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Abstract. Raman spectroscopy grows into an essential tool for biomedical applications. Nevertheless, the weak Raman signal
associated mainly with biological samples is often obscured by a broad background signal due to the intrinsic fluorescence of
the organic molecules present, making further analysis unfeasible. A computational geometry method based on the definition
of convex hull is described to estimate the background from Raman spectra of samples with biological interest. The method
is semiautomated requiring sample-dependent user intervention. It does not depend, however, on curve fitting, requires no
information about background distribution or source, and keeps the original spectral data intact.
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1. Introduction

Raman spectroscopy has been extensively applied in recent years in a variety of biological research ran-
ging from the in situ tissue diagnosis to the analysis of subcellular components. Being a vibrational
spectroscopic technique based on inelastic scattering, Raman spectroscopy provides rich molecular
information about the chemical composition of samples and exhibits high sensitivity to minute biochem-
ical changes. Furthermore, it is attractive for biomedical studies since it is intrinsically nonintrusive and
does not require external labels. The positions and relative intensities of the Raman bands are the basic
spectral characteristics for exploring the structure and the function of several biological molecules. This
interpretation, however, is often hindered by the broad background signal mostly due to fluorescence
from organic molecules and contaminants. The intensity of fluorescent is usually much higher than the
weak Raman signal in biological samples, and therefore the subtraction of background is an essential
process to extract reliable analytical information from biomedical Raman data.

Apart from instrumental specific design approaches, a number of computational methods have
been proposed for background removal from Raman spectra. These methods include polynomial fitting
[1–7], first- and second-order differentiation [8, 9], wavelet transformation [10–15], frequency-domain
filtering [16], and principal component analysis (PCA) [17]. All of the above methods have certain
strengths and drawbacks depending on the problem they are trying to deal with. For example, low-order
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Figure 1: Simulated spectrum with curved background and random noise. (a) Fourier filtering, (b)
convex optimization, (c) background estimation.

polynomial fitting is suitable for spectra with broad background but it is not effective for biological
samples which feature Raman spectra with several adjacent, not readily obvious, peaks. Higher-order
polynomials may be susceptible to data over fitting [2]. Differentiation may also distort peak shapes and
therefore creates an inconsistent spectrum compared to the preprocessed one [1]. Wavelets analysis,
which is the Fourier transform analog for localized functions, is a promising solution although the
transformation of the signal into predetermined frequency bands may cause distortion in some part of
the spectra [15].

In the present study, we describe a novel semiautomated background removal method which is
based on the geometric definition of convex hull [18]. The effectiveness of the method is demonstrated
through theoretical and experimental biomedical Raman spectra.

2. Theoretical Background

The signal, S, is assumed as a composition of a low frequency component (B(x), background) and the
true information, P(x), so that S = P(x) × B(x). The background is the slow part of the composite signal
and resides in the vicinity of the low frequencies range. With the application of low-pass filtering, we
extract from the complex signal a rough estimate of the true background component. The first step works
by applying a Fourier transform to the signal, that is, decreasing the high frequency components and
inverse transforming the result. In this way, we have managed to break up the signal into a superposition
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Figure 2: Raman spectrum of paracetamol. (a) Fourier filtering, (b) convex optimization, (c) background
estimation.

of infinitely many sinusoids. Each sinusoid can be manipulated individually and then recombined to
obtain an approximation to the original periodic function [19]. The second step is to decompose the
signal to parts which have the characteristics to be convex sets. This is accomplished by taking regions
from peaks to valleys, of the previously filtered signal, via a simple pattern search of a table consisting
of 0 and 1 referring to the slope of the signal. A convex hulling minimization routine supplies the
single optimal solution for all sets [18] and is able to extract the true background part of the region
by introducing a new parameter “median.” The latter is a line segment calculated from the statistical
data average and by definition is constructed to divide the convex region into two parts. All points with
values higher than the median are part of the upper part of convex hull and represent the peaks, while
the remaining points represent the true background. The only remaining problem is the continuity of
one convex region in respect with the previous or the next one (it is already continuous in the interior
of its domain). The simplest approach is by defining user variable (joins) which controls the number of
linking points of the lower part of the convex region which must be included in the final background
array. The outcome captures every essential feature of the background component through a purely
geometric semiautomated procedure. Due to its high point of reduction degree, the signal is suitable for
subsequent polynomial interpolation, smoothing, and so forth.
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Figure 3: Raman spectrum of PAT. (a) Fourier filtering, (b) convex optimization, (c) background
estimation.

3. Materials and Methods

The algorithm was implemented in Mathematica software package (Wolfram Research). For signals
sampled at discrete intervals, as in our case, Mathematica uses the discrete Fourier transform [20].
Raman spectra were chosen from literature for comparison purposes. Simulated data is identical to that
from [15], while experimental data was acquired with permission from [15] and the hyperSpec project
(http://hyperspec.r-forge.r-project.org/).

4. Results and Discussion

Simulated spectrum consisting of three Gaussian peaks with curved background and random noise is
shown in Figure 1.

As previously discussed, the first step, (a), is the low-pass filtering, the second step, (b), is finding
and optimizing the convex sets, and the last one, (c), is joining the convex sets in a continuous manner.
In the case of simulated data, the performance of the algorithm is flawless. Figures 2–4 depict the
experimental Raman spectra of paracetamol, prednisone acetate tablets (PATs), and chondrocytes in
cartilage, respectively.
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Figure 4: Raman spectrum of chondrocytes in cartilage. (a) Fourier filtering, (b) convex optimization,
(c) background estimation.

It is evident that the more complicated the signal is, the more Fourier components are needed
to approximate the experimental baseline curve. A rough approximation, however, is adequate even for
complicated spectra with several bands (Figure 2). In all cases, the background is clearly defined and the
signal which does not belong to peak areas is efficiently diminished. Since the Fourier transformation
is not applied for smoothing but for extracting the geometric characteristics, the signal retains all its
original features avoiding distortions. Nevertheless, in some spectra with low S/N ratio, this may result
in negative peaks in the background estimation procedure (circle in Figure 3(c)) due to the calculation
methodology of the “median” which does not take into consideration the local slope of the signal but the
whole one. A fitting procedure of the data within each convex region will immediately remove such
artifacts. However, we did not introduce this computationally intensive improvement because (i) negative
peaks appeared only once in our test cases and (ii) we tried to keep the method simple and purely
geometric.

5. Conclusions

A computational geometry method for the estimation of the Raman background signal of highly fluores-
cent samples has been described in this study. Background subtraction was achieved in all cases while
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the peaks were preserved. The proposed algorithm is semiautomated and requires user input for two
variables which define the degree of the Fourier series approximation and the connection of the convex
sets. The method is valid for all signals which are convex, that is, one-directional, and, as such, it can be
possibly applied to other spectroscopic techniques as well as X-ray powder diffractograms. Preliminary
results confirm its wide applicability across diverse spectroscopic data.
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