Spectroscopy 12(1994) 31-34 IOS Press

A multinuclear NMR study of some cyclic phosphonic diamides

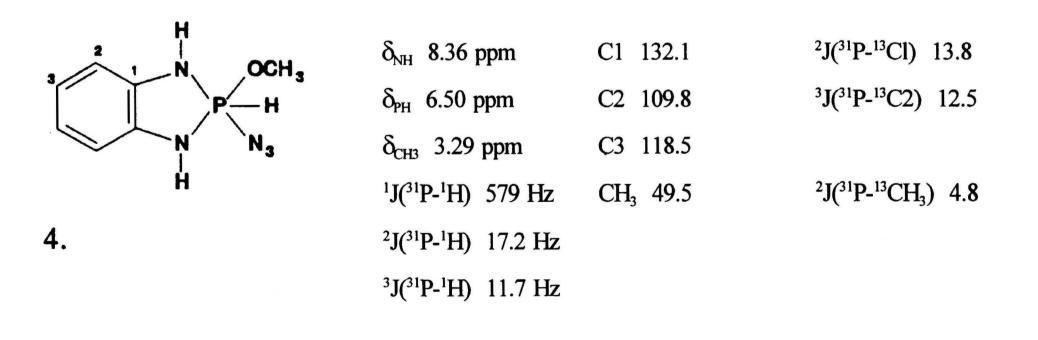
Wojciech Bocian¹, Lech Stefaniak^{*1} and Graham A. Webb² 1. Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland, 2. Department of Chemistry, University of Surrey, Guildford, Surrey GU2 5XH, UK

Abstract. ${}^{1}\text{H}, {}^{13}\text{C}, {}^{15}\text{N}$ and ${}^{31}\text{P}$ NMR data are presented for four cyclic phosphonic diamides. In terms of useful structural information it is found that the ${}^{31}\text{P}$ chemical shifts and ${}^{1}\text{J}({}^{31}\text{P}-{}^{15}\text{N})$ couplings are the most sensitive parameters to variations in molecular structure.

1. Introduction

Previously we have used multinuclear NMR techniques in a number of molecular structure investigations. For those molecules which contain nitrogen atoms it has invariably been the case that nitrogen NMR is the most sensitive structural tool for our studies [1]. We have also used ³¹P NMR in a study of tautomeric equilibrium in some iminophosphines [2]. As an extension of this earlier work we now propose to use ¹H, ¹³C, ¹⁵N and ³¹P NMR in a structural investigation of some cyclic phosphonic diamides. These compounds contain P-N bonds and it will be interesting to observe, whether the ¹⁵N or the ³¹P NMR data is the more sensitive to variations in molecular structure.

2. Result and discussion


The ¹H and ¹³C NMR data for the compounds studied are presented in Table 1. The ¹H signals were assigned on the basis of their multiplicity and relative intensities. Thus, the high frequency broad doublets were assigned to the NH groups, with the coupling constant ²J(³¹P-¹H) = 17-19 Hz. The doublet at 6.5 ppm in compound 4, with the big coupling constant ¹J(³¹P-¹H) = 579.4 Hz is assigned to the H atom of the PH group by comparison with literature data [3]. The ¹³C signals were assigned by analysis of the chemical shifts and ¹³C-¹H coupling constants obtained from the ¹³C NMR fully coupled spectra. The chemical shifts of the C1, C2 and C3 atoms are similar for all of the compounds studied and are similar for published compounds [4]. The doublets at 26.3 ppm and 28.1 ppm in compound 1 were assigned to the -C'H₂-C''H₂- exocyclic group. The signal at 26.3 ppm has a typical coupling value of ¹J (³¹P-¹³C) = 122.6 Hz and the signal in 28.1 ppm has the smaller coupling of ²J(³¹P-¹³C) = 3.6 Hz.

