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A major safety concern with pidan (preserved eggs) has been the usage of lead (II) oxide (PbO) during its processing. This paper
develops a rapid and nondestructive method for discrimination of lead (Pb) in preserved eggs with different processing methods
by near-infrared (NIR) spectroscopy and chemometrics. Ten batches of 331 unleaded eggs and six batches of 147 eggs processed
with usage of PbO were collected and analyzed by NIR spectroscopy. Inductively coupled plasma mass spectrometry (ICP-MS)
analysis was used as a reference method for Pb identification. The Pb contents of leaded eggs ranged from 1.2 to 12.8 ppm. Linear
partial least squares discriminant analysis (PLSDA) and nonlinear least squares support vector machine (LS-SVM) were used to
classify samples based on NIR spectra. Different preprocessing methods were studied to improve the classification performance.
With second-order derivative spectra, PLSDA and LS-SVM obtained accurate and reliable classification of leaded and unleaded
preserved eggs. The sensitivity and specificity of PLSDA were 0.975 and 1.000, respectively. Because the strictest safety standard of
Pb content in traditional pidan is 2 ppm, the proposed method shows the feasibility for rapid and nondestructive discrimination of
Pb in Chinese preserved eggs.

1. Introduction

Preserved egg or pidan has been one of the most popular
traditional alkali-treated egg products in South and East
Asian countries, including China, South Korea, Thailand,
and Japan. Nowadays, pidan is consumed in more than 30
different countries worldwide for its special taste, flavor,
and texture [1]. In China, pidan is recognized as a healthy
and functional food and is also used to treat eye problems,
toothache, high blood pressure, tinnitus, vertigo, and other
diseases [2].

It has been shown that alkali treatment improves the
extractability, solubilization, gelation, and dispersibility for
preparing texturized products in recent years [3]. Moreover,
this process is also effective in destroying toxins, such as afla-
toxin and protein inhibitors, which is advantageous for food
processing [3, 4]. The main acting alkaline chemical reagent
is sodium hydroxide (NaOH). Produced by the reaction
of sodium carbonate (Na

2
CO
3
), water (H

2
O), and calcium

oxide (CaO) of pickle or coating mud, NaOH penetrates the
eggshell and membrane into an egg, leading to physical and
chemical changes, color changes, and gelation of the protein
[1, 5–8].

Pidan is made of preserving duck, chicken, or quail eggs
in a mixture of clay, ash, salt, and quicklime for several weeks
to several months. The main difference between traditional
and new processing methods of pidan is whether a light
yellow powder, litharge powder (PbO), is used or not in the
pickle. In the traditional process, PbO plays multiple roles
in different stages of pidan formation [1]: (1) when NaOH
penetrates the eggshell, the protein is negatively charged
with hydroxyl ions. By combining the carboxyl group of
the charged protein, Pb2+ can help to destroy the protein
structure and enhance the protein gelation. In this way,
diffusion of NaOH is also controlled; (2) Pb2+ can combine
S2− (produced from protein hydrolysis) to produce PbS,
which forms sediments inside and outside of the eggshell and
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reduces the size of the egg shell pores. The previous reaction
can help to control the penetration speed and concentration
of NaOH inside the egg in late fermentation stage, which
is very important for making good-quality pidan; (3) pidan
produced with PbO generally has the same ripening time
and the large-scale production is easy to control. Although
the use of PbO can improve the quality of pidan, pidan
produced by this process has high levels of lead residue.
It is well-known that Pb accumulation in the human body
can damage the nervous system, blood-producing organs,
kidneys, and immune system. Due to the safety concerns,
the current Chinese food safety standard for the Pb content
in traditionally processed pidan is less than 2 ppm [9],
suggesting that excessive usage of PbO in traditional pidan
processing should be strictly controlled. As a result, much
attention has been paid on developing pidan processing
techniques without using PbO [10–12]. However, because the
traditional methods using PbO have the above-mentioned
advantages, it is still widely used and Pb contamination of
pidan products has aroused wide concern among consumers.
Therefore, rapid and reliable methods for identification of Pb
are highly demanded to perform routine analysis of pidan
products at the market.

