FIGURE 6: Reconstructed signal.
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Hz, and we can clearly observe the 2–10 times the peak fre-
quency. As a result, it is possible to conclude that the bearing
has an outer ring flaw. When the number of decomposition
levels is 18 and 19, the obtained TKEO spectrum is shown in
Figures 7(b) and 7(c). The comparative analysis shows that
the decomposition layer N= 10 can obtain excellent perfor-
mance. At the same time, Table 3 compares the operating
efficiency of different indicators, and the operating efficiency

of the proposed method is improved by 49.4% and 50.8%,
respectively. In summary, the proposed method takes into
account both fault diagnosis performance and operating effi-
ciency and has strong practicability.

4.1.2. Inner Ring Fault Signal Analysis. The time–frequency
and frequency-domain waveforms of the inner ring fault
signal are shown in Figure 8. Similarly, consistent with the
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FIGURE 7: Teager–Kaiser energy operator spectrum: (a) SP (10 levels); (b) PRD (18 levels); (c) SNR (19 levels).

TABLE 3: Comparison of running time of outer ring failure of rolling bearings.

Category SP+WOA PRD SNR

Running time (s) 1.9223 3.7964 3.9032

Bold value emphasizes that the calculation time of our method is lower.
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FIGURE 8: Time domain and frequency domain waveform of fault signal: (a) time domain waveforms; (b) frequency domain waveform.
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outer ring fault, only the bearing fault can be determined, but
detailed information such as the type of fault cannot be
obtained, and then IAFD is used to decompose the fault
signal of the bearing.

Using WOA to optimize the parameters of the combined
index SP, the parameter settings match those used in the
bearing outer ring experiment. When the optimal decom-
position level is obtained by WOA, the weight coefficients

0 5 10 15
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FIGURE 9: Changes of single index and combined index SP with the number of decomposition layers for rolling bearing inner ring faults.
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FIGURE 10: Reconstructed signal and Teager–Kaiser energy operator spectrum: (a) reconstructed signal; (b) SP (9 levels); (c) PRD and SNR
(12 levels).
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a= 0.38 and b= 0.62. Figure 9 shows the variation of the
single index and joint index with the number of decompo-
sition levels. According to SP, PRD, and SNR, the optimal
decomposition levels of AFD are determined to be 9, 12,
and 12, respectively, which are abbreviated as [9, 12].
Figure 10 displays the reconstructed signal xnew and its
TKEO spectrum corresponding to the ideal decomposition
level, and the operating efficiency statistics are shown in
Table 4. Figure 10 shows a distinct peak phenomenon at
161.1 Hz, which is near the theoretical value of the bearing
inner ring fault (162.185Hz) and can be clearly observed as
2–6 times the peak. As a result, it is possible to conclude
that the bearing has an inner ring fault. The effectiveness
and viability of the suggested strategy are further confirmed
by comparing statistics and tables.

4.2. Laboratory Self-Made Bearing Platform Data Analysis
and Validation. For IAFD analysis and verification, the real
test data of the KUST-SY bearing platform built by the lab is
used. This is done to confirm that the suggested method
works. The platform can model various rolling bearing fail-
ure scenarios. Figure 11 is the KUST-SY bearing experimen-
tal platform, which is composed of a drive motor, shaft,
support bearing seat, EHA hydraulic loading system, accel-
eration sensor, and measured bearing.

In this experiment, considering the existing experimental
conditions, the inner and outer rings of the bearing’s fault
operating circumstances are primarily simulated. A laser cut-
ter is used to create surface cracks in the inner and outer
rings (fault diameter 0.2mm). The specific parameters are
as follows: Sampling frequency: 25.6 kHz; sampling interval:
20 s; sampling time: 10 s. The bearing under test is 6205-
2RSJEM SKF, with parameters listed in Table 5. According
to Wang et al. [21], the inner ring fault characteristic fre-
quency is BPFI= 162.33Hz, and BPFO= 107.22Hz for the
outer ring fault.

