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Abstract. Lack of reliable methods for accurate estimation of protein secondary structure from infrared spectra of proteins
is a major barrier in its widespread use in protein secondary structure characterisation. Here we report a method for protein
secondary structure estimation, from FTIR spectra of proteins, based on a multi-layer feed-forward neural network approach
using an enhanced “resilient backpropagation” learning algorithm. The method utilises a database consisting of infrared spectra
of 18 proteins, with known X-ray structure, as the reference set. Our study revealed that providing the neural network analysis
with only part of the amide I region from empirically determined structure sensitive regions in combination with appropriate
pre-processing of the spectral data produced the best overall results. This lead to a standard error of prediction (SEP) of 4.47%
for α-helix, an SEP of 6.16% forβ-sheet, and an SEP of 4.61% for turns. Compared to a previous factor analysis study by Lee
et al., using the same set of 18 FTIR spectra of proteins, the error in prediction ofα-helix andβ-sheet was improved by 3.33%
and 3.54% respectively, with minor increase for turns by 0.31%. Generally, our neural network analysis achieved comparable, in
most cases even better prediction accuracy than most of the alternative pattern recognition based methods that were previously
reported indicating the significant potential of this approach.

Keywords: Protein secondary structure prediction, FTIR spectroscopy, neural networks, resilient backpropagation, boxcar
averaging

1. Introduction

Fourier transform infrared (FTIR) spectroscopy has been demonstrated to be a very useful technique
for rapid characterisation of protein secondary structure [1–6]. In matter of minutes, measurements on
small quantities of proteins can be carried out in solution, or in other environments. However, for reliable
predictions to be made from FTIR spectra of proteins, further improvements in the analysis and inter-
pretation of FTIR data is necessary. This includes development and improvement of methods that can be
used for accurately quantifying protein secondary structure. Development of such methods is particularly
important and timely since the sequencing of the human genome has just been completed, and the focus
is now on protein structure–function relationships. The work done in quantitative estimation of protein
secondary structure based on FTIR spectra along with its potentials and pitfalls has been thoroughly
reviewed [7–12]. To date, the existing methods to estimate the fractions of protein secondary structural
conformations from FTIR spectral data fall into two main categories: Those based on band narrowing
and decomposition of mainly the amide I band shape into its underlying components often referred to as
frequency-based or curve fitting approaches and those based on the principle of pattern recognition.
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Fig. 1. An overview of the techniques used in the present study. The main aim was to introduce methods to reduce the weight
connections in the neural networks to facilitate generalisation and hence prediction accuracy.

Curve fitting is probably the most commonly applied method for protein secondary structure quan-
tification based on FTIR spectral data [1,3,10,13–26]. Alternative methods for quantitative analysis of
protein secondary structure have been introduced that require fewer assumptions and remove much of the
subjectivity inherent in the curve fitting method. These methods can be generally referred to as “pattern
recognition based” approaches [27–38] where multivariate data analysis techniques are by far the most
widely applied techniques of this category.

All of the currently used methods for protein secondary structure prediction from FTIR spectra have
varying degrees of advantages and disadvantages and neither curve fitting methods nor pattern recogni-
tion based methods are free of problems and further improvements in this field are necessary to achieve
increased quality of prediction accuracy [8,39].

More recently, neural network approaches have been explored to allow predictions about protein sec-
ondary structure conformations. However, they have been most widely used for secondary structure
prediction from amino acid sequences [40–43] as well as from CD spectral data [38,44,45]. Keiderling,
Pancoska and co-workers have used neural network analysis for obtaining protein structural informa-
tion from infrared spectra of proteins [36–38]. More recently, one of us has reported a different neural
network based approach for predicting protein secondary structure from FTIR spectra [27].
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A schematic overview of the techniques involved in our neural network analysis is shown in Fig. 1.
Neural networks are also often referred to as “classifier of inputs” or “black box approaches” since they
can learn to map certain input values to certain output values. Here, a neural network is trained to learn
a mapping from FTIR spectral data of proteins to their secondary structure fractions. The present study
is based on the same reference set of 18 FTIR spectra as in a previous factor analysis study by Lee et
al. [35]. This allows direct comparison of the results achieved. Finally, representative work done in the
field of protein secondary structure prediction based on FTIR spectra and that achieved by our neural
network approach is compared.

2. Materials and methods

2.1. The spectral data set

We have used the same set of protein infrared spectra as in Lee et al.’s paper [35] where details
regarding sample preparation and FTIR measurements can be found: alcohol dehydrogenase (equine
liver), trypsin inhibitor (bovine pancreas), carbonic anhydrase (bovine erythrocyte), concanavalin A
(Jack Bean), chymotrypsinogen A (bovine pancreas), chymotrypsin (bovine pancreas), cytochromec
(equine heart), elastase (porcine pancreas), hemoglobin (bovine erythrocyte), insulin (porcine pancreas),
lysozyme (chicken egg white), myoglobin (sperm whale skeletal muscle), nuclease (Staphylococcus
aureus), prealbumin (human plasma), papain (Papaya latex), alkaline serine protease B (Streptomyces
griseus), ribonuclease A (bovine pancreas), and ribonuclease S (bovine pancreas). We have taken the
same protein structure quantities based on the work from X-ray crystallography studies by Levitt and
Greer [46]. Table 1 shows a simple statistical characterisation of the distribution for each of these sec-
ondary structure conformations across these 18 proteins.

