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This paper develops a rapid method for discriminating the geographical origins and age of roasted Torreya grandis seeds by near
infrared (NIR) spectroscopic analysis and pattern recognition. 337 samples were collected from three main producing areas and
produced in the last two years. The objective of geographical origins analysis is to discriminate the seeds from Fengqiao with a
protected geographical indication (PGI) from those of another two provinces. Age classification is aimed to detect the old seeds
produced in the last year from the freshly produced ones. Partial least squares discriminant analysis (PLSDA) was used to develop
classification models, and the influence of data preprocessing methods on classification performance was also investigated. Taking
second-order derivatives of the raw spectra proves to be the most proper and effective preprocessing method, which can remove
baselines and backgrounds and reduce model complexity. With second derivative spectra, the sensitivity and specificity were 0.939
and 0.871 for age discrimination, respectively. Perfect classification was obtained, and both sensitivity and specificity were 1 for

discrimination of geographical origins.

1. Introduction

Chinese Torreya (T. grandis), a species of conifer in the
Cephalotaxaceae family, is a rare cash crop tree endemic to
southern and eastern China [1, 2]. The plant has been exten-
sively used to cure cough, rheumatism, and intestine ver-
minosis as a potent folk medicine. Various chemical com-
ponents have been identified in T. grandis with an extensive
spectrum of biological and medical activities, including anti-
inflammatory, antihelmintic, antitussive, carminative, laxa-
tive, antifungal, antibacterial, and antitumor activities [3-7].
Its seeds are rich in proteins, fatty acids, carbohydrates, cal-
cium, phosphorus, and iron [8]. Due to the high nutritional
value, T. grandis seeds are served as a high-quality nut, and
cakes, biscuits, and candies made from the seed kernels are
also very popular. The seeds have an oil content of 54.62%-
61.47% [8], and the oil is bright yellow with pleasant fruit
flavors. The oil contains a very high level of unsaturated
fatty acids, which accounts for 79.41% of the total fatty acids

[8]. T. grandis seed oil is valued as a healthy and functional
edible oil, and investigations have demonstrated its effects
in modifying lipid metabolism, lowering triacylglycerol and
cholesterol levels, and preventing atherosclerosis [9-13].

T. grandis seeds are sold in the form of a roasted nut,
and the oil is often extracted by expressing the roasted seeds.
In China, T. grandis is mainly distributed in southern and
eastern provinces, among which the most important produc-
ing area is Zhuji in Zhejiang province with an annual yield
of about 850,000 kilograms, accounting for a major share
of the domestic market. T. grandis from Zhuji is awarded
a Protected Geographical Indication (PGI) and is known
nationwide for its extra-high quality. Although two neighbor-
ing provinces, Anhui and Jiangxi, also have a considerable
yield of T. grandis seeds of similar appearance, their mouth
feel and taste are much inferior to those of Zhuji. Another
quality factor is the age of seeds. Because the seeds are
rich in unsaturated fatty acids and proteins, which tend
to be oxidized and spoiled, the old T. grandis seeds have



a degraded mouth feel and taste. Oil extracted from the
old seeds would be of much lower grade. Unfortunately,
for economical reasons, the shelf-life of produced T. grandis
seeds is sometimes tampered by some producers or old seeds
are introduced into fresh ones. Therefore, to ensure consumer
interests, effective and rapid methods are required to detect
old T. grandis seeds from fresh ones and discriminate seeds
of different geographical origins.

Some researches have been dedicated to investigations of
the chemical compositions of T. grandis seeds influenced by
different factors, such as the geographical origins and pro-
cessing conditions [14-16]. All the studies are based on chem-
ical analysis methods, which are important to understand the
biological and pharmaceutical properties of T. grandis seeds
but usually lack a comprehensive view of chemical composi-
tions. Actually, it is difficult to perform a thorough chemical
analysis of T. grandis seeds and characterize the quality
parameters by the levels of a few chemical components.
Recently, spectroscopy coupled with chemometric methods
has been widely applied in food analysis [17-19]. The rationale
behind such techniques is that chemical compositions of
complicated samples can be characterized by multivariate
spectral signals; then useful information concerning food
quality can be extracted by chemometric methods. Near
infrared (NIR) spectroscopy is one of the most widely used
spectroscopic techniques in food quality evaluation and has
some advantages over traditional chemical analysis methods,
including lower sample preparation requirements, reduced
analysis time and cost, the feasibility for multicomponent
analysis, and the potential use for online analysis [20, 21].

