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Epilepsy, a neurological disease associated with seizures, affects the normal behavior of human beings. The unpredictability of
epileptic seizures has caused great obstacles to the treatment of the disease. The automatic seizure detection method based on
electroencephalogram (EEG) can assist experts in predicting seizures to improve treatment efficiency. Epileptic seizure detection
cannot be achieved accurately using the single-view characteristics of the signals. Moreover, manual feature extraction is a time-
consuming task. To design a high-performance seizure identification method, automatic learning of multi-view features becomes an
indispensable part for seizure detection. Therefore, the paper proposes a multi-input deep feature learning networks (MDFLN) model,
which comprehensively considers the features from the time domain and the time–frequency (TF) domain for EEG signals. The
MDFLN model automatically extracts the feature information of the signals through deep learning networks. Then, the bidirectional
long short-term memory (BLSTM) network is used to distinguish seizure and nonseizure events. Furthermore, the effectiveness of the
proposed network structure is verified in two public datasets. The experimental results demonstrate that the classification accuracy of
the proposed method based on multi-view features is at least 2.2% higher than the single-view features. The MDFLN achieves better
performance on CHB-MIT and Bonn datasets with accuracy of 98.09% and 98.4%, respectively. The fine-tuned model with the
validation set also improves the classification performance. Compare with the state-of-the-art seizure detection methods, the multi-
input deep learning network has superior competence with high sensitivity on the CHB-MIT dataset. The proposed automatic seizure
detection method can reduce time consumption and effectively assist experts in the clinical diagnosis and treatment.

1. Introduction

Epilepsy is a neurological disease characterized by a sudden
rush of electrophysiological signals changing inside the brain
[1–3]. More than 60million people worldwide suffer from
different types of epilepsy, especially in developing countries
[4]. Seizure detection is an important task in clinical research,
which motivates a great deal of research on developing and
testing automatic seizure detection algorithms to make clini-
cal strategies [5]. In addition, predicting the onset of seizures
can help these patients with further treatment [6, 7]. Scalp
electroencephalogram (EEG) is an important tool for the
diagnosis of patients with epilepsy [8]. In recent years, digital
EEG monitoring systems have collected long-term EEG
recordings of epileptic patients in real time to identify the
occurrence of abnormal events and make decisions on time.

Experts identify epileptic events by reading long-term EEGs,
which is a time-consuming task. Automated seizure monitor-
ing technology can help experts to identify epileptic events in
EEG signals.

So far, many works on seizure detection and prediction
are based on the traditional machine learning methods. In
machine learning, researchers consider using EEG data to
extract the features of the EEG signals from the time domain,
frequency domain, time–frequency (TF) domain, and non-
linear domain [9–11]. These features are used as input to a
classifier to detect and classify EEG signals. Commonly used
machine learning algorithms include support vector machine
(SVM), random forest (RF), K-nearest neighbors (K-NN),
and artificial neural network (ANN). The TF method com-
bines time–frequency information to analyze the TF distri-
bution of time series signals. Considering the multi-channel
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and instability characteristics of EEG signals, the short-time
Fourier transform (STFT) or the empirical wavelet transform
(EWT) is often used to analyze the signals. Tzallas et al.
[12, 13] used the TF analysis method to classify EEG signals.
They used STFT and some TF distributions to calculate the
power spectrum density (PSD) of the signal. Bhattacharyya
and Pachori [14] explored EWT and designed a TF plane for
EEG signals by using joint instantaneous amplitudes and
frequencies function in adaptive frequency scale of signal.
Chowdhury et al. [15] used another signal decomposition
method, named empirical mode decomposition (EMD), to
transform the time-domain signals into several amplitude
and frequency signals. The bimodal Gaussian model was
used to extract the signal information. There are several
methods for processing EEG based on the decomposition
and reconstruction of signals. Zabini et al. [16] used the
time-delay embedding method to reconstruct the trajectories
of seizure and nonseizure signals in a high-dimensional
space for deep analysis. Jiang et al. [17] used a symplectic
geometric method to obtain simplified eigenvalues, which
were regards as input of SVM for the classification of EEG
signals. Feature optimization algorithms were also used to
improve the performance of the seizure detection method.
Subasi et al. [18] proposed a hybrid machine learning
method using a genetic algorithm and particle swarm opti-
mization to find the optimal parameters of SVMs. Our pre-
vious work focused on finding an optimal feature set for the
machine learning algorithm to reduce computational time
for seizure detection [19]. However, extracting these features
requires manual processing, and one cannot perform deep
learning on these features. Most of these works require fea-
ture extraction techniques before using machine learning
classifiers for seizure detection, which is a major shortcom-
ing of machine learning. In this paper, a method for auto-
matic seizure detection using deep learning networks is
developed.

Deep learning networks have satisfied performance for
EEG based seizure detection in the presence of noise. During
the collection of EEG signals, the presence of artificial noise
also makes seizure detection a great challenge. To overcome
these difficulties, deep learning technology has emerged,
which can automatically learn the relevant features of EEG
signals without feature engineering through a supervised
learning framework. Many existing studies have proved the
effectiveness of deep learning in the classification of EEG
signals [20–24]. So far, deep learning has developed rapidly
in visual recognition. However, due to the nonstationary
nature of EEG signals, the performance of deep learning in
seizure detection still needs to be improved. Noise in EEG
signals causes decomposed representations to be commonly
used as input to the deep learning algorithms. Decomposition
is usually performed in the form of a Fourier or wavelet trans-
form. Deep learning algorithms are considered to be easier to
obtain relevant features from these decompositions.