2.2. The software tools used

The present study makes use of the Stuttgart Neural Network Simulator (SNNS), Version 4.2, which is
a complex simulator for neural networks developed since 1989 at the Institute for Parallel and Distributed
High Performance Systems (“Institut für Parallele und Verteilte Höchstleistungsrechner”, IPVR) at the
University of Stuttgart, Germany.

2.3. The “leave-one-out” method

Given the limited number of 18 FTIR spectra from proteins in H2O used in our study, the “leave-one-
out” method was employed for validation where each protein, in turn, is eliminated from the analysis

Table 1

Distribution of the secondary structural conformations as determined from
X-ray crystallography studies by Levitt and Greer [46] for the18 proteins
used (in % structure)

Secondary structure α-helix β-sheet Turns
Minimum 3 0 7
Maximum 88 65 28
Mean 31 37 19
Standard deviation 26 20 6
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and a training set generated from the remainder is used to predict its secondary structure [47]. This
method has also been used by Lee et al. [35] and others in the area of FTIR protein secondary structure
prediction [30–33,48].

2.4. Resilient backpropagation: A locally adaptive neural network learning scheme

Since the introduction of the backpropagation algorithm [49] there have been several suggestions to
improve weight training in feed-forward neural networks based on the concept of supervised learning in
multi-layer perceptrons using the technique of gradient-descent.

The present study employs an enhanced resilient backpropagation learning algorithm where a weight
decay parameter has been added to the error function for improved prediction accuracy [50]. Resilient
backpropagation makes use of a local adaptation strategy to improve the conventional backpropagation
learning technique where a harmful influence of the size of the partial derivative on the weight step can
be observed. In order to eliminate this potential problem, in resilient backpropagation only the sign of
the derivative is considered to indicate the direction of the weight update. The exact mathematical for-
mulation of the resilient backpropagation learning algorithm employed is given elsewhere [50]. In all our
experiments, the resilient backpropagation learning algorithm is configured with the following parameter
settings: The increase and decrease factors are set to fixed values of 1.2 and 0.5, respectively [51]. The
weight decay exponent is set to 4.0.

The danger of possible overfitting during neural network training was considerably diminished by
using the resilient backpropagation learning algorithm. Therefore, a stop criterion could be safely defined
merely on the basis of a predefined number of epochs and a predefined minimum limit for the sum of
squared errors (SSE) of the training patterns. In our studies, neural network training is stopped when
either the number of epochs exceeds 2000 or the SSE falls below 0.07. A relatively high SSE of 0.07 has
been chosen as stop criterion to facilitate generalisation.

2.5. The characteristics of the neural network

We used multi-layer feed-forward neural network topologies, which are trained with the resilient back-
propagation learning algorithm described above. We investigated using the entire spectral data of the
amide I/amide II regions for neural network training where the number of input units of the neural net-
work corresponds directly to the data points of the respective amide region(s). In this case, the absorbance
values for each wavenumber were used as inputs to the neural network. In subsequent experiments, data
compression was applied in order to reduce the number of inputs to the neural network (see Section 2.7).

Each of the three outputs of the network corresponds to the fraction ofα-helix, β-sheet, and turns
respectively. A sigmoidal activation function is used. Hence, the output values fall in the region between
0.0 and 1.0, where 0.10 for example means a fraction of secondary structure of 10 percent.

In order to keep the number of connection weights as low as possible while still maintaining the neural
network’s ability to approximate secondary structural fractions from the shapes of the spectral data, a
neural network topology with one hidden layer containing two hidden units is used.

2.6. Data pre-processing

Before presenting the spectral data to the neural network, it is important to pre-process it in a way
suited to the problem at hand in order to facilitate neural network training. Normalisation of the spectral
region under investigation is commonly used in protein secondary structure prediction techniques based
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on FTIR spectra [27,29,30,33–35]. In our studies we decided to employ range scaling normalisation.
Range scaling transforms the spectral data to fall between 0 and 1. Using range scaling on a data set
which contains outliers or an uneven spread of values results in a large proportion of the data values
being squashed into a small part of the input range, leaving most of the rest unused. Being aware of this
problem, the data set was tested for the presence of outliers. Since our data set contains no outliers, range
scaling could be safely applied.

2.7. Input data reduction

One important factor for good prediction accuracy in neural networks is the number of inputs and hence
the number of weight connections. The neural network should have a considerably low number of inputs
to facilitate generalisation [52]. In the current study this was achieved by employing a simple but efficient
input data reduction technique, namely, the boxcar averaging method. Recently, improved predictions
were reported using boxcar averaging applied to the optimisation of functional group predictions from
infrared spectra using neural networks [53]. The boxcar averaging method takes a predefined number of
data points at a time and replaces them by their average. The main aim of employing the boxcar averaging
technique is to reduce the number of input data points while preserving the overall features of the FTIR
spectra. Boxcar averaging has the additional effect to smooth possible noise present in the spectral data.

