Spectroscopy 12(1994) 21-23 IOS Press

Characteristic coupling constants ¹J_(13C-13C) of some mesoionic methylides containing a diphenyltetrazolium ring

Jaroslaw Jazwinski¹, Wiktor Kozminski¹, Lech Stefaniak¹ and Graham A. Webb² 1. Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland, 2. Department of Chemistry, University of Surrey, Guilford, Surrey GU2 5XH, UK

Abstract. ${}^{1}J_{(13C-13C)}$ data are presented for some Types A and B tetrazolium methylides. The results show a large amount of double bond character for the C₅-C₆ bond which is significantly reduced upon protonation. A similar decrease in bond order is noted for the C₆-C₈ bond following protonation.

1. Introduction

Mesoionic heterocycles are compounds with interesting structural properties [1,2]. Previously the mesoionic Type [3] and Type B [4,5] tetrazoles were investigated by ¹³C, ¹⁴N and ¹⁵N Nuclear Magnetic Resonance (NMR) techniques. Now, the ¹J_(13C-13C) coupling constant measurement is used as a means of investigation for the C₅-C₆ bond of some mesoionic tetrazolium methylides **1-4**. (Figure 1).

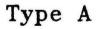


Figure 1. Type A and Type B mesoionic tetrazoliummethylides.

Table 1

Some ¹J_(13C-13C) couplings (Hz) for some mesoionic Types A and B tetrazolium methylides^a

Compound	¹ J _(C5-C6)	¹ J _(C6-C7)	¹ J _(C6-C8)
1 Ph N_{3+} N_{2} N_{2} N_{3+} CN CN Ph	98.9	98.6	98.6
2 Ph N+ N CN N COQEt Ph	90.9	91.3	93.7
3 PhN N_{*} CN PhN N_{*} N_{*} CN	96.1	98.5	98.5
4 PhN N CN PhN N COOEt	92.5	b	b
5 PhN H CN H $COOEt$ $CF_3 COO^{-1}$	59.6	b	65.8

a The data taken on solution in DMSO-d₆ with the exception of compound 4 where trifluoroacetic acid (TFA) also was used (compound 5). b Not all ${}^{1}J_{(13C-13C)}$ couplings were determined due to a long relaxation time for the quaternary carbon atoms.

2. Results and discussion

The ${}^{1}J_{(13C-13C)}$ coupling constants of the exocyclic groups for some A and B Types of mesoionic tetrazoles are presented in Table 1.

In contrast to the mesoionic 3-phenyl-1-thia-2,3,4-triazolium-5-methylides [6], both CN groups seems to be equivalent for the mesoionic tetrazole 1 [7]. Thus, just one ${}^{1}J_{13C-13C}$ coupling constant is observed for the C₆-C₇ and C₆-C₈ bonds (98.9 Hz); similar values of ${}^{1}J_{C5-C6}$ are observed for all of the compounds given in Table 1. Thus, showing that the Type A compounds 1 and 2 and Type B compounds 3 and 4 mesoionic compounds, respectively, have the same character for the C₅-C₆ bonds. Unfortunately, not all ${}^{1}J_{13C-13C}$ couplings were determined for these compounds, despite using a long measurement time, probably due to a long relaxation time for the quaternary carbon atoms.

As was demonstrated previously [7] the compound 4 is protonated in CF_3COOH solution. The proton is located on the C_6 atom. It was expected that the C_5 - C_6 bond in the protonated compounds is closer to being a single bond rather than a double bond. Indeed, the value of the coupling constant decreases to 59.6 Hz in CF₃COOH solution thus strongly supporting the view of a decrease in the C_5 - C_6 bond order in this compound [8]. A similar change is noted for the C_6 - C_7 upon protonation.

3. Experimental

The compounds were obtained according to published procedures [9, 10]. All NMR measurements were made on the Bruker AM 500 spectrometer. About 0.5 M solutions of the compounds in DMSO-d₆ was used as the lock. About 1% of the molar ratio of $Cr(acac)_3$ was used to decrease the relaxation delay (with the exception of CF_3COOH solution).

The standard INADEQUATE technique was applied, with a relaxation delay of 1-1.5 s and an acquisition time of ca. 1.2 seconds. Typically, the total experimental time was 12-24 hrs, 20000-40000 scans were acquired. A spectral resolution of 0.35 Hz/Pt was used. Generally, it was necessary to use a long experimental time, because of the long relaxation time of the quaternary carbon atoms.

4. Acknowledgements

This work was partially supported by the State Committee for Scientific Research (Grant No. 2 0893 91 01).

5. References

[1] C. A. Ramsden, in Comprehensive Organic Chemistry, Pergamon Press, London, 4 (1979) 1172.

- [2] G. Newton and C. A. Ramsden, Tetrahedron 38 (1982) 2965.
- W. Bocian, J. Jazwinski, W. Kozminski, L. Stefaniak, and G. A. Webb, Magn. Reson. Chem. in press. [3]
- [4] W. Kozminski, J. Jazwinski, L. Stefaniak, Magn. Reson. Chem. 28 (1990) 1027.
- [5] W. Kozminski, J. Jazwinski, and L. Stefaniak, Magn. Reson. Chem. 31 (1993) 200.
- [6] J. Jazwinski and L. Stefaniak, Magn. Reson. Chem. 31 (1993) 447.
- [7] W. Kozminski, J. Jazwinski, and L. Stefaniak, J. Mol. Structure 296 (1993) 15.
- [8] K. Kamienska-Trela, in Isotopes in the Physical and Biomedical Sciences, Elsevier, Amsterdam, Vol. 2, 297.
- [9] S. Araki and Y. Butsugan, Chem. Lett. (1985) 1639.
- [10] S. Araki, J. Mizuya, and Y. Butsugan, J. Chem. Soc. Perkin Trans. 1 (1985) 2439.

International Journal of Medicinal Chemistry

Organic Chemistry International

International Journal of Analytical Chemistry

Advances in Physical Chemistry

Research International

Catalysts