The effectiveness and feasibility of the proposed method
are vitrificated using the outer ring and inner ring data sets,
which are collected in the horizontal direction, respectively,
and the number of sampling points is 4,096. The compara-
tive experimental analysis results are as follows:

(1) The optimal layer number of the proposed method is
shown in Figures 12 and 13 based on SP, PRD, and
SNR. It can be seen from Figure 12 that the number of
optimal decomposition layers is 3 selected by SP, but
the number of optimal decomposition layers is 5
selected by a single PRD or SNR in the condition of
an outer ring fault. Similarly, the number of optimal

TABLE 4: Comparison of running time of inner ring failure of rolling bearings.

Category SP+WOA PRD SNR

Running time (s) 1.6128 2.3157 2.3157

Bold value emphasizes that the calculation time of our method is lower.

Driving
motor

Support
bearing

Support
shaft

Tested
bearing

EHA hydraulic
loading

Vertical
accelermeter

Tested
bearing

FIGURE 11: Bearing experiment platform of KUST-SY.

TABLE 5: Parameters of bearing.

Model
Number of

scrolling bodies (Z)
Contact
angle (θ)

Outer ring
diameter (mm)

Inner ring
diameter (mm)

Rolling body
diameter (mm)

Motor speed
(rpm)

Rated dynamic
load (KN)

6205-2RSJEM SKF 9 0 39.80 29.30 7.9 1,797 12.82
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decomposition layers [4, 6, 7] of the inner ring fault is
calculated by SP, PRD, and SNR.

(2) The TKEO spectrum of the reconstructed signal xnew
is extracted and illustrated in Figures 14 and 15.
Then, the characteristic frequency of the outer and
inner rings is extracted by the TKEO spectrum.
Additionally, the consuming time of comparative
methods is counted and displayed in Table 6. It can
be intuitively seen that the proposed method takes
the shortest time, which also further proves the effec-
tiveness and feasibility of the presented method.

5. Discussion

The number of decomposition levels is preset manually for the
typical AFD, which, if incorrectly chosen, could result in either
an over- or underdecomposition of the signal. Therefore, in this
paper, we fuze two single indicators, root mean square error
percentage and signal-to-noise ratio, and create a joint indicator
SP to calculate the AFD’s adaptive decomposition’s number of
levels. The adaptive selection of AFD decomposition levels is
realized, which effectively avoids the mis-decomposition of sig-
nals due to artificially set decomposition levels, and this enhances
the ability of AFD to decompose signals and identify faults.
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FIGURE 12: Variation curve of index with the number of decomposition levels in case of outer ring failure: (a) variation of a single indicator
with the number of decomposition levels; (b) variation of joint index SP with the number of decomposition levels.
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FIGURE 13: Variation curve of index with the number of decomposition levels in case of inner ring failure: (a) variation of a single indicator
with the number of decomposition levels; (b) variation of joint index SP with the number of decomposition levels.
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6. Conclusions

This paper introduces a weight index SP, which combines the
PRD and SNR for the adaptive selection decomposition
levels of the AFD method. The proposed method is validated

using vibration data from the inner and outer rings of bear-
ings on the CWRU platform and the KUST-SY experimental
platform. We can obtain some useful conclusions through
the experiment.

(1) The decomposition level of AFD can be adaptively
selected by the constructed joint index SP. It can effec-
tively avoid the misclassification of signals caused by
artificially set.

(2) The proposed IAFD provides a new method for fault
diagnosis of bearings, which improves the theoretical
basis for adaptive determination of AFD decomposition
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FIGURE 14: Teager–Kaiser energy operator spectrum: (a) SP (3 levels); (b) PRD and SNR (5 levels).
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FIGURE 15: Teager–Kaiser energy operator spectrum: (a) SP (4 levels); (b) PRD (6 levels); (c) SNR (7 levels).

TABLE 6: Operation time comparison.

Category SP+WOA PRD SNR

Outer ring failure running time (s) 0.7964 1.3032 1.3032
Inner ring failure running time (s) 0.9964 1.5607 1.6015

Bold values emphasize that the calculation time of our method is lower.
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levels, enhances the performance of AFD in signal
decomposition and fault diagnosis, and reduces the
waste of computing resources.

(3) The proposed method has achieved signal adaptive
decomposition and feature extraction. Furthermore,
the performance degradation evaluation theory and
methods of composite fault and health management
for rolling bearings will be further researched.
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