Apart from a variation in the number of input units, the same neural network settings as described
above were used. The spectral data of the 18 protein FTIR spectra was processed in the following way:
The absorbance values of the spectral region under investigation were compressed using the boxcar
averaging method. Subsequently, the resulting data was normalised using range scaling normalisation as
described above. The number of data points averaged at a time was varied from 2 to 10. However, only
the number of data points averaged at a time achieving the best results are reported.

3. Results and discussion

By far the most widely used spectral region for protein secondary structure quantification from FTIR
spectral data is the amide I band although the amide II and amide III bands are also used [1–3,5,13,23,
30,31,35,54]. Our analysis presented here concentrates primarily on the amide I region and to a lesser
extent on the amide II region. Figure 1 gives an overview of the main steps involved in our neural network
analysis.

3.1. Prediction using the amide I region alone

Initially, we focused on providing our neural network analysis with data from the amide I region only
(1700–1600 cm−1). Different pre-processing techniques were applied to facilitate better neural network
training and hence prediction accuracy (see Table 2).

3.1.1. Effect of amide I band normalisation on prediction accuracy
When using infrared spectral data for neural network training, possible variation in path length and

absorbance amongst the protein spectra recorded should be taken into account. Therefore, some form of
normalisation needs to be applied to the raw spectral data prior to analysis. Lee et al. set the area under
the amide I band and the ordinate at 1700 cm−1 to constant values by appropriate multiplication and
offsetting of the spectral data [35].
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Table 2

Standard error of prediction (in % structure) using the original data of the amide I band, range scaling, and boxcar averaging.
BOXCAR_5 means that every 5 data input points were replaced by their average. The number of inputs presented to the neural
network for each FTIR spectrum as well as the resulting number of weight connections of the neural network are also given

Method used No. of input units No. of weight connections α-helix β-sheet Turns Average
Factor analysis [35] N/A N/A 7.8 9.7 4.3 7.27

Orig. data 101 208 14.86 12.28 5.22 10.79
Range scaling 101 208 7.85 9.15 4.68 7.23
BOXCAR_5 21 48 6.78 8.67 4.34 6.59

Table 2 shows the SEPs for the factor analysis approach presented by Lee et al. [35] and the SEPs of our
neural network approach using the spectral data of the amide I region with and without the application
of range scaling. The results clearly demonstrate that the application of range scaling normalisation to
the spectral data of the amide I region prior to training does have an advantageous effect on the resulting
prediction accuracy. The average of the SEPs was already improved compared to Lee et al.’s factor
analysis approach [35].

Prior to this study, we have explored various normalisation methods which have been thoroughly
investigated by Klawun and Wilkins [53] who were looking at the optimisation of functional group
predictions from infrared spectra using neural networks. However, we chose to employ range scaling
normalisation mainly because it transforms the spectral data (absorbances) to fall in the region between
0 and 1. This is particularly important for our neural network analysis where some input units cover the
range of relatively high values and others cover the range of relatively low values. Clearly, errors due to
higher value inputs would have a greater effect during neural network training than those errors due to
lower value inputs as their magnitude would be greater. Ensuring that every input unit covers the same
range also ensures that errors on each input unit contribute the same proportion to the change in network
weights. Since range scaling preserves the relative positions of each data point along the range, constant
molar absorptivities for each type of structure need not be assumed. Additionally, the overall bandshapes
of the FTIR spectra are preserved. The relatively poor prediction accuracy using the original data for
neural network training underlines the need for the application of a normalisation method.

3.1.2. Effect of spectral data reduction on prediction accuracy
Various techniques to compress infrared spectral data prior to neural network analysis have been ex-

plored recently [53]. The main aim of these techniques is to improve prediction accuracy and facilitate
faster neural network training. In the present study, boxcar averaging proved to be the most suitable tech-
nique for our study. Table 2 shows that the best results were achieved by replacing every 5 data inputs of
the amide I region by their average (BOXCAR_5). Hence, with only 21 data points per FTIR spectrum
the lowest average of SEPs (6.59%) was achieved, a better result than that obtained by using the entire
spectral data of the amide I region with range scaling alone. It was observed that reducing the amide I
region (1700–1600 cm−1) from 101 absorbance values down to only 11 data points per FTIR spectrum
using the boxcar averaging technique produced a lower average of SEPs than Lee et al.’s factor analysis
approach [35]. The results of subsequent experiments (see Tables 2–4) suggest that the optimal number
of data input points to be replaced, by their average, may vary depending on the spectral region under
investigation. However, in our study, averaging a number around three data points has shown to be most
appropriate. Clearly, further investigation on possibly larger protein FTIR spectral reference sets would
be helpful to determine the most appropriate parameter for the boxcar averaging procedure.
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Generally, the boxcar averaging method proved to be very useful for significantly reducing the amount
of input data while still maintaining its important spectral features for the neural network to make good
predictions about the secondary structure of FTIR spectra from unknown proteins. Due to the resulting
reduction of weight connections, the neural network is more likely to be forced to generalise despite
possible loss of information contained in the input data while still maintaining good performance on the
training set. There is a huge variation in the literature suggesting the optimal number of inputs to the
neural network and hence the number of weight connections to achieve good generalisation [52,55,56].
Lange and Männer claim that a critical training set sizeN exists:

N ≈ 3
8
w, (1)

wherew = number of connection weights, with overfitting and bad generalisation belowN and no over-
fitting and good generalisation aboveN . In our case, for a neural network with 101 input units, 2 hidden
units, and 3 output units, the critical training set size would be 78. Since the training set size in the
present study using the “leave-one-out” method is limited to 17, a number of weight connections less
or equal to 45 would fulfil the criterion in Eq. (1) for good generalisation. This criterion was met for
BOXCAR_6 to BOXCAR_10. In our case, even a number of weight connections above 45 resulted in
good generalisation. The results in Table 2 show that the boxcar averaging method is highly appropriate
to significantly reduce the number of data points of the protein FTIR spectra while still maintaining the
overall “features” required to make reasonable predictions about their secondary structure. Particularly
with regards to other pattern recognition based approaches, further studies would be helpful to investi-
gate if the application of the boxcar averaging technique will generally lead to an improved prediction
accuracy. Since in our neural network analysis the boxcar averaging method did have a beneficial effect
on neural network training in terms of generalisation, it is also used in the following.

3.2. Prediction using the amide II region alone

Here, we looked at providing our neural network analysis with the amide II region alone (1600–
1500 cm−1) to see how prediction accuracy compares to that achieved by using the amide I region.
Table 3 shows the best results achieved by replacing every ten absorbance values by their average as well
as the results obtained without boxcar averaging applied. The results clearly indicate, that our neural
network approach is in agreement with the empirical findings, that the amide I region is more useful for
secondary structure prediction from FTIR spectra than the amide II region. The best average of SEPs

Table 3

Standard error of prediction (in % structure) using the boxcar averaging method based on the amide II region alone as well as
those based on the combined amide I and amide II regions. BOXCAR_N means that every N data input points were replaced
by their average. The number of inputs presented to the neural network for each FTIR spectrum as well as the resulting number
of weight connections of the neural network are also given

Method used No. of input units No. of weight connectionsα-helix β-sheet Turns Average
Amide II
Orig. data 101 208 16.7 15.88 5.26 12.61
BOXCAR_10 11 28 17.18 13.88 5.68 12.25

Amide I and II combined
Orig. data 201 408 9.64 10.38 4.05 8.02
BOXCAR_3 67 140 8.92 9.34 4.78 7.68
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that was reached using the amide II region is 12.25% which is almost twice as high as the SEP achieved
using the amide I region (6.59%). We can therefore confirm, that the amide II region does in fact contain
less features relating to secondary structure that can be picked up by our neural network than the amide
I region.

3.3. Prediction using the amide I and amide II regions together

Table 3 shows the results when both the amide I and amide II region (1700–1500 cm−1) are used
for neural network analysis. The results achieved when replacing every three absorbance values by their
average as well as the results obtained without boxcar averaging are shown in Table 3. Although the best
average of SEPs of 7.68% is significantly better than the average of SEPs that was achieved using the
amide II region alone, it is still not better than the results obtained by merely using the amide I region.
Using our neural network approach, we could therefore not confirm the observation made by others using
multivariate data analysis techniques, where combination of the amide I and amide II bands did increase
the accuracy of secondary structure prediction [24,29,32,34]. Other than the methodological difference,
a possible explanation for this discrepancy may be that different sets of protein infrared spectra have
been used. Different proteins will have different secondary and primary structures and this will influence
the prediction quality of different algorithms.

3.4. Prediction utilising empirical knowledge about the amide I region

Empirical studies have identified certain frequencies within the amide I band, which are particularly
sensitive to secondary structural conformation [1–6]. We have directed our focus on structure sensitive
regions only within the amide I band because this region has been explored more thoroughly.

Table 4 shows the best results obtained using structure sensitive regions within the amide I band,
namely the intervals 1625–1635 cm−1, 1649–1659 cm−1, and 1675–1685 cm−1 in combination with the
boxcar averaging method replacing every 3 data points by their average. An SEP of 4.47% forα-helix,
an SEP of 6.16% forβ-sheet, and an SEP of 4.61% for turns was achieved. The resulting average of
SEPs is 5.08%.

The majority of proteins in H2O of known structure have been found to display infrared absorption
in the range from 1650 to 1658 cm−1 for α-helical conformation, from 1620 to 1640 cm−1 for β-sheet
structure. For turns, the spectral region is less well determined. However, absorption around 1680 cm−1

can be assigned to turns [1–6,57].