Convolutional neural network (CNN) automatically
learn features from EEG signals without the need for manual
feature extraction. Machine learning techniques transform
data into continuous representation spaces, usually using

simple transformations such as high-dimensional nonlinear
maps or decision trees. But these techniques often fail to
obtain an accurate representation of the complex problems.
Therefore, machine learning must make the initial data more
suitable for these methods and manually design the presen-
tation layer for the data, which is called feature engineering.
In contrast, deep learning can learn all the features without
manual design. This greatly simplifies the machine learning
workflow and replaces a complex multi-stage process with a
simple, end-to-end deep learning model. Truong et al. [21]
used STFT to convert the segmented signal into a TF image,
and CNN to automatically learn the feature information of
the video image to better classify preictal and interictal sig-
nals. Tian et al. [22] designed an interpretable rule-based
model with multi-view fuzzy system. The method first used
fast Fourier transform (FFT) and wavelet packet decomposi-
tion (WPD) to obtain the multi-view features which were
then inputted to CNN for deep feature learning [22]. O’Shea
et al. [23] designed a fully coherent network architecture for
neonatal seizure detection based on CNN considering the
multi-channel characteristics of the original EEG signal.
Gabeff et al. [24] focused on the performance of the model
at the segment and seizure level based on the CNN method
and discussed the correlation between these two levels for
non-patient-specific seizure detection. Ein Shoka et al. first
converted the EEG time series into a spectrograph image and
fed to a CNN-based transform learning model, which showed
superior performance than the common models [25]. KR
et al. [26] used CNN to extract relevant features from the
EEG signals. Shanmugam and Dharmar [27] proposed a
hybrid 1D CNN-LSTM model that does not require feature
extraction for the end-to-end seizure detection method.

Deep learning can also process time series data to better
learn data correlations by preserving the state of the network.
The CNN processes each element individually with no state
saved between them. EEG signals are time series recordings.
Therefore, learning the relationship between the entire
sequence has a positive impact on the final classification of
the signal. The recursive neural network (RNN) is a simple
neural network with memory, which can maintain a state for
all sequence elements. But it can only learn the dependencies of
the sequences in the short term. As the number of layers
increases, the network may have an untrainable problem,
named the vanishing gradient.

The long short-term memory (LSTM) network is a vari-
ant of RNN, attaching a carrying information across multiple
time steps when dealing with sequential problems. The
LSTM can save information and prevent early information
from fading away during later processing. In recent years,
many studies have used LSTM to detect and predict seizures
in EEG signals. Chakrabarti et al. [28] designed a simple
LSTM for both invasive and noninvasive EEG recordings.
The proposed method was effective in detecting epileptic
seizures [28]. Hussein et al. [29] learn different patterns of
EEG signals from a deep LSTM network, which can provide
the high-level representations of EEG signals. Then, a dense
layer was adopted to output the predicted results [29]. Hu
et al. [30] proposed a novel method for seizure detection
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based on bidirectional long short-term memory (BLSTM)
and introduced local mean decomposition to decrease the
computational cost. A mixed model combining CNN and
BLSTM was proposed to obtain the temporal evolution of
seizure presentation from the EEG dataset with a small num-
ber of parameters [31]. The model they proposed only con-
sidered the time-domain features of EEG signals, which
cannot provide efficient information. Hussain et al. [32]
also proposed a hybrid model to decompose the raw EEG
signal into time-domain, frequency-domain, and TF features
to obtain enough detail information. But the CNN architec-
ture they used is simple, it cannot learn high-level presenta-
tion of the EEG signals.

In this work, a hybrid network model is proposed for
seizure detection (Figure 1). The model integrates the advan-
tages of CNN and BLSTM. The designed CNN is used to
deep learn the feature information of EEG signals. In order to
obtain adequate feature information, multi-view features
from time domain and TF domain are input into the 1D
CNN and the 2D CNN to automatically extract features.
1D CNN is used to process the original EEG signals. 2D
CNN is used to extract the TF image from the converted
signals. The BLSTM network integrates the fine-grained fea-
ture vectors learned from the CNN structure to extract the
long-term dependencies of epilepsy. Two-way learning
enables the model to consider both past and future informa-
tion of segmented signals, which will help detect seizures.
The proposed MDFLN can imitate the clinical diagnosis
process, where experts always mark the onset and end of
seizures through the temporal evolution of signals.

Although previous work has also adopted CNN and
BLSTM models for seizure detection, our model improves
these methods on several important points. First, most pre-
vious studies focus on extracting single-view features. The
previous work only considers time-domain features or 1D
CNN to learn the temporal evolution. Accordingly, the pro-
posed CNN operates onmulti-view features that are extracted
from the time series of the original signals and the TF image
obtained by STFT transformation to obtain enough informa-
tion. Second, when training the model, a validation set is used
to prevent the model from overfitting. In addition, in order to
improve the performance of the model, the BLSTM classifica-
tion network is fine-tuned by combining the training set and

validation set. The effectiveness of the model is verified using
two public datasets. The contributions of this work are pre-
sented as follows:

(1) A MDFLN model combined CNN and BLSTM is
proposed. The model uses CNN to perform deep
feature learning on EEG signals and inputs the
learned high-order features into the BLSTM for
classification.

(2) The multi-view feature information of the signal is
comprehensively considered, including time-domain
features and TF-domain features. The deep learning
model based on multi-input features is constructed.

(3) The BLSTM is used to classify the EEG signals, then
the model is fine-tuned before the final classification.
The performance of the model is verified in two
datasets, which shows the effectiveness of the pro-
posed method.

The content of this paper is organized as follows: in
Section 2, the preprocessing method of the dataset is intro-
duced. The proposed seizure detection method is developed.
The experimental results and the analysis are presented in
Section 3. Section 4 discusses comparisons with the state-of-
the-art seizure detection methods using two public datasets.
Finally, the conclusions are described in Section 5.

2. Methods and Materials

2.1. Dataset. The CHB-MIT dataset is a public dataset col-
lected by Children’s Hospital Boston, containing long-term,
multi-channel EEG recordings from 23 neonatal epileptic
patients with intractable epilepsy [33, 34]. Data acquisition
was carried out by placing electrodes on the scalp of the
patients in accordance with the International Standard
10–20 system. As shown in Table 1, this dataset collected
records of 24 cases (chb01, chb02,…, chb24) from 23 patients
aged 1.5–22 years. The first 23 cases were from 22 patients
with 17 women and 5 men. The sex and age of the 24th case
was not informative. Each case contained a continuous file in
the format of .edf from a single subject. Most of the files were
digitized EEG signals that were an hour long recordings. In
24 cases, a total of 664 .edf files with 198 seizures were
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FIGURE 1: The flowchart of the proposed MDFLN for automatic seizure detection.
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included. All EEG signals were sampled at 256Hz with a 16-
bit resolution.Most EEG signals contain 23 channels (24 or 26
in some cases). We could not read some of the channels in
chb15 and chb16. Therefore, data from these two patients
were removed.