For quality evaluation of T. grandis seeds, this paper aims
at developing a rapid analysis method to discriminate the age
and geographical origins of T. grandis seeds by NIR spec-
troscopy and chemometrics. Partial least squares discrimi-
nant analysis (PLSDA) [22] was used as the pattern recog-
nition method. The influence of different data preprocessing
methods on classification performance was also studied.

2. Materials and Methods

2.1. Collection of Samples. For geographical origins analysis,
240 freshly roasted (the nuts were produced in 2011) seeds
were collected from three main producing areas, namely,
Fengqiao in Zhejiang (110), Anhui (58), and Jiangxi (72).
Although T. grandis is distributed in many southern and
eastern provinces in China, just the above three provinces
have a considerable growing area and output. Therefore, the
objective of geographical origins analysis is to discriminate
the (fresh) seeds from Fengqiao with PGI and those from
the other two provinces. Age analysis is focused on the most
important products from Fenggiao. Therefore, another 97
“old” Fengqiao objects produced in 2010 were also collected.
All the objects were prepared by roasting with sand bath and
were stored in a cool place with integral endocarp and pack-
aging before spectroscopic analysis. The detailed information
concerning samples is shown in Table 1.

2.2. NIR Spectroscopy Measurement. Because the seed is not
contacted closely with the endocarp and the seed coat would
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TaBLE 1: Detailed information of the T. grandis seeds analyzed.

Producing areas Batch size Types®
Zhongjialing (Fengqiao) 23 Fresh
Xikeng (Fenggiao) 20 Fresh
Dujiakeng (Fengqiao) 22 Fresh
Lixuan (Fenggiao) 21 Fresh
Waixuan (Fengqiao) 24 Fresh
Xikeng (Fenggiao) 23 Old

Dujiakeng (Fengqiao) 30 Old

Zhongjialing (Fenggiao) 24 Old

Waixuan (Fengqiao) 20 Old

Huangshan (Anhui) 22 Fresh
Xiuning (Anhui) 17 Fresh
Yixian (Anhui) 19 Fresh
Wauyuan (Jiangxi) 31 Fresh
Yushan (Jiangxi) 22 Fresh
Guangfeng (Jiangxi) 19 Fresh

"old: produced in 2010; fresh: produced in 2011.

introduce unwanted variations in the measured spectra, NIR
spectra were measured with the intact and bare kernel with
seed coat removed. The NIR spectra were collected in the
diftfuse reflectance mode by using a Bruker-TENSOR37 FTIR
spectrometer (Bruker Optics, Ettlingen, Germany). A fiber
bundle was used to illuminate the sample and collect the
scattered light. The fiber probe was placed directly to contact
with equatorial region of the seed kernel, because the internal
composition changes are more easily explored in the equato-
rial region rather than the two sides. Particularly, the radius
of curvature in the two ends is too small to have close contact
with the probe. To account for the differences in the internal
composition, the diffuse reflectance spectrum was obtained
by averaging three measurements carried out round the
equatorial region of a seed. Each spectrum was the average
of 64 scanning spectra, and more scans did not improve
the signal quality significantly. The range of the raw spectra
was from 12,000 to 4000 cm ™, and the data were measured
with an interval of 7714 cm™, so each raw spectrum has
1037 individual data points. The temperature was kept around
25°C and the humidity was kept at a steady level in the
laboratory.

2.3. Outlier Diagnosis. All the data analysis was performed on
MATLAB 7.0.1 (MathWorks, Sherborn, MA, USA). Outliers
are the abnormal objects that deviate from the global behavior
of all other observations. For classification models, outliers
in the training set would lead to bias or even breakdown of
the models and outliers in the test set would cause misleading
results for evaluation of model performance. Considering the
high-dimensional nature of NIR spectra and to overcome the
masking effects caused by multiple outliers, robust statistical
methods with dimension reduction strategies are needed to
analyze the data. Therefore, robust principal component anal-
ysis (ROBPCA) [23] was used to detect the outliers. Given the
number of significant principal components (PCs), ROBPCA
computes the robust latent variables and the corresponding
orthogonal distance (OD) and score distance (SD). With a
given model significance level, ROBPCA classifies each object
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into one of the four groups: regular points (with small SD
and small OD), good PCA-leverage points (with large SD and
small OD), orthogonal outliers (with small SD and large OD),
and bad PCA-leverage points (with large SD and large OD).