Table 4

Standard error of prediction (in % structure) using the boxcar averaging method based on empirically determined structure
sensitive regions (1625–1635 cm−1, 1649–1659 cm−1, 1675–1685 cm−1) and insensitive regions (1600–1609 cm−1, 1696–
1700 cm−1). BOXCAR_N means that every N data input points were replaced by their average. The number of input data units
presented to the neural network for each FTIR spectrum as well as the resulting number of weight connections of the neural
network are also given

Method used No. of input units No. of weight connectionsα-helix β-sheet Turns Average
Structure sensitive regions
Orig. data 33 72 5.46 7.37 4.62 5.82
BOXCAR_3 11 28 4.47 6.16 4.61 5.08

Structure insensitive regions
Orig. data 15 36 33.92 25.04 6.87 21.94
BOXCAR_3 5 16 29.07 21.94 6.07 19.03
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In this “specific amide I frequency based analysis”, we were interested in whether knowledge about
structure sensitive spectral regions leads to further improvement of protein secondary structure predic-
tion accuracy. Thus, based on these empirical findings, we determined one characteristic wavenumber
for each secondary structural conformation under investigation. For theα-helix andβ-sheet structures,
we took the central band frequencies of the given wavenumber ranges resulting in 1654 cm−1 and
1630 cm−1, respectively. For turns, we took the wavenumber 1680 cm−1. Subsequently, we performed
a series of “leave-one-out” runs with varying interval sizes around the three determined characteristic
wavenumber positions. Intervals ranging from±1 wavenumbers up to±10 wavenumbers around the
three determined characteristic wavenumber positions were extracted from the original FTIR spectra.
These regions were subsequently used for neural network analysis both with and without boxcar averag-
ing applied prior to analysis. Best results were obtained by using an interval of±5 data points around the
three characteristic wavenumbers as determined above (Table 4). Clearly, further investigations based on
FTIR spectra from a larger number of proteins would be necessary to determine the optimal positions and
widths of structure sensitive regions within the amide I band. However, based on the 18 protein FTIR
spectra, the current study successfully demonstrates the power of incorporating empirical knowledge
about structure sensitive regions of protein infrared spectra for quantifying their secondary structure.
By utilising empirical knowledge on structure sensitive regions in combination with the boxcar aver-
aging data compression technique, significantly fewer data points (i.e., only 11 data points per infrared
spectrum) had to be provided for our neural network analysis even leading to an improved prediction
accuracy. As a result, neural network training is considerably faster which will become increasingly
important with a growing number of infrared spectra in the reference set.

Table 5 shows the prediction accuracy, i.e., the average of absolute differences (in % structure) be-
tween target output as determined by X-ray crystallography and predicted output over the secondary
structure classes of interest for each protein in the reference set. Based on the same set of protein spec-
tra, prediction accuracy is shown for Lee et al.’s factor analysis method [35], Severcan et al.’s neural
network method [27] and our current neural network method. In our study, best prediction was ob-
served for ribonuclease A (1.29%) with poorest prediction for lysozyme (8.68%). Severcan et al.’s neural
network approach is in good agreement with our results where the best prediction was observed for
both ribonuclease A and papain (2%) with poorest prediction for lysozyme (11%). However, for Lee et
al.’s factor analysis approach [35], best prediction was achieved for alcohol dehydrogenase (1%) with
poorest prediction for trypsin inhibitor (14%). This discrepancy may reflect the difference between the
relatively similar neural network approaches and the more mathematical factor analysis approach. Inter-
estingly, good correlation of prediction accuracy between our study and Severcan et al.’s study can be
observed (0.8) whereas prediction accuracy between our study and Lee et al.’s study shows very weak
correlation (0.21).

Another interesting observation could be made. One would expect good predictions to be made about
the real protein secondary structure contents for a new protein, if it is similar to the overall secondary
structure composition (i.e., the average of known secondary structure contents) of proteins in the refer-
ence set. However, in all of the latter studies, no correlation between the prediction accuracy for each
protein left out and its deviation of average secondary structure contents from the mean for all proteins
of the reference set (see Table 1) was observed. The calculated correlation coefficients were 0.34, 0.09,
and−0.14 for Lee et al.’s study, Severcan et al.’s study, and our study, respectively. E.g., very good
predictions were made for chymotrypsin (see Table 5). However, relatively high absolute differences of
secondary structure contents (in % structure) of 19.78, 12.89, and 5.89 forα-helix, β-sheet, and turns
respectively, were observed from the average of secondary structure contents of all proteins (see Table 1).
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Table 5

Averages of absolute differences (in % structure) between known X-ray data and predictions made for secondary
structures are listed for each protein left out. Results are shown from Lee et al.’s factor analysis study [35],
Severcan et al.’s neural network study [27] and our specific amide I frequency based analysis

Protein Average of absolute differencesc

(% structure)
Lee et al. Severcan et al. Our study

Alcohol dehydrogenase 1 3.33 2
Trypsin inhibitor 14 9 5.01
Carbonic anhydrase 7 7 7.28
Concanavalin A 8 4.33 1.87
Chymotrypsinogen A 4.33 4.33 3.41
Chymotrypsin 1.67 2.67 2.2
Cytochrome c 5 7 6.43
Elastase 4.33 5.67 5.49
Hemoglobin 10 7 3.46
Insulin 5 6.33 4.42
Lysozyme 8 11 8.68
Myoglobin 6.67 3.67 2.36
Nuclease 2.67 5.33 3.99
Prealbumin 10.67 4 2.93
Papain 4.67 2 4.21
Alkaline serine protease B 5.33 5.33 5.74
Ribonuclease A 4 2 1.29
Ribonuclease S 5 6.67 6

Standard deviation 3.26 2.38 2.05

Correlation coefficients 0.21a 0.8b

aCorrelation between Lee et al.’s predictions and those from our study.
bCorrelation between Severcan et al.’s predictions and those from our study.
c Only the average of absolute differences over the structural properties of interest is shown.