The traditionalmethods for Pb detection are based onwet
chemical analysis or instrumental analysis [13–15]. For pidan
samples, both traditional chemical and instrumental analyt-
ical methods require a cumbersome sample preprocessing
procedure, which is sometimes too time-consuming and
labor-intensive for routine analysis. As an important factor
in the gelation of egg protein, the cations used in the pickle
can greatly influence the chemical composition, physical
property, and microstructure of pidan [7, 8]. Therefore, it
is possible to discriminate leaded and “lead-free” pidan by
characterizing themwith instrumental signals and examining
the measured features. Near-infrared (NIR) spectroscopy
and chemometrics have been widely used in food analysis
[16–18] and can provide a useful tool for this purpose.
Although NIR quantitative analysis of trace components [19]
is rarely reported, NIR spectra can characterize the changes
of physical and chemical properties caused by PbO, which is
useful for discrimination of trace Pb. Compared with tradi-
tional analysis methods, NIR analysis has some advantages,
including less or no sample preparations, reduced analysis,
time and the feasibility for nondestructive analysis, which
make it very suitable to discriminate lead-contaminated and
“lead-free” pidan products.

The objective of this paper was to develop a rapid and
nondestructive analysis method for routine discrimination
of Pb in pidan by combining NIR spectroscopy and chemo-
metrics. The investigations were focused on (1) investigating
the influence of different data preprocessing methods on
classification performance; (2) comparing the classification
performance of linear partial least squares discriminant
analysis (PLSDA) [20, 21] and nonlinear least squares support
vector machines (LS-SVMs) [22]; and (3) investigating the
potential of the proposed method for Pb discrimination in
pidan with inductively coupled plasma mass spectrometry
(ICP-MS) analysis for reference.

Table 1: Detailed information of the unleaded and leaded pidan
samples.

Producing areas Batch size Pb contents (ppm)a Typesb

Yangzhou, Jiangsu 39 Non-detectedc U
Yancheng, Jiangsu 36 Non-detected U
Yangzhou, Jiangsu 40 Non-detected U
Jiaxing, Zhejiang 33 Non-detected U
Shaoxing, Zhejiang 14 Non-detected U
Wuxi, Jiangsu 36 Non-detected U
Hangzhou, Zhejiang 32 Non-detected U
Hangzhou, Zhejiang 36 Non-detected U
Hangzhou, Zhejiang 33 Non-detected U
Hangzhou, Zhejiang 32 Non-detected U
Yancheng, Jiangsu 26 1.2∼2.3 L
Jiaxing, Zhejiang 22 6.4∼7.8 L
Wuxi, Jiangsu 20 2.2∼3.2 L
Hangzhou, Zhejiang 29 8.9∼12.8 L
Hangzhou, Zhejiang 28 4.1∼5.9 L
Hangzhou, Zhejiang 22 1.2∼1.7 L
aThree samples from each batch were analyzed by ICP-MS.
bU: “unleaded” and L: “Leaded.”
cThe limit of detection (LOD) was 0.033 ppm.

2. Materials and Methods

2.1. Pidan Samples. All the preserved eggs weremade of fresh
duck eggs. Ten batches of 331 preserved eggs produced by
lead-free processing and six batches of 147 preserved eggs
produced with traditional processing with usage of PbOwere
purchased from domestic markets. The difference in pidan
processing is whether the pickle used for egg fermentation
contains PbO or not. The detailed information of each batch
is listed in Table 1.The ripening time of all the preserved eggs
was between 5 June and 15 June. The ripening of pidan was
further confirmed by examining the inside of egg samples
from each batch. To prevent the aging of pidan, all pidan
samples were coated with their raw pickle materials (mud
or powder) and stored in a cool, dark, and dry place. The
temperature was maintained at about 25∘C (±0.5∘C) and the
humidity was kept at a stable level in the laboratory. All the
cleaned eggs had been examined manually and the cracked
eggs had been excluded. Each egg was washed vigorously
with deionized water and was left to dry completely before
spectroscopic and chemical analysis.