			-
 [a	n	Δ	
			_

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR data for some cyclic phosphonic diamides $^{(a)}$

	ΊΗ	δ ¹³ C (ppm)	J(³¹ P- ¹³ C) (Hz)
		C1 133.5	² J(³¹ P- ¹³ Cl) 8.0
1. Н сн 2сн 2со 2с 2 H ₅	δ _{NH} 8.16 ppm	C2 109.4	³ J(³¹ P- ¹³ C2) 10.3
	² J(³¹ P- ¹ H) 18.3 Hz	C3 118.8	
		C'H ₂ 26.3	¹ J(³¹ P- ¹³ C') 122.6
н		C"H ₂ 28.1	$^{2}J(^{31}P-^{13}C'')$ 3.6
P r er		C1 133.2	² J(³¹ P- ¹³ Cl) 8.9
	δ _{NH} 8.58 ppm	C2 109.4	³ J(³¹ P- ¹³ C2) 10.7
	² J(³¹ P- ¹ H) 18.8 Hz	C3 119.0	
2.		C1" 133.6	¹ J(³¹ P- ¹³ Cl') 164
		C2" 131.4	² J(³¹ P- ¹³ C2') 10.7
		C3" 128.4	³ J(³¹ P- ¹³ C3') 14.2
		C4" 131.9	⁴ J(³¹ P- ¹³ C4') 2.7
P	δ _{NH} 8.51 ppm	C1 132.3	² J(³¹ P- ¹³ Cl) 13.2
	δ _{CH3} 3.39 ppm	C2 109.6	³ J(³¹ P- ¹³ C2) 12.6
3. Ĥ	² J(³¹ P- ¹ H) 17.3 Hz	C3 119.4	

 $^{3}J(^{31}P-^{1}H)$ 12.9 Hz CH₃ 54.4 $^{2}J(^{31}P-^{13}CH_{3})$ 6.0

(a) All measurements were taken in DMSO solutions and the solvent peaks used as internal standards, the values are recalculated for TMS (0.0 ppm).

			-
a	n	P	1
			-

Compound	δ ¹⁵ N (ppm) ^b	¹ J(¹⁵ N- ¹ H) (Hz)	δ ³¹ P (ppm) °	¹ J(³¹ P- ¹⁵ N) (Hz)	
1	-299.5	90.6	37.2	9.8	
2	-296.2	91.1	25.3	13.5	
3	-298.3	91	15.3	29	
4	-307.6	85.3	4.4	31.6	

¹⁵N and ³¹P NMR data for some cyclic phosphonic diamides ^(a)

(a) All measurements were taken as solutions in DMSO d₆; (b) ¹⁵N NMR chemical shifts are reported with respect to neat nitromethane as an external standard; (c) ³¹P NMR chemical shifts are reported with respect to 85% H_3PO_4 as an external standard.

The low frequency peaks in compounds **3** and **4** are assigned to the exocyclic-OCH₃ groups. The ¹³C NMR data of the phenyl exocyclic group in compound **2** has very similar coupling values to those of triarylphosphine oxide [5]. Only one coupling constant ${}^{1}J({}^{31}P^{-13}CI) = 164.0$ Hz is higher when compared with the corresponding value for triarylphosphine oxide (104 Hz) [5]. The ¹⁵N and ³¹P NMR data are presented in Table 2. The ¹⁵N chemical shifts appear in the range typical for phosphonic amide [6], and the ¹J(${}^{15}N^{-1}H$) couplings are typical in value for amino groups. The ³¹P chemical shifts for the compounds **1-3** are characteristic values for phosphonic amides [6-7] and the ³¹P chemical shift for compound **4** has a nonstandard value for a pentavalent phosphorus atom as found for phosphonic amides [3]. Consequently we may conclude that for the purposes of structural investigation of the compounds studied the ³¹P NMR data chemical shifts and

 ${}^{1}J({}^{31}P-{}^{15}N)$ couplings are much more sensitive than the result produced by ${}^{1}H$, ${}^{13}C$ and ${}^{15}N$ NMR.

3. Experimental

The compounds were studied in DMSO-d₆ solution, with a typical concentration *ca.* 0.1-0.5 m. The solvent deuterium signal was used as the internal lock. The solvent peaks were used as a reference for the ¹H and ¹³C NMR data ($\delta_{H} = 2.49$ ppm; $\delta_{C} = 39.5$ ppm). Neat nitromethane was used as the external reference for the ¹⁵N measurements (δ_{N}) = 0.0 ppm), and 85% H₃PO₄ was used as the external reference for the ³¹P NMR spectra.

¹H NMR spectra were obtained on a Varian BB-200 spectrometer at 199.975 MHz. The ¹³C measurements were recorded on a Varian BB-200 spectrometer at 50.289 MHz, with a relaxation delay of 2s, an acquisition time of 1 s and a flip angle of 45°. The ³¹P measurement were recorded on a Varian BB-200 spectrometer at 80.950 MHz, with a relaxation delay of 2s, an acquisition time of 0.8s and a flip angle of 45°.