Table 5 also shows the standard deviation of average absolute differences between target and predicted
outputs over all proteins in the reference set. The relatively low standard deviation of our method (2.05)
suggests better reliability of prediction compared to Lee et al.’s factor analysis approach (3.26).

To further confirm the findings of the empirical studies on structure sensitive regions within the amide
I band, we subsequently used data points, which are not recognised as being particularly sensitive to
protein secondary structure, i.e., the regions 1600–1609 cm−1 and 1696–1700 cm−1 [8]. As expected,
the resulting SEPs were significantly higher than those in previous experiments. The best average of SEPs
achieved was 19.03% with very poor SEPs forα-helix (29.07%) andβ-sheet (21.94%) and a surprisingly
good SEP of 6.07% for turns (see Table 4). The good SEP for turns may be related to its relatively weak
distribution of target output proportions shown in Table 1. It should be noted that the number of data
input points used in this experiment should have been sufficient to produce good results. The best result
achieved by our neural network approach is based on merely 11 data input points (see Table 4).

3.5. Possible impact of amino acid side chain absorption within the amide I band

Side chain absorption from certain amino acids has been found to occur within the amide I and amide
II regions for proteins in D2O and proteins in H2O [58–60]. It has been shown that significant absorption
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Table 6

Amino acid proportions (in %) in relation to the overall amino acid composition along with the mean and standard deviation for
amino acids that are known to absorb within the amide I band, namely tyrosine, phenylalanine, glutamine, arginine, and lysine

Protein Tyrosine Phenylalanine Glutamine Arginine Lysine Sum
Alcohol dehydrogenase 1.1 4.8 5.6 3.2 8 22.7
Trypsin inhibitor 6.9 6.9 1.7 10.3 6.9 32.7
Carbonic anhydrase 3.1 4.6 4.2 2.7 9.3 23.9
Concanavalin A 3 4.6 2.1 2.5 5.1 17.3
Chymotrypsinogen A 1.6 2.4 4.1 1.6 5.7 15.4
Chymotrypsin 1.7 2.5 4.1 1.2 5.8 15.3
Cytochrome c 3.8 3.8 2.9 1.9 18.1 30.5
Elastase 4.6 1.2 6.2 5 1.2 18.2
Hemoglobin 2.1 5 0.7 2.1 7.8 17.7
Insulin 7.8 5.9 5.9 2 2 23.6
Lysozyme 2.3 2.3 2.3 8.5 4.7 20.1
Myoglobin 2 3.9 3.3 2.6 12.4 24.2
Nuclease 4.7 2 4 3.4 15.4 29.5
Prealbumin 3.9 3.9 0 3.1 6.3 17.2
Papain 9 1.9 6.1 5.7 4.7 27.4
Alkaline serine protease B 4.9 2.7 1.1 4.3 0.5 13.5
Ribonuclease A 4.9 2.4 4.9 3.3 7.3 22.8
Ribonuclease S 4.8 2.4 5.6 3.2 8.8 24.8

Mean 4.01 3.51 3.6 3.7 7.22 22.04
Standard deviation 2.21 1.55 1.95 2.39 4.54 5.61

may arise in the amide I region [58–60]. Regarding our reference set of infrared spectra of 18 proteins,
we were interested in possible impact of amino acid side chain absorption with regards to our neural
network analysis. Hence, for the amino acid sequence of each protein in our reference set we calculated
the percentage of amino acids that have been reported to display significant absorbance in the amide I
region, namely tyrosine, phenylalanine, glutamine, arginine, and lysine [58,59]. Table 6 shows these per-
centages along with the mean and standard deviation. Despite a relatively high average proportion of
these interfering amino acids in relation to the average number of amino acids present in the 18 proteins
of our reference set (22.04%), good prediction accuracy of our neural network approach was achieved.
This may be explained by one important property of pattern recognition approaches, i.e., they base their
predictions mainly on band shape variation. As a result, our neural network analysis should be at least
partially immune to amino acid side chain contributions when they are similar for all proteins of the
reference set. However, when amino acid side chain variation is high across the spectral data set, dete-
rioration of prediction accuracy may be expected. This could also be confirmed by others with regards
to multivariate data analysis [60]. In our case, the relatively low standard deviation for each interfer-
ing amino acid (see Table 6) seemed to be sufficiently low for the neural network not to get confused
by its interference within the amide I band. Hence we believe that with the pattern recognition based
approaches, contribution from amino acid side chain absorption may generally not have such high im-
pact on prediction accuracy if its variation is considerably low amongst the proteins of the reference
set. However, good prediction accuracy may also be explained by the fact that absorbance for each of
these amino acid side chains individually is rather weak (see Table 6) and that they absorb in different
regions within the amide I band. Possibly, side chain absorption from these amino acids is spread in
a way such that it does not have high impact on the overall shape of the amide I band. In our neural
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network analysis, using only specific structure sensitive regions within the amide I band in combination
with compression of the resulting regions using boxcar averaging has the additional effect to cancel out
respectively to smooth possible noise in the data arising from amino acid side chain absorption. Clearly,
further work is necessary to get a better understanding of the impact of amino acid side chain absorption
on prediction accuracy with respect to our neural network analysis in particular and pattern recognition
based approaches in general. Although the average of SEPs using our specific amide I frequency based
analysis is considerably low (see Table 4), we should certainly not disregard that further improvement
may be achieved by appropriate subtraction of side chain absorbance from the amide I region [59,60].

