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Over the last few decades, remote sensing has emerged as a dependable and cost-effective method for collecting precise data on
forest biophysical parameters, aiding in sustainable forest management and global initiatives to combat climate change. This
research aimed to develop a model for estimating the above-ground biomass (AGB) of Teak (Tectona grandis L. F.) by combining
field measurements with Sentinel-2 earth observation data. The study took place in 36-year-old teak plantation areas within the
Sagarnath Forest Development Project in Nepal’s Sarlahi district. Field measurements were conducted using a destructive system-
atic sampling method, employing 10× 10m2 sample plots, and the volume of logs was determined using Newton’s formula. A total
of 30 sample plots were used for calibration, while 10 were utilized for validation purposes. The findings revealed that the average
AGB per plot was 814 kg (equivalent to 81.4 t ha−1), with a minimum value of 716 kg (71.6 t ha−1) and a maximum value of 1,060 kg
(106 t ha−1). The study utilized five independent variables, namely, the Red band, Green band, Blue band, near-infrared (NIR), and
normalized difference vegetation index (NDVI) values from Sentinel-2 imagery data, to develop estimation models. Among the
12 models examined, model M10 proved to be the best fit for accurate AGB estimation (adjusted R2= 0.9809, RMSE= 0.01269,
AIC=−170, and p-value=<8.39e−21). The equation of the best-fittedmodel was ln (AGB)=A+B×Red+C×Green+D×Blue2+ E×
ln (NIR)+ F× ln (NDVI), providing an accurate estimate of AGB. Model validation involved a t-test comparing the observed and
calculated AGB values for ten sample plots, demonstrating no significant difference (p-value= 0.3662> 0.05). This model has the
potential to facilitate AGB biomass calculations and carbon stock estimates for teak plantations of similar age groups.

1. Introduction

Teak, scientifically known as Tectona grandis L. F., is a highly
valuable species of tropical wood that has been cultivated
extensively across tropical Asia, far from its original natural
range encompassing India, Myanmar, Laos, and Thailand.
As of 2010, teak plantations covered a vast area of 6.9 million
hectares across 60 countries, with Asia accounting for 88%,
Africa for 8%, and the tropical Americas for 4%. Myanmar
boasts the world’s largest native teak forest, followed by
Thailand [1]. Teak plays a significant role in the Sagarnath
Forest Development Project (SFDP), meeting nearly half of
the nation’s demand [2]. Due to its rapid growth, teak plan-
tation forests can effectively absorb substantial amounts of

carbon dioxide, mitigating the impacts of global warming
[3]. Biomass refers to the total mass of organic material,
both living and dead, which includes above and below-
ground living biomass, leaf litter, and decaying matter [4].
Accurately estimating above-ground forest biomass (AGB) is
crucial for assessing carbon stocks, as the above-ground por-
tion generally contains the largest carbon reservoir [5]. The
most precise method of calculating biomass data is through
the use of allometric equations or destructive sampling in the
field [6]. However, these techniques are often expensive,
time-consuming, labor-intensive, limited in spatial distribu-
tion, and impractical, particularly in remote areas [6, 7].
Remote sensing technologies have now emerged as the
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primary means of estimating AGB, as they can overcome the
limitations of traditional field measurement techniques [7].

Both direct and indirect approaches can be employed to
estimate the biomass of an individual tree or a stand. The
direct approach, which involves cutting plants into pieces
and weighing them to determine biomass, is undoubtedly
the most accurate method. However, it is also the most
expensive, time-consuming, and labor-intensive [8]. As a
result, its application is often limited to small areas and
sample sizes [9]. Precise and effective estimation of forest
biomass is crucial for implementing carbon emission reduc-
tion incentives such as the clean development mechanism
[10]. The importance of forests in reducing greenhouse gas
emissions has gained increased attention due to growing
concerns about climate change and global warming. The
international program known as REDD+ (reducing emis-
sions from deforestation and forest degradation and the
role of conservation, sustainable management of forests,
and enhancement of forest carbon stocks in developing
countries) offers developing nations like Nepal a significant
opportunity to mitigate climate change, support livelihoods,
and protect forest ecosystem biodiversity. The successful
implementation of REDD+ relies on accurate assessments
of biomass and carbon stocks, as well as the subsequent
monitoring of the forest carbon pool [11]. Developing reli-
able allometric correlations between biomass and other
parameters is essential, as they can be applied over large areas
to obtain precise estimations [12].