The ¹⁵N measurement were recorded on a Bruker AM 500 at 50.698 MHz using typical parameter values in the Inept program.

Substrates $P[N(CH_3)_2]_2OCH_3(A)$ and $P[N(CH_3)_2]_2C_6H_5(B)$ were synthesized by standard procedures [8,9]. Acetonitrile and CH_2Cl_2 were dried over P_2O_5 and distilled, triethylamine

was dried over KOH and distilled, benzene was distilled over Na, HN_3 was synthesized in benzene by a standard procedure [10]. 1,2-(NH_2)₂C₆H₄ (Aldrich) was recrystallized from toluene and CH₂=CHCO₂Et was distilled before use.

Reaction of $1,2-(NH)_2C_6H_4$ with $P[N(CH_3)_2]_2OCH_3(A)$. $1,2-(NH_2)_2C_6H_4$ (1.1g; 0.01m) and $P[N(CH_3)_2]_2OCH_3$ (1.5 g; 0.01 m) was heated under reflux at a reduced pressure for 6 h.

Reaction of $1,2-(NH_2)_2C_6H_4$ *with* $P[N(CH_3)_2]_2C_6H_5$ (**B**). $1,2-(NH_2)_2C_6H_4$) (1.1 g; 0.01 m) and $P[N(CH_3)_2]_2C_6H_5$ (2 g; 0.01 m) was heated under reflux at a reduced pressure for 24 h.

Reaction of A with $CH_2 = CHCO_2Et$ (1). Compound (A) (ca.) 0.01 m) was dissolved in a small amount of acetonitrile and $CH_2 = CHCO_2Et$ (0.02 m) was added. After 7 days the precipitate was filtered and recrystallized from acetonitrile.

Oxidation of B (2). Compound (B) (ca. 0.01m) was dissolved in a small amount of acetonitrile. The mixture was stirred under dry O_2 for 48 h. The precipitate was filtered and recrystallized from benzene.

Oxidation of A (3). Compound (B) (ca. 0.01m) was dissolved in a small amount of acetonitrile. The mixture was stirred under dry O_2 for 24 h. The solvent was evaporated in vacuo. The oil was dissolved in a small amount of CH_2Cl_2 and the compound was separated on a column (silica gel, CH_2Cl_2).

*Reaction of A with HN*₃ (4). Compound (A) (*ca.* 0.01m) was dissolved in benzene and HN₃ in benzene (0.04m) was added. The mixture was stirred for 7 days. The precipitate was filtered, dissolved in benzene and triethylamine (0.02 m) added. The solution was filtered and the solvent was evaporated *in vacuo*. The residue was dissolved in a small amount of CH_2Cl_2 and the compound was separated on a column (silica gel, CH_2Cl_2).

4. Acknowledgements

This work was partially supported by the State committee for Scientific Research (Grant No. 2 0893 91 01).

5. References

- [1] M. Witanowski, L. Stefaniak, and G. A. Webb, *Annual Reports on NMR Spectroscopy*, Ed. G. A. Webb, Academic Press, London, Vol. **25** (1993) 61.
- [2] W. Domalewski, W. Schilf, L. Stefaniak, and G. A. Webb, Bull. Pol. Aca. Sci. 39 (1991) 295.
- [3] C. Malavaud, T. N'Gando M'Pondo, L. Lopez, and J. Barrans, Can. J. Chem. 62 (1984) 43.
- [4] R. Neidlein and S. Buseck, Helv. Chim. Acta 75 (1992) 2520.
- [5] W. Chou and M. Pomerantz, J. Org. Chem. 56 (1991) 2762.
- [6] O. S. Diallo, L. Lopez, and J. Barrans, Tetrahedron Letters 4 (1991) 501.
- [7] J. M. Barent, E. G. Bent, R. C. Halwinger, and A. D. Norman, Inorg. Chem. 28 (1989) 2334.
- [8] C. Stube, H. P. Lankelma, J. Am. Chem. Soc. 78 (1956) 976.
- [9] B. Prager and P. Jacobson, Beilsteins Handvuch der Organischen Chemie, Acyclische Reihe, herausgegeben vov der Deutschen Chemiscehn Gellschaft, Band IV (1922) 130.
- [10] J. B. Braun, Ann. 490 (1931) 12.

International Journal of Medicinal Chemistry

Organic Chemistry International

International Journal of Analytical Chemistry

Advances in Physical Chemistry

Research International

Catalysts