3.6. Comparison of prediction accuracy of our method with other currently established prediction
methods

Although the fact that information on protein secondary structure can be derived from FTIR spectra has
already been established about 50 years ago [61–63] and a considerable amount of work has been done
in that field since, there is still no single method which is commonly agreed upon as the best method for
secondary structure prediction from FTIR spectra. Two approaches have mainly evolved over the years:
Curve fitting methods and pattern recognition based approaches.

Table 7 shows that our neural network approach competes well with the widely used multivariate data
analysis methods employed for protein secondary structure prediction from FTIR spectra. Employing
our specific amide I frequency based analysis, the SEP for helix is better than that of any of the listed
multivariate data analysis methods and even better than some of the curve fitting approaches. With the
exception of Dousseau et al.’s work [34], this is also true forβ-sheet structure. Although not the best
SEP was achieved for turns, it is only 0.07% above average of the multivariate data analysis techniques
listed (4.54%).

In our study the same set of 18 FTIR spectra as in a previous factor analysis study by Lee et al. [35] is
used. This allows us to directly compare the two sets of results. Overall, the average of SEPs forα-helix,
β-sheet, and turns was reduced by 2.19% by employing our specific amide I frequency based analysis.
By removing one FTIR spectrum from the training set, reducing the training set size to 16, Lee et al. [35]
achieved an average of SEPs of 6.27%, which is still higher than that achieved by our neural network
approach without removing a spectrum from the data set. In our study it was important to us to keep
all protein infrared spectra available in the reference set to demonstrate the potential of our approach in
dealing with problematic spectra in the reference set.

In addition to the results achieved by our specific amide I frequency based analysis, Table 7 summarises
representative contributions made along with the reported prediction accuracy. With the exception of the
work presented by Goormaghtigh et al. [20] and Baello et al. [33], the results are based on experiments
with FTIR spectra recorded from proteins in H2O. Only those authors are listed, where we were able to
re-calculate the quality of prediction in terms of SEPs from the information provided in the respective
publications. Note that in Table 7 results for curve fitting studies are shown irrespective of how the
individual bands have been identified (FSD or second derivative spectra) and to what spectrum the actual
curve fitting procedure has been applied (original spectrum, FSD spectrum, or derivative spectrum). The
information provided in Table 7 refers to the configuration resulting in the best predictions when based
on the entire infrared spectral data set available.

The curve fitting procedure has been reported to provide a good estimate of protein secondary structure
(see Table 7). However, no general procedure for determining the parameters for both deconvolution and
derivation exists, which may be consistently applied for band narrowing prior to curve fitting in order
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Table 7

Comparison of various secondary structure prediction methods from FTIR spectra in terms of the SEP

Ref. Year Data FTIR Spectral Method Prediction SEP for SEP for SEP for SEP for Average
set spectra region used for method helixd sheetd turns otherg of SEPs
size combined used (FTIR) calculating usedc (%) (%) (%) (%) (%)

with CD for best target
data resultsa secondary

structure
fractionsb

[13] 1986 11 No I LG C 2.17 2.76 NPe NP 2.47
[1] 1986 6 No I LG C 2.24 2.55 NP NP 2.4
[20] 1990 14 No I′ LG C 10.31 6.87 NP NP 8.59
[23] 1990 12 No I LG C 5.76 6.82 8.07 6.02 6.67
[24] 1994 14 No I+ II R C 5.95 2.56 3.99 3.27 3.94

[35] 1990 18 No I LG M 7.8 9.7 4.3 NP 7.27
[34] 1990 13 No I+ II LG/KS M 5.11 3.71 NP 5.14 4.65
[31] 1991 17 No I KS M 9.8 11.22 6.61 9.18 9.20
[30] 1993 21 Yes I KS M 7 9.5 7 10 8.38
[29] 1996 39 No I+ II KS M 12.14 9.08 NP NP 10.61
[32] 1997 23 No I+ II KS M 8.6 7.34 1.39 3.79 5.28
[33] 2000 23 No I+ II + I′ + II ′ KS M 5.34 6.33 3.39 5.37 5.11

[27] 2001 18 No I LG N 7.7 6.4 4.8 NP 6.3
NNf 2001 18 No I LG N 4.47 6.16 4.61 NP 5.08

Average 6.74 6.5 4.91 6.11
a I: amide I; II: amide II; I+ II: Both amide I and amide II region; I+ II + I′ + II ′: amide I, amide II, amide I′, and amide II′

regions were used.
b LG: Levitt and Greer [46]; KS: Kabsch and Sander’s DSSP [65]; R: Ramachandran plots.
c C: Curve fitting; M: Multivariate data analysis; N: Neural network analysis.
d If the secondary structure has been further divided (e.g., parallel, anti-parallelβ-sheet), the average has been taken.
e NP: This type of secondary structure class has not been predicted.
f Our neural network approach presented in this paper.
g This structural class is also often referred to as “unordered”, “random coil”, “random”, “irregular”, and “undefined”.