Since the 1980s, several organizations, institutions, and
private forests have participated in biomass studies in Nepal.
The Forest Research and Training Centre is the primary gov-
ernment agency responsible for conducting biomass studies
and developing allometric equations in the country. Biomass
investigations and the creation of allometric equations for
many tree species in the mid-hills have been carried out by
projects such as the Nepal-Australia Forestry Project and the
Forest Resource Information System Project [13]. Linear and
nonlinear algorithms were developed for biomass estimation
using Sentinel-2 products, and the developed models were
evaluated using various statistical measures. It is anticipated
that this study will serve as a valuable tool for forest managers,
forest users, and researchers and contribute to Nepal’s partic-
ipation in international carbon trade programs. According to
Lu [7], the combination of field data and high-resolution
remote sensing is crucial for accurate biomass estimation, a
view also supported by the research of Gautam et al. [14].
Both authors agree that data integration provides an accurate,
precise, and cost-effective monitoring approach for tropical
forests. However, collecting field data in remote locations can
be time-consuming and labor-intensive [15]. AGB serves as a
significant indicator of carbon sequestration in terrestrial for-
ests [16]. Estimating AGB is of primary concern for forest
management and policymakers due to the alarming rates of
deforestation, fragmentation, and tropical biomass destruc-
tion, emphasizing the need to evaluate remaining forest
patches and prioritize conservation efforts [17]. Accurate

calculations of forest biomass are necessary for greenhouse
gas inventories and terrestrial carbon accounting [16].

Biomass mapping across extensive areas provides a
detailed understanding of carbon sequestration. Typically,
assessments focus on AGB as it constitutes the largest por-
tion of the forest’s total living biomass and is directly affected
by deforestation and degradation [18]. Continuous monitor-
ing, assessment, biomass analysis, and mapping of forest
regions are essential for biodiversity conservation and sus-
tainable forest resource management [19]. Compared to
approaches based on forest inventory plots and extrapolation
methods, indirect methods such as the regression equation
method offer greater benefits and require less time for assess-
ment. These methods are adaptable and allow for the analysis
of AGB fluctuations over time or between different geographic
areas, including the effects of disturbances like fire or defores-
tation [20]. The plantation forest at SFDP is well-established
and productive, but there is currently no valid biomass table
available to calculate carbon stocks for this species. Determin-
ing the biomass of standing trees involves measuring tree com-
ponents (stem, branches, and leaves) after harvesting, which is
time-consuming, expensive, labor-intensive, and tedious. Sev-
eral universities and research organizations in Nepal have used
equations proposed by Sharma and Pukala [21], Tamrakar
[22], Chave et al. [10], and other authors. However, these
equations have been found to have significant flaws [23].
This study aims to address these shortcomings by developing
allometric equations for calculating AGB using Sentinel-2
imagery data. It will also provide a baseline for resource man-
agers at SFDP to estimate the biomass of the teak forest and
facilitate proper supervision andmonitoring of forest products.
The general objective of this study is to model the AGB of teak
(T. grandis L. F.) using field measurements and Sentinel-2
imagery. Specific objectives include estimating the AGB of
the teak plantation area through field measurements, identify-
ing and correlating remotely sensed tree parameters with cal-
culated AGB, and developing a regressionmodel between AGB
and the Sentinel-2 imagery database.

2. Materials and Methods

2.1. Study Area. The research was conducted within the teak
plantation area, covering a land area of 7.74 hectares, located
in the SFDP in the south-eastern Terai region, specifically the
Sarlahi district (Figure 1). The project has undertaken exten-
sive plantations of fast-growing species, including Eucalyptus
camaldulensis, Dalbergia sissoo, T. grandis, and other species,
encompassing approximately 13,512 hectares [23]. The terrain
in the area is characterized by a gentle slope, with an elevation
ranging from 60 to 330m above mean sea level. The study area
spans from coordinates 26.9974°N to 85.6749°E. During sum-
mer (April/May), the temperature fluctuates between 35 to
45°C, while in the dry winter month of January, it ranges
from 10 to 15°C. The average annual rainfall in the region falls
between 1,130 and 2,680mm [24]. The climate of the area is
classified as lower tropical, consisting of a mixed hardwood
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tropical forest, with Shorea robusta G. f. being the dominant
species.