The Bonn dataset was collected from the University of Bonn
in Germany, which contains five subsets, represented as A, B, C,
D, and E, respectively. Each subset contained 100 single-channel
EEG segments with 23.6 s long. The sampling rate was 173.61Hz
with a resolution of 12 bits. All EEG signals were acquired with
the 10–20 system [35]. As can be seen in Table 2, subsets A and B
were from five healthy volunteers with eyes open and closed,
respectively. Subsets C, D, and E were collected from five epilep-
tic patients. Subsets C and Dwere the intervals during which the
patients were in the stage of seizure-free. The data contained in E
were in the stage of seizure activity.

2.2. Preprocessing of EEG Signals

2.2.1. Filtering. A fourth-order Butterworth filter was intro-
duced. The 0.01–32Hz frequency band was reserved for the
diagnosis of epilepsy. The filter removed physiological

artifacts that confound epilepsy [36]. A non-overlapping
window of 5 s was extracted from each channel. Each seizure
activity of the recordings has been marked by clinical anno-
tation to indicate the onset and the end of the seizure. Win-
dows containing seizure events were labeled as positive
samples. Consequently, windows that did not contain seizure
events were labeled as negative samples.

2.2.2. Standardization. Feature scaling, also known as stan-
dardization, is a step in data preprocessing. This method
converts the data value into a particular range. Feature scal-
ing is a common data processing requirement for using
Keras, Scikit learn, and deep learning. Generally speaking,
it is unsafe to input relatively large data or heterogeneous
data (for example, one feature of the data is in the range of
0–1 and the other is in the range of 100–200) into the neural
network. It may result in a large gradient update. Therefore,
the network cannot converge. To simplify the network, the
value of the feature should be in the same range.

Standardization transforms the raw data into a distribu-
tion with a mean of 0 and a variance of Equation (1). The
formula of standardization is as follows:

TABLE 1: The information of the CHB-MIT database.

Patients Gender age Number of seizures (Tmin–Tmax) (s) Total seizure time (s) Total seizure-free time (s)

1 F-11 7 (28–102) 449 23,475
2 M-11 3 (10–83) 175 7,983
3 F-14 7 (48–70) 409 24,791
4 M-22 4 (49–116) 378 37,976
5 F-7 5 (97–121) 563 17,437
6 F-1.5 9 (13–21) 147 93,051
7 F-14.5 3 (87–144) 328 32,208
8 M-3.5 5 (135–265) 924 17,076
9 F-10 4 (63–80) 280 34,218
10 M-3 7 (36–90) 454 50,008
11 F-12 3 (23–753) 809 9,249
12 F-2 27 (14–98) 1,016 33,844
13 F-3 12 (18–71) 547 28,253
14 F-9 8 (15–42) 117 25,023
17 F-12 3 (89–116) 296 10,528
18 F-18 6 (31–69) 323 19,951
19 F-19 3 (78–82) 239 10,307
20 F-6 8 (30–50) 302 19,732
21 F-13 4 (13–82) 203 13,587
22 F-9 3 (59–75) 207 10,593
23 F-6 7 (21–114) 431 31,823
24 NR-NR 16 (17–71) 527 42,673

TABLE 2: The information of the Bonn database.

Subsets Set A Set B Set C Set D Set E

Subjects Healthy Healthy Epileptic patients Epileptic patients Epileptic patients
Patient Stage Eye open Eye close Seizure free Seizure free Seizure activity
Electrode type Surface Surface Intracranial Intracranial Intracranial
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z ¼ X − μ

σ
; ð1Þ

where z is the signal after standardization. X is the original
value. μ and σ are the mean and variance of the recordings,
respectively.

2.3. CNNs. CNNs perform well in computer vision problems
using convolutional operations. It can make full use of the
data and extract local features from the images for modular
representation. Compared to the other image classification
algorithms, CNN uses relatively less preprocessing. This
means that the network optimizes the filters (or kernels)
through automatic learning. In traditional algorithms, these
filters are hand-designed. So, the major advantage of CNN is
that they do not need prior knowledge or human intervention.
This property not only makes neural networks outstanding
for computer vision but also makes them particularly effective
for signal processing.

A CNN consists of an input layer, a hidden layer, and an
output layer. In a feed-forward neural network, intermediate
layers are called hidden layers because their inputs and out-
puts are masked by activation functions and final convolu-
tions. In CNNs, the hidden layers perform the dot product of
the convolution kernel for the input matrix. As the convolu-
tion kernel slides along the input matrix, the convolution
operation produces a feature map, which in turn contributes
to the input of the next layer. This is followed by other layers,
such as the pooling layer, the fully connected layer, and the
normalization layer. According to the dimension of the input,
two CNN functions are considered in this work, namely 1D
CNN and 2DCNN, respectively. In 1DCNN, the kernel slides
along one dimension, which can be used for processing such
as time series data or natural language processing. In 2D
CNN, the kernel slides along two dimensions through the
data, which is usually used to deal with image data.

The CNNs uses three convolutional blocks to deeply
learn the characteristics of the original signal during the
process of extracting temporal features. As shown in Figure 2,
each convolutional block includes the convolutional layer,
the ReLU layer, the batch normalization layer, and the max
pooling (MP) layer. This succession convolutional block
extracts higher order features of the information of the

EEG signals. The convolutional layer is the main block in
CNN, which performs a convolution operation on the input
through the predefined filters and receptive field. The ReLU
activation function f ðxÞ: ¼maxð0; xÞ: is applied to effectively
remove negative values from the activation graph by setting
them to zero. The ReLU layer introduces nonlinearity into
the decision function and the whole network without affect-
ing the receptive field of the convolutional layer. The batch
normalization layer makes the input data conform to the
same distribution with a simple and fast training process.