2.4. Preprocessing and Data Splitting. When the measured
spectra are contaminated with significant noises, unwanted
variations such as backgrounds and baselines, and other
undesirable factors, data preprocessing is required to reduce
their negative influence on classification models. Consider-
ing the lack of sufficient prior information concerning the
measured spectra, different options were investigated for data
preprocessing. Smoothing can depress random noise present
in the signal and enhance the signal-to-noise ratio (SNR).
The S-G polynomial fitting algorithm [24] was used for
smoothing for its effectiveness and simplicity. Taking second
derivatives can enhance spectral differences and resolution
and remove most of the baselines and backgrounds. In order
to avoid the degradation of SNR by enhancing noise, the
derivative spectra were also computed by S-G, the polynomial
fitting algorithm, rather than by direct differencing. Standard
normal variate transformation (SNV) [25] was used to reduce
scattering effects in the spectra and correct the interference
caused by possible variations in optical path.

The DUPLEX algorithm [26] was applied to split the
measured spectral data into a representative training set and
prediction set. DUPLEX firstly selects the two objects with
the largest Euclidian distance and puts them in the training
set and then selects the two objects with the largest distance
among the remaining samples and puts them in the training
set. The above procedure is repeated until enough test objects
are obtained and all the remaining objects are put into the
training set. By alternatively selecting the objects for the
training set and test set, DUPLEX gives data in the test set
with a distribution almost equal to that of the training set.

2.5. PLSDA. For PLSDA, the training set of NIR spectra can
be arranged in an N x p matrix X containing the absorbance
measurements at p wavelengths for N samples. For multiclass
problems, N denotes the total size of all the B different classes
(in this paper, B = 2). A response matrix Y (N x B) can be
constructed containing the category variables of each sample
in X, where each row vector in Y indicates the class of an
object. If a sample belongs to classi (i = 1 : B), the ith element
of its response variable is assigned a value of 1 and otherwise
0. Then B partial least squares (PLS) regression models are
developed to fit each column of Y using all the predictors in
X. A future object is classified into class j (j = 1 : B) when the
jth element of its predicted response vector is the nearest to 1.
In this paper, because the models deal with two-class objects,
one response variable of PLS regression was used which has
1 for one class and -1 for the other class. A cutoft value of
0 was used to assign a new object according to its predicted
response value.

It is not trivial to select the number of PLSDA compo-
nents or the model complexity. Too many latent variables
would result in an unnecessarily complicated model with
degraded and instable predictions; selecting too few compo-
nents would lose useful data information and underfit the

data. Therefore, in this paper, an improved cross-validation
algorithm, Monte Carlo cross-validation (MCCV) [27], was
used to estimate the number of latent variables. By multiple
splitting of training data and having a higher percent of
training objects for prediction, MCCV can reduce the risk
of selecting too many latent variables. The mean percentage
error of MCCV (MPEMCCYV) was used as the criterion for
selecting PLS components:

k
Yio B
k

i=1 Li

MPEMCCV = , 1)

where K is the times of data splitting, L; is the number of
prediction objects, and E; is the number of misclassified for
the ith splitting. To evaluate the performance of classification
models, sensitivity (Sens.) and specificity (Spec.) of predic-
tion were used as follows:

TP
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where TP, FN, TN, and FP denote the numbers of true pos-
itives, false negatives, true negatives, and false positives,
respectively.