2.2. Data Collection. For the purpose of the study (Figure 2),
both primary and secondary data were gathered. Secondary
data and information were sourced from various internet
resources, books, journals, articles, and reports. On the other
hand, primary data was obtained through field observations,
tree and sample measurements, processing of Sentinel-2
image data, and laboratory analysis.

2.3. Sampling and Measurements. Field measurements were
conducted using the systematic sampling method with a sam-
ple plot size of 10× 10m2. The destructive sampling approach
was employed, involving the felling of individual trees across a
wide range of diameters at breast height (DBH) and subse-
quently separating them into boles, branches, and leaves. To
obtainmeasurements, the felled trees were divided into sections
with a minimum taper, allowing for the measurement of dia-
meters (at the bottom, middle, and top) as well as lengths of
each section. Additionally, three sample discs were collected
from each sample plot, representing different parts of the tree
(above stump height, top of the tree, and base of branches).
These sample discs were obtained from trees located near or at
the center of the sample plot. To prevent moisture loss, the
sample discs were securely stored inside plastic bags.

The collected sample discs from above the stump, top of
the tree, and base of branches were further processed into
wood samples measuring 2 × 2 × 2 cm³. The quantities

obtained were 10, 10, and 5 samples, respectively. Leaves
were also collected from designated plots measuring 0.5×
0.5m2, located at the center of each sample plot. The leaves
were weighed and then dried in a laboratory. The biomass of
the leaves was calculated by multiplying the total number of
leaves in a plot by the weight-to-dry ratio. In total, 40 sample
plots were established, with 30 of them utilized to calibrate
the allometric relationship, while the remaining 10 sample
plots were set aside for validation purposes.

2.4. AGB Estimation. To calculate the volume of the main
stem, Newton’s formula, as presented in Equation (1) by
Mandal et al. [23], was applied. In the volume estimation,
the stump height was not considered, and the DBH was
measured, including the bark. The formula for volume cal-
culation is as follows:

Volume Vð Þ ¼ S1 þ 4Sm þ S2ð Þ=6ð Þ × L: ð1Þ

In Equation (1), S1 represents the basal area of the larger
(base) end of the section, Sm represents the basal area of
medium (between) portion, and S2 represents the basal
area of the smaller (top) end of the section. L denotes the
length of the section. Wood density, which is the ratio of the
oven-dry mass of a wood sample to its green volume (basic
specific gravity), was determined using Equation (2) pro-
posed by Chave et al. [25].
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FIGURE 1: Location of the study area.
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Wood density WDð Þ ¼ oven dry weight of sample=ð
fresh volume of sampleÞ:

ð2Þ

To calculate the AGB of the wood portion, Equation (3)
by Moradi et al. [26] was utilized. In Equation (3), AGB
represents the above-ground biomass, V represents the vol-
ume derived from Newton’s formula, and WD represents the
wood density (g cm−3). The total AGB, excluding the stump
height, was obtained by summing the biomass of the stem,
branches, and leaves.

AGB¼ V ×WD: ð3Þ

2.5. Empirical Modeling Approaches. Multiple regression
analysis was employed to develop biomass models, with
the AGB serving as the dependent variable and the Senti-
nel-2 image data as the independent variables. The explicit
model structures were established using the field inventory
data for AGB and various sentinel image data, including
spectral bands, vegetation indices, textural images, and sub-
pixel information, as the independent variables.

2.6. Remote Sensing Data. The AGB in the teak plantation
area was estimated using Sentinel-2 imagery with a resolu-
tion of 10m. This remote sensing data was of excellent qual-
ity and had minimal or no presence of clouds and cloud
shadows. The Sentinel-2 image data was obtained from the

United States Geological Survey (USGS) Earth Explorer data
portal (https://earthexplorer.usgs.gov). Sentinel-2 imagery data
is equipped with a multispectral imager that captures 13 spec-
tral bands, with spatial resolutions ranging from 10 to 60m.
For this particular study, only the bands with a spatial resolu-
tion of 10m were utilized for analysis, namely B2 (490 nm),
B3 (560 nm), B4 (665 nm), and B8 (842 nm), while the
remaining bands were excluded.