The pooling layer reduces the dimensionality of data by
combining the output of one layer of clusters of neurons into
individual neurons in the next layer. Pooling layer is used to
gradually reduce the size of the representation space, reduce
the number of parameters in the network, memory con-
sumption and computation, so as to control overfitting. A
very common form of maximum pooling is a layer with a size
2× 2 filter, applied with a step length of Equation (2) as
follows:

fX;Y ¼max
1

a;b¼0
S2Xþa;2Yþ b: ð2Þ

Each depth slice in the input along width and height is
downsampled, discarding 75% of the data. Finally, the maxi-
mum value of the field is retained.

2.4. BLSTM. LSTM is a special RNN network, which can
solve the problem of vanishing gradient in RNN and learn
long-term dependence. But the one-way LSTM can only
consider the forward relationship. The BLSTM takes into
account the dependency between the front and back.
Therefore, the output of BLSTM is more robust. The core
idea of the LSTM model is the cell state, which is used to
store the long-term state. Specifically, the LSTM uses gates to
control the removal or addition of data in the cell state.
Assume that xt is the current input. ht−1 and ct−1 represent
the short-term memory and the long-term memory at time
t − 1, respectively. Then the input gate It , the forgetting gate
Ft , and the output gate Ot are defined as follows:

It ¼ σ Wi ⋅ ht−1; xt½ � þ bið Þ; ð3Þ
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FIGURE 2: The detailed information of the proposed MDFLN model.
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Ft ¼ σ Wf ⋅ ht−1; xt½ � þ bf
À Á

; ð4Þ

Ot ¼ σ Wo ⋅ ht−1; xt½ � þ boð Þ; ð5Þ

whereWi,Wf ,Wo, bi, bf , and bo are trainable model param-
eters. Then, a candidate memory cell is computed before
updating the status,

eCt ¼ tanh Wc ⋅ ht−1; xt½ � þ bcð Þ; ð6Þ

where Wc and bc are the trainable model parameters.
According to the candidate memory cell C̃ t and long-term
memory at time t − 1, the cell state Ct and ht are updated as
follows:

Ct ¼ Ft × Ct−1 þ It × eCt; ð7Þ

ht ¼ Ot × tanh Ctð Þ: ð8Þ

BLSTM is good at processing time series data. If the data
are three-dimensional graphics such as images, it is difficult
for BLSTM to describe this spatial feature because of the rich
spatial information and the strong correlation between each
point. Therefore, on the basis of BLSTM, convolution oper-
ation is added to capture spatial features, which will be more
effective for image feature extraction.

After the CNN feature extraction phase, the feature vec-
tor of the segmented signal is classified as a series of binary
predictive values. The BLSTM structure connects the outputs
of two LSTMs. One that operates forward in the sequence,
and the other that operates backward. Therefore, the BLSTM
contains information from the past to the future at any given
time. The bidirectional structure allows networks to learn the
temporal evolution of the seizure. It ensures high-temporal
resolution and low latency by using the entire recordings of
the segmented signal in the network. Two BLSTM hide layers
are used before the final prediction. The output is classified
by the dense connection layer.

2.5. The Architecture of the Proposed MDFLN. Our model
can be conceptualized as a multichannel feature extractor
followed by a temporal detector (BLSTM). The outline of
the network is shown in Figure 2. This illustration uses the
CHB-MIT dataset to describe the network structure.

2.5.1. 1D CNN. For some time series problems, the effect of
1D CNN can be comparable to that of RNN. And the cost is
usually much lower. 1D CNN extracts a patch from a
sequence and applies a convolutional transformation to it,
so patterns learned at one location in the sequence can also
be recognized elsewhere. EEG signals in the time domain
show how the values of the original signal change over
time. Time-domain signals accurately reveal the location of
the seizure. The signal analysis is performed based on the
time–amplitude information of the signal components.
However, these signals are not able to disclose the frequency
range in which the spike occurs. The features of all 23 chan-
nels are integrated to form feature vectors. This feature

vector is used as the input of the model to train and classify
the data.

In our work, 1D CNN uses the original EEG signal as
input with segment length of 5 s. There are three convolution
blocks, named C11, C12, and C13, respectively. Each block
contains a convolutional layer with a ReLU layer, a batch
normalization layer, and an MP layer. Specifically, the MP
layer is not drawn, which is represented by MP in the figure.
For C11, there are 16 filters with a size of 3. The result of
convolution is input into a ReLU activation function fol-
lowed by a MP layer over a region of 2. C12 and C13 use
the same structure except that C12 and C13 have 32 and
64 filters, respectively.

2.5.2. 2D CNN.We consider converting the original signal to
a TF map, an image-like format, to extract TF information.
The time series EEG signals are usually transformed into
image shapes using the wavelet transform and the Fourier
transform [37, 38]. For seizure prediction and detection, they
are an effective feature extraction method. In this paper, we
use STFT to transform the raw EEG signal into a 2D matrix
consisting of a frequency axis and a time axis. STFT is usually
used to analyze nonstationary time-varying signals.

The TF-domain information of EEG signals is a coordi-
nate system that evaluates the frequency characteristics of a
signal by imitating the relationship between frequency and
amplitude. The STFT method can convert the time-domain
signal from each channel into the TF-domain signal. Figure 3
gives an example to transform the seizure and nonseizure
signal into TF representation. The Hamming window is used
and the length of the segment is 128. The TF domain represen-
tation of signals is suitable for nonstationary and time-varying
signals, helping to extract temporal and spatial correlation
information.

In the 2D CNN, the STFT transformation result of the 5 s
window of the original signal is used as input. There are also
three convolution blocks, named C21, C22, and C23, respec-
tively. Each block contains a convolutional layer, a ReLU
layer, a batch normalization layer, and an MP layer. For
C21, there are 16 filters with a size of 3. The result of convo-
lution is followed by an MP layer over a region of 2. C22 and
C23 use the same structure except that C22 and C23 have 32
and 64 filters, respectively.