to arrive at a generalised procedure for protein secondary structure estimation. In contrast, the choice of
parameters is rather a process of trial and error. Additionally, in a last step of the curve fitting procedure,
spectral bands need to be manually assigned to secondary structure conformations to calculate the overall
secondary structure fractions. Hence, a high degree of subjectivity is involved in curve fitting. In a critical
assessment of the determination of protein secondary structure by FTIR spectroscopy, Surewicz et al.
have given a few notes of caution regarding the general validity of the curve fitting approach [39]. They
claim that due to a lack of uniqueness in band assignment, the assumption of equal molar absorptivities
across different conformers within the amide I band, and the large number of adjustable parameters in
the mathematical procedure of curve fitting, the characterisation of this procedure as a generally valid
method to assess quantitatively the absolute content of protein secondary structure may be questioned.

It was observed, that curve fitting methods were generally applied to a very small number of proteins.
Better results have been achieved when the analysis has been based on only few protein infrared spectra.
E.g., the best average of SEPs (2.4%) was obtained for the curve fitting study based on merely 6 protein
infrared spectra. The poorest average of SEPs (8.59%) was obtained based on the largest set of 14 protein
infrared spectra.
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It has been shown that pattern recognition based techniques as an alternative approach to curve fitting
can be applied with a reduced amount of subjectivity. Most work has been done regarding multivari-
ate data analysis methods. In the current study, we suggest an alternative pattern recognition approach
based on artificial neural networks. One important choice to be made in neural network analysis is which
training algorithm to employ. Much of the work in the application of neural networks to problems in
analytical biochemistry has been performed using feed-forward multi-layer perceptrons trained with the
conventional backpropagation algorithm [49]. However, we chose to employ resilient backpropagation
over conventional backpropagation since it has several advantages over the conventional algorithm. The
resilient backpropagation algorithm modifies the size of the weight-step directly by introducing the con-
cept of resilient update values, resulting in an adaptation effort, which is not susceptible to unpredictable
gradient behaviour. Additionally, in a study comparing backpropagation to resilient backpropagation and
two other adaptive learning methods it has been demonstrated on a couple of representative benchmark
problems that local adaptive algorithms, in particular resilient backpropagation, converge considerably
faster than the ordinary backpropagation (gradient-descent) algorithm [51]. Furthermore, the choice of
initial parameters does not have such an important impact on the outcome of the neural network train-
ing as with the conventional backpropagation and most other pattern recognition based approaches. This
certainly is an important factor with respect to reliability of our neural network approach.

Neural network training using standard resilient backpropagation has already been demonstrated, in
a study involving one of us [27], to be well suited in the area of protein secondary structure prediction
from FTIR spectra. Since the latter study has been based on the same set of 18 protein FTIR spectra as
in our study, our results can be directly compared to the results achieved in that study. Although Sev-
ercan et al. [27] made use of a more complex version of the “leave-one-out” method where a form of
cross-validation is used to train the neural networks, poorer results were achieved than in our specific
amide I frequency based analysis. Using our current approach, a major improvement of the SEP was
achieved forα-helix (3.23%). Forβ-sheet and turns the SEP was slightly improved by 0.24% and by
0.19%, respectively. Severcan et al. [27] employed the standard resilient backpropagation learning algo-
rithm. Improvement in prediction accuracy in the current study was achieved by successfully utilising
empirical knowledge on structure sensitive frequencies within the amide I region. Additionally, we em-
ployed an extension to the standard resilient backpropagation learning algorithm where a weight decay
parameter has been added to the error function to further improve generalisation and hence prediction
accuracy [50]. Riedmiller demonstrated that the introduction of a weight decay parameter in combina-
tion with a relatively low maximum step size lead to an improved generalisation [64]. Overfitting did
not occur even with long training times (i.e., a large number of epochs). Overfitting refers to the case
where the neural network has begun to “memorise” each individual training pattern rather than settling
for weights that generally describe the mapping for all cases.

4. Summary

The results in Table 7 show that neural network analysis offers great potential for predicting protein
secondary structure from FTIR spectra of proteins. In particular, the results of our study demonstrate that
neural networks are a valid alternative to existing methods and are worthwhile further exploration. In
fact, our specific amide I frequency based neural network approach achieved better prediction accuracy
than most of the pattern recognition based approaches and even better results than some of the curve
fitting approaches. At the bottom of Table 7, the average of SEPs for each secondary structure across all
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methods listed are given. For each secondary structure, the SEP achieved by our neural network approach
is generally better than the average taken for that secondary structure across all methods listed. Clearly,
the effect of using different sets of protein FTIR spectra on the resulting prediction accuracy requires
further investigation. However, where the same reference set has been used, best SEPs were achieved by
our method.
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