2.7. Validation/Accuracy Assessment. The estimated models
were evaluated using root mean square error (RMSE), coef-
ficient of determination (R2), and akaike information crite-
rion (AIC).

2.8. Data Analysis. ArcGIS software (Version 10.8) was uti-
lized for creating a study area map and calculating vegetation
indices using the Sentinel-2 imagery data. MS Excel was
employed for recording field data and performing calcula-
tions for tree volume and biomass. The R-Programme and
SPSS (version 23) were employed for generating various
models.

2.9. Lab Analysis. The weight of wood samples measuring
2× 2× 2 cm3 and the quantity of leaves collected from the
sample plot were measured both before and after being dried
in the laboratory. The leaves were dried at a temperature of
75°C until three consecutive measurements indicated a con-
stant weight. Similarly, the wood samples from the stem and
branches were dried at a temperature of 80°C until three
consecutive measurements indicated a constant weight, as
recommended by Chapagain et al. [27].

Satellite data
(Sentinel-2 imagery)

Vegetation indices calculation
(Red, Green, Blue, NIR, NDVI)

Pre-processing

Field data collection
(destructive method with sample plot

size 10 m × 10 m)

Above-ground biomass estimation
(Sum up the biomass of stems, branches and

leaves using volume, and wood density)

Model validation
(RMSE, AIC, R2)

Model development
(using R-programing)

Select best-fitted model

FIGURE 2: Flowchart for regression equation development from ABG and Sentinel-2 imagery.
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3. Results

3.1. Field AGB Estimation. The results revealed that the mean
stem volume per plot was 0.855m3, ranging from aminimum of
0.726m3 to a maximum of 1.148m3 (Figure 3). The average
oven-dry wood density of the stemwas 696kgm−3, with amini-
mum of 676 kgm−3 and a maximum of 714 kgm−3 (Figure 4).
Analysis of Figure 5 indicated that the average branch volume
per plot was 0.313m3, with sample plot 8 having the lowest
volume of 0.250m3 and sample plot 28 having the highest

volume of 0.385m3. Sample plots 19 and 23 exhibited the lowest
branch oven-dry wood density of 627 kgm−3, while sample plot
12 had the highest density of 660 kgm−3. The average oven-dry
wood density for branches was 643 kgm−3 (Figure 6). Addition-
ally, the mean weight of fresh leaves per plot was 45 kg, with a
minimumof 35.4 kg observed in sample plot 21 and amaximum
of 56.2 kg observed in sample plot 24 (Figure 7). Furthermore,
Figure 7 illustrates that the average oven-dry weight of leaves per
plot was 17.51kg, ranging from a minimum of 13.81kg to a
maximum of 23.60kg.
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The average AGB measured in the field was 814 kg per
plot (equivalent to 81.4 t ha−1), ranging from a minimum of
716 kg per plot (71.6 t ha−1) to a maximum of 1,060 kg per
plot (106 t ha−1) (Figure 8). Among the sample plots, 14
(47%) had AGB values ranging from 700.1 to 800 kg, while
11 (37%) and 4 (13%) sample plots had AGB values between
800.1–900 kg and 900.1–1,000 kg, respectively (Figure 9).
None of the sample plots had AGB values equal to or less

than 700 kg, and only one sample plot (3%) had an AGB
value exceeding 1,000.1 kg.

Among the 30 sample plots, the average biomass was 814kg
with a standard deviation of 14.33 kg, and the range of AGB
values varied from the lowest value of 716 kg to the highest
value of 1,060 kg (Table 1). The median AGB value was
801.7 kg per plot, and the most commonly observed AGB
value was 810 kg per plot. The range of AGB values observed
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in the field was 344 kg per plot, with a standard deviation of
78.5 kg.

3.2. Development of Biomass Model. Multivariate regression
analysis was employed to establish a relationship between
AGB and independent variables derived from Sentinel-2 earth
observation data, including various bands and vegetation indices.
The chosen independent variables were the Red band, Green
band, Blue band, near-infrared (NIR), and normalized difference
vegetation index (NDVI) values obtained from the Sentinel-2
imagery data. These variables were utilized to estimate the AGB.
Themodels exhibited a positive correlation and significancewith
AGB, as indicated by the Adj. R2 values ranging from 0.9772 to
0.9839. The AIC values varied from−170 to 237, and the RMSE
values ranged between 0.0127 and 11.17.