The window length is set to 5 s sampled at 256Hz. So, the
length of the segmented recordings is 1,280. The original
input length of 1D CNN is 1,280× 23, where 23 is the num-
ber of channels. The Hamming window is used for transfor-
mations with a length of 128, so the input of 2D CNN is 65×
21 × 23. Table 3 presents the layer information of the
designed network and shows the output size of each layer.
Furthermore, to mitigate the imbalance in the dataset, we
overlapped the samples in the ictal period and did not over-
lap the samples in the interictal period.

As in VGGNet, we double the number of channels per
block after the pooling layer. This process prevents informa-
tion from being lost and ensures that each convolutional
block requires approximately the same amount of computa-
tion. Global average pooling is used to represent the last layer
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of convolutional blocks. The output of each kernel is aver-
aged so that each kernel has a single feature. This procedure
has a regularizing effect on the network; broadly, it reduces
overfitting, as the subsequent recurrent layers receive infor-
mation pooled across the entire one second window, thus
mitigating overfitting to isolated data irregularities.

CNN and BLSTM are effective tools for dealing with time
and noise signals and can achieve efficient and stable classi-
fication accuracy. CNN is a deep learning algorithm that can
effectively classify data into multiple categories by automati-
cally learning features. It is generally insensitive to noise and
can gather valuable information in the presence of noise
which can be regarded as a feature extractor. BLSTM can
be a classifier to identify seizure events in EEG signals, but it

contains too much redundant information, resulting in high-
time consumption. Therefore, a hybrid CNN-BLSTMmodel is
proposed to classify EEG signals. The model can effectively use
the time dependence in time series to detect seizures. Instead of
getting all types of features manually, the time-domain or
TF-domain signal are input directly. At the beginning of the
model, CNN is used to obtain reliable and distinguishable fea-
tures, consisting of a convolution layer, a linear unit Relu, an
MP layer, and one or more fully connected layers. The feature
learned by deep learning becomes more abstract. The convolu-
tion layer contains K filters of size 3. The result of the ReLu
activation function is regarded as the output of the CNN layer.
A nonlinear operation is performed in the network to replace
negative output with 0. The output of this layer has the same
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FIGURE 3: Examples of STFT of 5-s window. The raw nonseizure (a) and seizure (b) EEG signals. The TF representation of nonseizure (c) and
seizure (d) signals.

Journal of Sensors 7



size as the input. The MP layer converts the input data that is
the same size as the kernel into a single output with the maxi-
mum number observed.

RMSProp algorithm is used to determine the optimal
weights and bias set of the neural network, which signifi-
cantly reduces the loss function. RMSProp uses an exponen-
tially weighted moving average to speed up the optimization
process. The binary cross-entropy loss function is used to
train the model. The learning rate for the function to move
through the search space is set to 0.0001. A lower learning
rate leads to a more consistent result, which also leads to
more training time. The learned features are transferred by
an activation function, SoftMax or Sigmoid, to obtain the
probability of the input. After the input passes through the
network, the result is reduced and downsampled. The pro-
posed network is designed to alleviate overfitting and can
handle LSTM models, performing quite well in time series
classification tasks. The classifier consists of two BLSTM
layers and a fully connected layer, which outputs the results
of the seizure detection. The result of the classifier is a prob-
ability value of the input signal that matches a specific type of
seizure. In particular, the proposed architecture trains and
fine-tunes the top-level classification portion of the network
on the two datasets. Compared to the advanced methods
based on machine learning and deep learning, the proposed
method demonstrates effectiveness and robustness by pro-
viding the most impressive performance in seizure recogni-
tion. The proposed technique is also believed to maintain
stable efficiency in the presence of certain EEG artifacts

and environmental disturbances, which is more suitable for
the clinical diagnosis.

2.6. Metrics. The measurement metrics used in this work are
accuracy, specificity, sensitivity, and area under curve (AUC).
Accuracy, defined as the proportion of samples that are cor-
rectly classified, is the most common performance metric.
Specificity, also known as the true negative rate, refers to
the proportion of nonseizure samples that are correctly clas-
sified. Sensitivity, also known as recall, is the proportion of
positive samples in the original sample that are correctly pre-
dicted. The classifier generates a probability prediction for
each sample during classification and compares this predic-
tion value with a threshold. If the prediction value is greater
than the threshold, it is positive; otherwise, it is negative. The
ROC curve does not specify a fixed threshold, but tries all
possible thresholds (cut-off points) and calculates a pair of
true positive rate (TPR) and false positive rate (FPR) at each
possible threshold. The AUC was used as an indicator of the
model. The higher the AUC value, the higher the accuracy.
Performance metrics are defined as follows:

Accuracy ¼ TPþ TN
TPþ FNþ TNþ FP

× 100%; ð9Þ

Specificity ¼ TN
TNþ FP

× 100%; ð10Þ

Sensitivity ¼ TP
TPþ FN

× 100%; ð11Þ

TABLE 3: Layers of the designed network.

Time domain TF domain

Layer info Output size Layer info Output size

Input — (1,280, 23) — (65, 21, 23)

C11/C21

Conv1D(3)× 16 (1,278, 16) Conv2D(3, 1)× 16 (63, 21, 16)
ReLU (1,278, 16) ReLU (63, 21, 16)

BatchNor (1,278, 16) BatchNor (63, 21, 16)
MaxP, s:2 (639, 16) MaxP(2, 1), s:2 (31, 21, 16)

C12/C22

Conv1D(3)× 32 (637, 32) Conv2D(3, 1)× 32 (29, 21, 32)
ReLU (637, 32) ReLU (29, 21, 32)

BatchNor (637, 32) BatchNor (29, 21, 32)
MaxP, s:2 (318, 32) MaxP(2, 1), s:2 (14, 21, 32)

C13/C23

Conv1D(3)× 64 (316, 64) Conv2D(3, 1)× 64 (12, 21, 64)
ReLU (316, 64) ReLU (12, 21, 64)

BatchNor (316, 64) BatchNor (12, 21, 64)
MaxP, s:2 (158, 64) MaxP(2, 1), s:2 (6, 21, 64)

— — Reshape (126, 64)

Concatenate (284, 64)
BLSTM 1 (284, 40)
BLSTM 2 (284, 40)
Flatten 11,360
Dropout 11,360
Dense 128
Dense 1
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where TP represents the number of positive samples cor-
rectly predicted. TN represents the number of negative sam-
ples that are correctly predicted. FN represents the number
of positive samples predicted to be negative samples. FP
represents the number of negative samples predicted to be
positive.