3. Results and Discussions

3.1. NIR Spectra. Some of the raw NIR spectra of T. grandis
seed kernels are shown in Figure 1. Seen from Figure 1, the
spectra of three groups of seeds share very similar absorbance
patterns in the range of 4000-12000 cm ™. The wide bands
in 10000-11000 cm™" are the overlapping of the second over-
tones of —-OH (H,O) stretching (~10400 cm™}) and the third
overtones of ~-CH stretching (~11000 cm™") in various groups.
The absorbance in 8200-8600 cm ™" is mainly caused by the
second overtones of C-H stretching in various groups. The
wide bands in 6100-7000 cm™' might be the overlapping
of the first overtones of O-H (H,0O) stretching and N-
H stretching. The peaks around 5700 cm™ (two peaks at
5685 cm ™! and 5809 cm ') can be attributed to the first over-
tones of C-H stretching in various groups. The peaks around
5160 cm™" are the combination of asymmetric stretching and
bending vibration of H,O. Peaks in 5160 cm™" and 6100-
7000 cm™" reflect the variations of water contents in different
seeds. The absorbance in 4600-4800 cm™" is the combination
of O-H bending and C-O stretching. This interval, as well
as the peaks around 4300 cm ™" (two peaks at 4266 cm™' and
4335cm™") caused by C-H stretching and C-H deformation,
is very stable and carries much chemical information. Accu-
rate assignments of peaks were difficult due to low resolution
and significant baselines; therefore, chemometric methods
are necessary to extract the useful information from spectra
for classification. The spectral interval of 9000-12000 cm™
carries little chemical information but contaminated with
significant noise, so this interval was excluded for further data
analysis.

Figure 2 demonstrates the principal component analysis
(PCA) plot of raw NIR spectra (4000-9000 cm™) of three
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FIGURE 1: Raw NIR spectra of T. grandis seed kernels from Fenggiao (old, n = 97), Fengqiao (fresh, n = 110), and other areas (fresh, n = 130).
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ROBPCA of old Fengqiao objects
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FIGURE 3: ROBPCA outlier diagnosis plots of the three classes of seed kernels based on raw spectra (4000-9000 cm ™).

groups of seed kernels. For classification data of age and geo-
graphical origins, the first three principal components (PCs)
explain 91.3% and 89.7% of the total variances, respectively.
Seen from Figure 2, the projections of the samples in both
classes onto the 3-PC subspace are very dispersive, and in
each case, the two classes to be discriminated are highly
overlapped. Obviously, the data have a contorted and complex
structure, and three PCs are insufficient to discriminate them
from eachother. Moreover, seen from Figure 2, there are some
extremely distributed or abnormal points in the PCA space,
so outlier detection and data preprocessing are required to
reveal the real structure of data.

3.2. Outlier Detection, Data Splitting, and Preprocessing. Out-
lier detection was performed on the raw spectra (4000-
9000 cm™") of each group by ROBPCA, where the fraction of
outliers the algorithm can resist was set to be 0.10. Following
the rule of thumb, the number of PCs was selected to

account for at least 95% of the total data variance. The
ROBPCA diagnosis plots of the three classes of seeds are
shown in Figure 3. OD is a measure of the distance from
the sample to the reconstructed subspace, and SD describes
the sample dispersion in the class projected onto the model
space. Therefore, both orthogonal outliers and bad PCA-
leverage points should be excluded from the training set.
Because each class of seeds was collected from different
producing subareas, there might be considerable difference
in the chemical compositions. Therefore, good PCA-leverage
points should be reserved to represent the within-group
spectral variations. According to Figure 3, objects 6, 9, and
13 were detected as outliers for old Fengqiao seeds (objects 3,
28, 29, 33, 50, and 91), fresh Fenggiao (objects 6, 19, 25, 26, 27,
28, 33, 47, and 110), and fresh non-Fenggiao seeds (objects 4,
6,33, 40, 46, 50, 86, 98,107,108, 115, 120, and 123), respectively.
The above detected outliers were excluded from further data
analysis.
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FIGURE 4: Average preprocessed spectra of different classes of T. grandis seeds by smoothing, taking second derivatives, and SNV transfor-
mation; old Fengqiao (blue), fresh Fengqiao (red), and fresh non-Fengqiao (black).

Figure 4 demonstrates the average preprocessed spectra
of T. grandis seed kernels. By comparison of the raw spectra
with smoothed spectra, although smoothed spectra can
slightly improve the SNR, it might lose some useful high-
frequency information in the raw data. The second-order
derivative spectra can remove most of the baselines and
enhance some detailed information and peak resolution.
SNV spectra can remove some spectral variations while
enhancing others. The effects of data preprocessing should be
evaluated by classification performance.