3.3. Selection of Best-Fitted Model. Among the 12 models,
model M9 exhibited the highest adjusted R2 value of
0.9839, while models M4, M2, M10, and others followed
suit (Table 2). Regarding the RMSE value, model M10 dis-
played the lowest value of 0.01269, with models M11, M8,
M6, and others following suit (Table 2). In terms of AIC
values, model M10 had the lowest value of -170, followed
by models M11, M6, M8, M12, and others (Table 2). The
models were ranked based on the criteria of selecting the
lowest value obtained by summing the ranks from the three
criteria mentioned above. Consequently, model M10 was
deemed the best model for estimating AGB.

The best-fitted model for accurate estimation of AGB
among the 12 models was found to be model M10, with an
adjusted R2 value of 0.9809, an RMSE value of 0.01269, an AIC
value of −170, and a p-value of <8.39e−21 (Tables 3 and 4).
Following model M10, models M11, M9, M4, M8, and others
showed a good fit for AGB estimation. The R2 value of 0.9809
indicated that the model could explain approximately 98.09%
of the variability in AGB. Based on the analysis of R2, RMSE,
and AIC values, the best-fitted model for AGB estimation in
this study can be represented as follows:

ln AGBð Þ ¼ Aþ B × Redþ C × Greenþ D × Blue2

þ E × ln NIRð Þ þ F × ln NDVIð Þ;
ð4Þ

where
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TABLE 1: Descriptive statistics of sample plot-level AGB.

S.N. Parameters Result

1. Mean (kg) 814
2. Standard error 14.33
3. Median 801.74
4. Mode 810
5. Standard deviation 78.5
6. Range 344
7. Minimum (kg) 716
8. Maximum (kg) 1,060
9. Observation (no.) 30

A B C D E F

−32.07700659 −0.002782833 −0.000536675 6.63504E−09 5.523833553 −0.837778227
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The correlation coefficient, multiple R, had a value of
0.99, indicating a strong positive linear relationship between
the dependent and independent variables. The coefficient of
determination, R2, was 0.98, suggesting that the model fit the
data well. The adjusted R2 value of 0.98 indicated that the
model adequately accounted for the number of independent
variables. The p-value in Table 5 was much smaller than
0.05 (8.39E−21< 0.05), indicating a significant difference

between themeans of the groups (Table 4). The linear regres-
sion analysis between AGB and vegetation parameters
derived from Sentinel-2 data (as shown in Table 3) revealed
that most vegetation parameters, including intercept, Red,
Green, and ln (NIR), displayed a significant and positive
correlation with AGB. Among these parameters, ln (NIR)
was identified as the most reliable vegetation index corre-
sponding to AGB.

TABLE 3: Regression statistic of model M10.

Regression statistics

Multiple R 0.992084064
R square 0.98423079
Adjusted R square 0.980945538
Standard error 0.01269012
Observations 30

TABLE 4: ANOVA of model M10.

ANOVA

df SS MS F Significance F

Regression 5 0.241229093 0.048246 299.5906448 8.39E−21
Residual 24 0.003864939 0.000161 — —

Total 29 0.245094032 — — —

TABLE 2: The rank of three criteria (RMSE, AIC, Adj, R2) for model selection.

Model RMSE value AIC value Adj. R2 value
Rank

Sum of rank Rank of models
RMSE AIC Adj. R2

M1 10.93 236.00 0.9806 10 9 6 25 9
M2 10.8 235.00 0.9811 8 8 3 19 6
M3 10.88 236.00 0.9808 9 9 5 23 8
M4 10.06 232.00 0.9836 7 7 2 16 4
M5 10.94 237.00 0.9806 11 11 6 28 10
M6 0.01323 −167.00 0.9793 4 3 11 18 5
M7 11.17 237.00 0.9798 12 11 9 32 11
M8 0.0132 −167.00 0.9794 3 3 10 16 4
M9 9.975 230.00 0.9839 6 6 1 13 3
M10 0.01269 −170.00 0.9809 1 1 4 6 1
M11 0.0129 −168.00 0.9803 2 2 8 12 2
M12 0.01389 −164.00 0.9772 5 5 12 22 7

TABLE 5: The coefficients, standard error, t-stat., and p-value of parameters used in model M10.