3. Results

3.1. Experimental Configuration. The proposed seizure detec-
tion network model is implemented by using PYTHON 3.9
on a Thinkpad T14, Intel i5 10th, and RAM 16G. The Python
program uses the Keras framework and is implemented with
TensorFlow as the backend. The specific parameter settings
and the execution process in the code have been loaded on
GitHub: https://github.com/chloeqisun/MDFLN.

The proposed model is validated and tested on raw EEG
signals from two public datasets. The performance of the
model is evaluated with metrics including accuracy, specific-
ity, sensitivity, and AUC. The different length of the seg-
ments has also tried to select suitable length of segments.
Furthermore, fine tuning was used to tune the model.

The EEG signals are classified as seizure events or non-
seizure events on the CHB-MIT dataset. Three different clas-
sification cases are distinguished on the Bonn dataset. Case 1:
Sets A, B, C, and D combine as normal class; Set E is the
epilepsy class. Case 2: Sets A and B are healthy persons; Sets
C and D are the interictal period of patients with epilepsy; Set
E is the ictal period of seizures. Case 3: Sets A, B, C, D, and E
are classified into one category, respectively.

The EEG signal of a patient is a long time series that
needs to be segmented before analyzing. In order to get a
suitable segment length, we try different segment lengths in
the range of [1,10] with a step size of 1. Through training and
testing on the dataset of the first patient in CHB-MIT, it is
concluded that the segment with a length of 5 s has better
classification performance. The classification result improves
with increasing segment length at first. When the segment

length is greater than 5 s, the classification performance does
not improve with the increase of segment length. Therefore,
during data preprocessing, the segment length is set to 5 s.
The feature information contained in different lengths of
segments is varied. Short segmented signal recordings may
not capture the time evolution information of the signal.
However, longer segments are not more helpful in detecting
the collected seizure signals. For the Bonn dataset, the length
of the segment is also set to 5 s.

3.2. Seizure Detection Results

3.2.1. Base Network. In this work, the fivefold cross-validation
method is used to validate the proposed model. First, we divide
the data into training set and testing set. In order to avoid over-
fitting, a part of the training set is divided into the validation set.
The remaining part of the training set is used to train the model.
And the trained model is saved. Deep learning methods can
perform gradient optimization, and thus can help the algorithm
converge to a global optimum. The validation accuracy and
validation loss curve can reflect the classification performance
of the model. In this work, the convergence of the loss func-
tion is studied to analyze the performance of the proposed
model. Figure 4(a) shows the convergence curve of the loss
function. It can be seen that the objective function remains the
same after several epochs. After 30 rounds, the loss function
converges and no improvement in terms of accuracy, depicted
in Figure 4(b), occurs. Therefore, in our experimental setting,
the EearlyStopping callback function of Keras is used to con-
trol the learning of the model. When the classification accu-
racy of the training does not improve in 10 rounds, the
training is stopped in advance. And the model with the least
loss function is recorded.

The classification results for the CHB-MIT dataset are
given in Table 4 which contains EEG data for 22 patients. For
each patient, a model needs to be created. It can be seen from
the table that the models for most patients have good classi-
fication results. The multi-input deep learning model can
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FIGURE 4: (a) The loss and (b) accuracy of the MDFLN during training and validation.
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effectively classify EEG signals. The average classification
accuracy of these patients is 97.08%. For the Bonn dataset,
the accuracy of the three cases is 98.32%, 92.91%, and
89.76%, respectively. In the process of evaluating the perfor-
mance of the model, the patient dataset is divided into a
training set, a validation set, and a testing set. The model is
based on the training set. The validation set is used to super-
vise the training process to prevent the model from over-
fitting. This method reduces the data in the training set, thus
affecting the performance of the model. To build the model
with more training data, the model is fine-tuned by combin-
ing the training set and the validation set of the patients.

3.2.2. Fine-Tuned Network. To improve the performance of the
model, we fine-tune the model (Figure 5). The CNN feature
extraction part of the initial model is frozen. The BLSTM
classification layer is fine-tuned. Before testing, the training set
and the validation set are combined. Then, themodel is retrained
by fine-tuning the saved model. The fine-tuned model is used to
calculate the classification performance on the testing set.
Specifically, the CNN layer is frozen. The BLSTM and dense
layers are trained to obtain a fine-tuned model. Table 4 shows
the classification based on two datasets. As can be seen from the
table, the average values of accuracy, sensitivity, and specificity

are improved after the model is fine-tuned. The classification
performance shows improvement in 13 of the 22 patientmodels.
This happens because when fine-tuning the network, the
training set and the verification set are combined to train the
model, which increases the training set to deep learn the features.
The frozen CNN layer is equivalent to the automatic feature
learning process of the original signals. And the parameters of
the BLSTMare adjusted in themerged training set. The results of
all patients of the fine-tunedmodel are above 96%with accuracy.
The AUC of the model classification is also higher, which shows
the validity of the model. The classification results of the Bonn
dataset are presented in Table 4. As you can see from the table,
the performance of the model is significantly improved after
fine-tuning. The performance of the binary classification is
also improved effectively.

3.2.3. Multi-Input Features Learning Analysis. To verify the
effect of single-view and multi-view features on the perfor-
mance of the model, we compare the difference between them
in Figure 6. The time-domain learning model just used 1D
CNN to learn the features of EEG signals. The TF-domain
learning model used 2D CNN to obtain features. These two
single-input models both used BLSTM network to classify the
signals.

TABLE 4: The calssification results of the proposed MDFLN based on two public datasets.