Because the distributions of three groups of objects are
not the same, the DUPLEX method was performed on each
of the groups separately. For the old Fenggiao seeds, fresh
Fenggiao seeds, and fresh non-Fenggqiao seeds, 60, 68, and 78
objects were selected by DUPLEX for training and 31, 33, and
39 objects were left for prediction. For different classification
objectives, the data were combined to form training and test

sets. For discrimination of geographical origins and age, 146
(68/78, Fengqiao/non-Fengqiao) and 128 (68/60, fresh/old)
objects were used for training; 72 (33 + 39, Fenggiao/non-
Fenggqiao) and 64 (33/31, fresh/old) objects were used for
prediction, respectively.

3.3. Model Optimization and Validation. Monte Carlo cross-
validation (MCCV) was used to estimate the number of
PLSDA latent variables. The mean percentage error of MCCV
(MPEMCCYV) with different model complexity was com-
puted, and the number of latent variables was determined
to obtain the lowest MPEMCCYV value. Because 3 PCs can
explain about 90% of the total data variances, the largest num-
ber of PLS components was set to be 10 to avoid overfitting of
classification models.

The sensitivity and specificity of prediction were used
to evaluate the model performance and the influence of
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TaBLE 2: Discrimination of age and geographical origins of T. grandis seeds by PLSDA.

Age classification

Geographical origins classification

Preprocessing e S ¢ e o

Sensitivity’ Specificity Lv Sensitivity Specificity Lv
Raw data 0.727 (24/33) 0.839 (26/31) 10 0.879 (29/33) 0.923 (36/39) 10
Smoothing 0.636 (21/33) 0.807 (25/31) 10 0.879 (29/33) 0.923 (36/39) 10
2nd derivative 0.939 (31/33) 0.871 (27/31) 7 1.000 (33/33) 1.000 (39/39) 6
SNV 0.788 (26/33) 0.774 (24/31) 10 0.909 (30/33) 0.897 (35/39) 10

* Numbers in parentheses indicate TP/(TP + EN).
®Numbers in parentheses indicate TN/(TN + FP).
“Numbers of PLSDA latent variables.
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FIGURE 5: The selection of PLSDA components by MCCV for discrimination of seed age and geographical origins with second derivative

spectra (4000-9000 cm™h).

preprocessing methods. For discrimination of both age and
geographical origins, the fresh Fenggiao seeds were denoted
as “positives” and the other class as “negatives.” With different
preprocessing methods, the prediction results and optimized
parameters were listed in Table 2. Seen from Table 2, the
models based on the raw data, smoothed spectra, and SNV-
transformed spectra all have a very high model complexity
and require 10 and more PLS components. Although includ-
ing more latent variables can improve the classification, the
improvements were not significant, and this would lead to
instable predictions of future objects. This might be attributed
to the nonlinearity caused by the signal baseline and back-
grounds. Taking second derivative significantly sharpened
the classification models by reducing the baseline and
backgrounds. The model complexity of PLSDA based on
second derivative was largely reduced. Models with 7 and 6
PLS components obtained the best classification of age and
geographical origins, respectively. With second derivative
spectra, for age discrimination, the sensitivity and speci-
ficity were 0.939 and 0.871, respectively; for discrimination
of geographical origins, perfect classification was obtained
and both sensitivity and specificity were 1. The selection

of PLS components and prediction results with second-
order derivative spectra were demonstrated in Figures 5 and
6, respectively. The comparison of different preprocessing
methods demonstrates that the classification performance of
a PLSDA model is greatly influenced by backgrounds and
baselines in the spectra. Taking second-order derivatives is
proved to be the most proper and effective preprocessing
method.

4. Conclusions

Rapid discrimination of geographical origins and age of T.
grandis seeds was developed by using NIR spectroscopy
and pattern recognition. The presence of baseline and back-
grounds introduces significant nonlinearity factors in the
measured NIR spectra; preprocessing by smoothing and SNV
can not improve the classification performance. By removing
spectral background and baseline, taking second-order S-G
derivatives can not only improve classification accuracy but
also reduce the complexity of PLSDA. This paper demon-
strates NIR combined with chemometrics which provides a
useful tool for discriminating age and geographical origins
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of T. grandis seeds. Our future work will be focused on the
feasibility of NIR analysis of T. grandis oil made of different
origins, processing, and raw materials.
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