Coefficients Standard error t-Stat. p-Value

Intercept −32.07700659 10.06374604 −3.18738 0.00395975
Red −0.002782833 0.000750536 −3.7078 0.001098679
Green −0.000536675 0.000191057 −2.80897 0.009724258
Blue 6.63504E-09 5.01898E-08 0.132199 0.895928964
ln (NIR) 5.523833553 1.343279987 4.112198 0.00039668
ln (NDVI) −0.837778227 0.499289258 −1.67794 0.10633531
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Upon conducting a graphical examination of the residual
plots (Figure 10), model M10 was further analyzed. The anal-
ysis revealed that model M10 exhibited a well-distributed
pattern. The graphical analysis demonstrated that the major-
ity of residuals were clustered around zero, ranging from 0.03
to −0.03. This observation indicates that the equation was
highly suitable and accurately captured the data.

3.4. Validation of Regression Equations. For the purpose of
validating model M10, ten sample plots were selected in the

same study area using a systematic sampling method. An F-test
was employed to compare the variances between the observed
AGB and the AGB calculated from the best-fitted model. The
assumed hypothesis aimed to test the similarity between the
variances of the observed AGB and the calculated AGB, with
the null hypothesis (H0) stating that the variance ratio of the
observed AGB and the calculated AGB from the model was
equal to 1. On the other hand, the alternative hypothesis (H1)
posited that the variance ratio of the observed AGB and the
calculated AGB from the model was not equal to 1.
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FIGURE 10: Residual plot of Red (a), Green (b), Blue2 (c), ln (NIR) (d), and ln (NDVI) (e) of model M10.
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The results of the F-test comparing the two variances
between the observed AGB and the calculated AGB indicated
a p-value of 0.2822, which was greater than the significance
level of 0.05 at a 95% confidence level. Therefore, the null
hypothesis (H0) was accepted, while the alternative hypothe-
sis (H1) was rejected. This outcome suggested that there was
no significant variation between the observed AGB and the
calculated AGB, confirming the eligibility of model M10 for
further verification using a two-sample t-test. The t-test was
conducted at a 95% significance level to assess the signifi-
cance difference between the observed AGB and the calcu-
lated AGB from model M10. The assumed hypothesis for
this test was that the null hypothesis (H0) stated there was
no significant difference between the observed AGB and
the calculated AGB from the model, while the alternative
hypothesis (H1) proposed there was a significant difference
between the observed AGB and the calculated AGB from
the model.

The p-value obtained from the t-test was 0.3662, which
was greater than the significance level of 0.05 at a 95% confi-
dence level. As a result, the null hypothesis (H0) was accepted,
and the alternative hypothesis (H1) was rejected. This finding
indicates that the AGB estimated from field observations and
calculated from model M10 were similar, demonstrating the

success of model M10 in AGB estimation using the five inde-
pendent tree parameters. The correlation analysis between the
calculated and observed AGB of the ten sample plots revealed
a strong coefficient of determination, with an R2 value of 0.87.
This suggests that approximately 87% of the observed AGB
can be explained by the calculated AGB based on this model
(Figure 11).

4. Discussion

This study marks the first attempt to estimate the AGB of
teak species in the Sagarnath plantation area using Sentinel-2
imagery data. It represents a significant advancement in the
field of forest inventory through the application of remote
sensing techniques. The primary objective of this study was
to evaluate the usefulness of Sentinel-2 satellite imagery for
modeling, forecasting, and mapping AGB. Furthermore, it
aimed to explore the potential of utilizing open-source
remotely sensed data to support the implementation of the
UNFCCC’s REDD+ program in tropical regions. The study
employed a destructive sampling method, which is known to
be time-consuming and financially demanding when applied
to large-scale geographical areas. Similar modeling research
studies and biomass estimations have described this method
[27, 28]. It is expected that the biomass models derived from
these relatively few sampled individuals will sufficiently rep-
resent a wide range of sizes, locations, and stand condi-
tions [27, 29].