Dataset PID
Base network Fine-tuning network

Accuracy Specificity Sensitivity AUC Accuracy Specificity Sensitivity AUC

CHB-MIT

1 99.76 99.52 100 100 100 100 100 100
2 99.06 98.75 99.38 98.63 100 100 100 100
3 95.71 93.82 97.6 97.01 98.52 97.31 99.73 97.74
4 94.34 91.72 96.97 99.13 97.11 96.14 98.08 99.11
5 94.88 91.42 98.33 98.79 97.49 96.66 98.33 99.82
6 91.56 98.26 84.86 94.42 97.75 97.27 98.22 99.17
7 98.23 99.37 97.1 98.54 97.91 99.05 96.78 98.67
8 97.78 97 98.55 99.65 97.66 97 98.33 99.61
9 98.65 97.69 99.62 99.22 98.46 97.31 99.62 99.37
10 99.15 99.04 99.28 99.23 96.9 96.9 96.9 99.03
11 96.14 93.8 98.48 90.69 98.04 97.98 98.1 95.8
12 96.6 96.48 96.72 99.49 98.53 98.98 98.07 99.75
13 98.38 98.25 98.5 99.88 99.13 99.5 98.75 99.85
14 96.37 97.8 94.95 97.12 99.27 98.54 100 100
17 96.8 98.58 95.03 98.92 96.62 99.64 93.59 97.03
18 97.79 95.91 99.66 99.76 99.15 99.66 98.64 99.79
19 96.4 94.59 98.21 94.89 96.18 94.15 98.22 95.51
20 98.29 97.72 98.87 99.74 96.4 93.96 98.85 99.82
21 97 96.2 97.81 97.99 96.43 93.96 98.9 94.6
22 96.66 94.86 98.46 100 99.74 99.49 100 100
23 98 96.74 99.25 99.92 98.99 99.24 98.74 99.7
24 98.22 98.44 98 99.73 97.77 98.21 97.32 99.27

Average 97.08 96.63 97.53 98.31 98.09 97.77 98.42 98.8

Bonn
Case 1 98.32 99.03 95.36 99.14 98.4 98.71 97.02 99.07
Case 2 92.91 94.46 89.36 — 93.12 94.84 89.68 —

Case 3 89.76 93.6 74.4 — 91.28 94.55 78.2 —
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On the CHB-MIT dataset (Figure 6(a)), the classification
results of the time domain and the TF domain are 89.67%
and 80.04% with average accuracy, respectively. Multi-input
networks achieve better results for each patient. The 1D
CNN, which takes into account the temporal information
of EEG signals, performs better in identifying seizure events
compared to extracting spatial information from the TF
image. We observed that in the 2D CNN with BLSTM, the
EEG signals of some patients cannot be effectively identified,
leading to classification results lower than baseline. And on
the Bonn dataset (Figure 6(b)), the classification results of the
time domain and the TF domain are 92.24% and 74.87%with
average accuracy for three cases, respectively. This result is
consistent with the findings from the CHB-MIT dataset.
When considering only the use of TF-domain information,
the classification performance is the poorest. However, by
combining the information learned by 1D CNN and 2D
CNN, the classification performance is effectively improved.
Specifically, the classification accuracy of the proposed
method based on multi-view features is at least 2.2% higher
than single-view features (CHB-MIT, 9.39%; Bonn, 2.2%).

When only a single input is considered, its performance
is far less good than that of multiple inputs. The features of
the time domain are more beneficial for the classification of
EEG signals than those of the TF domain. The time-domain
feature considers deep learning of segmented signals and
uses BLSTM networks to learn the temporal development
patterns of EEG signals. The experimental results show its
effectiveness in the recognition of EEG signals. The fre-
quency features of the signals also reflect different patterns
of activity in the brain. Detecting seizure in EEG signals only
with its temporal characteristics will degrade classification
performance. Therefore, when training the networks, we
also integrate the TF information of the signal into the train-
ing set. When EEG classification is performed using time-
domain and TF-domain features of signals, the classification
results for accuracy, specificity, and sensitivity are high.
However, the classification performance of a single feature
information is far inferior to the classification effect of the
multi-input model. Comprehensively, considering the multi-
view features of signals can help to improve the accuracy of
recognition for the EEG signals.

4. Discussions

To evaluate the performance of the proposed method, a com-
parison with the state-of-the-art literature using the same dataset
is presented in Table 5. For the CHB-MIT dataset, the compari-
son results show that the proposed MDFLN model can recog-
nize EEG signals successfully. The multi-input deep feature
learning method achieves the highest classification performance
with a sensitivity of 98.42% in all mentioned works. Zhao et al.
[46] proposed a CNN+Transformer method with the highest
accuracy. And the transfer learning method was used by Ein
Shoka et al. [25] for sensitivity, specificity, and accuracy are
88.89%, 84.21%, and 86.11%, respectively. For the Bonn dataset,
the specificity obtained by the proposedmethod is superior to all
works [39, 40, 43, 47, 49, 50]. Li et al. [39] designed a unified
temporal-spectral squeeze-and-excitation network for classifica-
tion task, achieving an accuracy of 99.8%. Different feature scal-
ing techniqueswere employed byThara et al. [47] to find the best
results with a sensitivity of 98.59%. When comparing with exist-
ing literature, the comparison on the Bonn dataset only involves
the comparison of results for the binary classification. Specifi-
cally, sets A, B, C, and D represent samples with no seizure
events, and E represents samples with seizure events. The results
of the proposed method are also acceptable, since there is a
97.02% value of sensitivity and a quite high accuracy of 98.4%
for case 1. Although the proposed method is behind part of the
studies summarized in Table 5 considering the accuracy metric,
it is also efficient in the identification of epileptic seizures in EEG
signals.

The MDFLN model is channel independent, as it takes
into account entire channels without channel selection. This
section uses the same data for the proposed method as men-
tioned in other literature. The related methods of the dataset
are compared. The methods that simultaneously consider the
time and frequency information of the signal are fewer. The
proposed MDFLN simultaneously considers the time and
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FIGURE 6: The comparison of classification performance between single-view and multi-view features: (a) CHB-MIT dataset and (b) Bonn
dataset.