The findings demonstrate that the oven-dry wood den-
sity values ranged from 627 to 714 kgm−3, with an average of
669.5 kgm−3. Comparisons with previous research indicate
that teak wood density in a humid tropical site in Costa Rica
ranged from 450 to 650 kgm−3 [30], and in East Timor, the
mean oven-dry wood density was 607 kgm−3 [31]. Reports
from Costa Rica indicate teak wood density ranging from 500 to
650kgm−3 at 8 years and from 500 to 600kgm−3 at 4 years [32].
In Bolivia, the average density at 12% constant moisture ranged
from 640 to 730kgm−3 in natural teak forests and plantation
teak forests, respectively [33]. In Togo, teak plantations of differ-
ent ages showed densities of 647, 728, and 779kgm−3 for ages
11–16, 40−45, and 67–70 years, respectively [34]. During the
early stages of plantation development, wood density was found
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to be more correlated with tree age than with silvicultural man-
agement, site, or region [35]. The results indicate that long-
rotation teak exhibits higher wood density than short-rotation
teak, explaining the slight differences observed in wood density
values compared to other literature on teak plantations.

Regarding stem volume, the study revealed an average vol-
ume of 85.5m3ha−1, with a range of 72.6 to 114.8m3ha−1.
A study conducted in the dry zone of Sri Lanka reported a
volume of 127.8m3ha−1 for 29-year-old teak plantations [36].
Thapa and Gautam [37] found volumes of 84.2, 99.9, 125.0,
136.1, and 145m3ha−1 for teak stands at ages 7.5, 8.5, 9.5,
10.5, and 11.5 years, respectively, before thinning. The slightly
smaller volume estimate in this study can be attributed to differ-
ences in tree age and the formula used for volume calculations.

In terms of foliage dry biomass, previous studies reported
values ranging from 0.9kg (225kgha−1) to 38.1kg (952.5kgha−1)
for teak plantations in Costa Rica [32]. In this study, the foliage
dry biomass ranged from 1,381 to 2,360 kgha−1 at 36 years of
age, indicating slightly higher values compared to the earlier
report. Biomass estimations in teak plantations in the Dehradun
Forest Division, Uttarakhand, and a dry tropical region in India
were reported as 69.71 [38] and 77 t ha−1 [39] at 30 years of age,
respectively. Rinnamang et al. [40] found total AGB values of 84.

5. Conclusion and Recommendation

This study demonstrated amethodology for estimatingAGB in
teak forests by integrating Sentinel-2 imagery data and field
data. The results revealed that the average AGB in the teak
forest area was 814 kg per plot (81.4 t ha−1), with a range of
716 kg per plot (71.6 t ha−1) to 1,060 kg per plot (106 t ha−1).
Among the 12 models tested, model M10, which incorporated
independent variables such as the Red band, Green band, Blue
band, NIR, NDVI, and natural logarithm, yielded the most
significant model for AGB estimation in the 36-year-old teak
plantation forest of Nepal. Model M10 outperformed compare
to other models based on three criteria (Adj. R2= 0.9809,
RMSE= 0.01269, AIC=−170), ranking first. The equation of
the best-fittedmodel (M10) was ln (AGB)=A+B×Red+C×
Green+D×Blue2+E× ln (NIR)+F× ln (NDVI) for accurate
AGB estimation, with coefficient values of A=−32.07700659,
B=−0.002782833, C=−0.000536675, D= 6.63504E-09, E=
5.523833553, and F=−0.837778227. The parameters used in
model M10 are easily obtainable, making it user-friendly for
AGB estimation. This model offers a time and cost-effective
approach for mapping and monitoring teak forest biomass.
The estimated AGB also contributes to national reference sce-
narios for teak species biomass, carbon stock estimation,
sequestration, and the implementation of the REDD+ pro-
gram. The model is well-suited for use in the lowlands of Nepal
and similar eco-regions where teak species thrive. Various
opportunities, such as fulfilling demands for veneer, saw logs,
firewood, poles, and small timber, exist for promoting teak
plantations in the terai and inner terai of Nepal.

Based on the study’s findings, the following recommen-
dations are proposed: to assess the applicability of this model
in teak forests with similar stand structures in different phys-
iographical zones, to conduct further research investigating

the correlations between field inventory data and Sentinel-2
imagery data in teak plantation forests of various age groups
to enhance the utility of the model, and to explore additional
research avenues by modifying or expanding the indepen-
dent variables (bands and vegetation indices) in the model to
improve the precision of AGB estimation in forested areas.
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