TABLE 5: Comparisons with state-of-the-art seizure detection methods using the same dataset.

Authors Methodology Dataset
Sensitivity(%)–specificity(%)–

accuracy(%)

Truong et al. [21] STFT, CNN CHB-MIT 81.2–NR–NR

Tian et al. [22]
Deep multi-view feature learning, FFT,

WPD, CNN
CHB-MIT 96.7–99.1−98.3

Li et al. [39]
Unified temporal-spectral squeeze-and-

excitation network
CHB-MIT 92.41–96.05−95.96

— Bonn NR–NR–99.8
Peng et al. [40] Stein kernel-based sparse representation CHB-MIT 97.85–98.57−98.21

— Bonn 98.43–98.67−98.67

Deng et al. [41]
Transductive transfer learning fuzzy

system
CHB-MIT 97.16–97.03−97.15

Hossain et al. [42] Raw EEG as 2D Array, CNN CHB-MIT 90–91.65−98.05
Shoeibi et al. [43] Handcrafted features, SVM, KNN, CNN Bonn NR–NR–99.53
Li and Chen [44] FFT, 2D matrix, SVM CHB-MIT 98.28–98.5−98.47

Jiang et al. [45]
Personal correlation coefficient and

mutual information, SVM
CHB-MIT 97.72–95.62−96.67

Zhao et al. [46] CNN, transformer CHB-MIT 97.70–97.6−98.76
Thara et al. [47] DNN, Different feature scaling techniques Bonn 98.59–91.47−97.21

Xiong et al. [48]
Multivariate variational mode

decomposition, RF
CHB-MIT 98.24–97.83−97.39

Ein Shoka et al. [25] Transfer learning, CNN CHB-MIT 88.89–84.21−86.11

Akyol [49]
Stacking ensemble approach, deep neural

networks (DNN)
Bonn 93.11–98.18−97.17

Pan et al. [50] Hybrid input, DWT, STFT, FFT, CNN Bonn NR–NR–97.89
This work Multi-view features, MDFLN CHB-MIT 98.42–97.77−98.09

— Bonn 97.02–98.71−98.4
The NR stands for not reported values.
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frequency features of the signal to construct a robust and
comprehensive system to efficiently detect seizure events.
The previous CNN network is the process of feature extrac-
tion. The subsequent BLSTM network is a classification net-
work. The CNN feature extraction part extracts time and
frequency features that are input into BLSTM as a feature
vector for seizure detection.

In general, research on EEG signal classification tends to
use a single dataset to design a framework. However, this
work uses two datasets to verify the classification perfor-
mance of the model. Not only for binary classification pro-
blems, multi-classification problems can also train effective
models. Deep learning networks can essentially learn features
from a dataset. Taking advantage of this deep learning prop-
erty, the proposed method can effectively avoid the time-
consuming feature extraction process. Once the model is
trained, the model can be saved, and unseen EEG data can
be detected and analyzed. This could help to improve the
quality of life of patients with intractable epilepsy.

The development of deep learning networks is an impor-
tant advance in machine learning. CNNs can potentially
learn features without additional feature extraction pro-
cesses. The proposed CNN network includes convolutional
layers, MP layers, and batch normalization. The original
signals from multiple channels are used as the CNN input
with linear filters. The MP layer downsamples the data with
the pooling size 2, which reduces the dimensionality of the
data with minimal loss. To avoid overfitting, dropout and
batch normalization are used to fine-tune the network.

The learning ability of LSTM is used to evaluate the clas-
sification performance of features in decision-making. Tradi-
tional RNN has the problem of vanishing gradient, which
makes it impossible to realize long sequence memory. Com-
pared with RNN, LSTM changes the structure of the internal
computing network and adds a memory unit. The memory
unit is used to store the useful content of the previous
sequence and apply it to the later sequence, which solves
the problem that the RNN network cannot realize long
sequence memory. The nature of bidirectional networks is
that they use past and future information to perform classifi-
cation in EEG segments. CNN learns spatial information in
the receptive field. With the deepening of network learning,
the features of CNN learning becomemore andmore abstract.
For EEG seizure detection, CNN must learn abstract spatial
features. For time series EEG signals, the longer temporal
dependencies obtained by deep learning are helpful for sei-
zure detection. Therefore, the CNN and BLSTM structures
are used to make the detection results more robust. Although
the proposed MDFLN effectively realizes seizure detection,
there are some limitations in this work:

(1) For the CHB-MIT dataset, short-term EEG signals are
selected to train the model. But in long-term EEG sig-
nals, the dataset is imbalanced between ictal and inter-
ictal recordings. So, the proposedmethod should handle
the problem of the imbalance of dataset.

(2) A more generalized model needs to be designed. The
model we used to detect seizures is patient-specific,

which does not generalize to the different patient
patterns. Therefore, transfer learning is an effective
method to establish a cross-patient model.

(3) The proposed method utilizes information from all
channels, which does not capture the mutual influ-
ence relationships between channels. Signal model-
ing approaches based on graph theory can capture
directed or undirected influence relationships, pro-
viding a more accurate identification of the seizure
events.

5. Conclusions

Epilepsy is one of the most common and extremely harmful
neurological diseases. Some epileptic seizures can be treated
with medication. However, there are some refractory seizures
that cannot be precisely searched for the epileptogenic zone
and accurately classified or diagnosed. To formulate personal-
ized seizure prediction and treatment strategies, an automatic
seizure detection method based on MDFLN is proposed. We
investigate multi-input deep learning models to extract feature
information from the original and transformed signals. The
results show that the classification performance of the multi-
input model is much higher than that of the single-input model.
The proposed model comprehensively considers the time-
domain and TF-domain features of the signal and effectively
achieves the identification of seizure events and nonseizure
events. Furthermore, the classification performance is improved
by fine-tuning the model. Finally, the effectiveness of the auto-
matic seizure classificationmethod is verified in two public data-
sets, which can help the experts with clinical treatment.
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meb.unibonn.de/epileptologie/science/physik/eegdata.html.
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