2.2. Measurement of NIR Spectra. The NIR spectra were
collected in the diffuse reflectance mode by using a Bruker-
TENSOR37 FTIR spectrometer (Bruker Optics,Ettlingen,
Germany). All the spectra were acquired with a PbS detector
and an internal gold background as the reference. A fiber
bundle was used to illuminate the sample and collect the
scattered light [23]. The fiber probe was placed directly to
contactwith equatorial region of the egg, becauseNIR spectra
are more easily measured in the equatorial region than at
the two sides (air chamber). To account for the differences
in the internal composition, the diffuse reflectance spectrum
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was obtained by averaging three spectrameasured around the
equatorial region of an egg. Each spectrum was the average
of 64 scanning spectra and more scans did not improve the
signal quality significantly. The range of the raw spectra was
from 12,000 to 4000 cm−1, and the data were measured with
an interval of 3.857 cm−1. The temperature was kept around
25∘C and the humidity was kept at a steady level in the
laboratory.

2.3. ICP-MS Analysis of Lead. The actual Pb contents of
pidan were analyzed using ICP-MS by a third-party Lab
(Kingmed Diagnostics, Guangzhou, China). The egg shell
was cracked and removed carefully. Because the distribution
of lead in preserved egg is not uniform and its content
decreases gradually from the outside to the inside [15],
a FastPrep-24 homogenizer (MP Biomedicals, Santa Ana,
USA) was used to crush and blend different parts of an egg. A
microwave-assisted digestion procedure [15] was performed
with a CEMMars 5 Microwave Accelerated Reaction System
(CEM Corp., Matthews, USA). About 0.5 g of homogenized
samples was digested in Teflon vessels with 4mL of nitric acid
(HNO

3
) (w/w, 50%) and 2mL of hydrogen peroxide (H

2
O
2
)

(w/w, 30%). Lead contents were analyzed by an Agilent 7500
CE inductively coupled plasma mass spectrometer (Agilent
Technologies Inc., Santa Clara, USA).

The accuracy of the ICP-MS analysis was validated by
using Pb reference solutions (Agilent Technologies Inc., Santa
Clara, USA) and the precision was verified by duplication of
the samples. The correlation coefficient of calibration curve
was 0.9999. The coefficient of variation was 6.55%, whereas
the recovery rate under the experimental conditions was
92.6∼105.1%. The limit of detection (LOD) was 0.66 𝜇g/L
(considering the dilution of samples) as the concentration
corresponding to 3𝜎 (3 ∗ standard deviation) of 11 mea-
surements of the blank. The practical quantification limit
(PQL) was estimated to be 80 𝜇g/L, considering the standard
solutions and sample dilution.

2.4. Chemometrics Analysis. Multivariate data analysis was
performed on Matlab 7.0.1 (Mathworks, Sherborn, MA).
The raw spectral dataset was analyzed by robust principal
component analysis (ROBPCA) [24] to detect and remove
outlying samples caused by the quality of unprocessed eggs,
processing, and measurements. An advantage of ROBPCA
is that it can overcome the masking effects caused by the
presence of multiple outliers. The number of principal com-
ponents (PCs) was determined by cross validation. Based on
the robust PCs, orthogonal distance (OD) and score distance
(SD) of each object can be computed. OD is a measure of the
distance from an object to the space spanned by significant
PCs, which is related to the residuals of PCA; SDdescribes the
distance from an object to the class center, which is related to
the leverage of an object. Each of the objects will fall into one
of the four groups: regular objects (with small SD and small
OD), good PCA-leverage objects (with large SD and small
OD), orthogonal outliers (with small SD and large OD), and
bad PCA-leverage outliers (with large SD and large OD).

To compare the performance of different preprocessing
methods and classification models, data splitting was based
on the raw spectra and all the models were developed on the
same training set and validated with the same test set. With
outliers removed, DUPLEX [25] was performed separately
on the raw spectra of unleaded and leaded preserved eggs.
DUPLEX alternatively selects the farthest objects for training
set and test set, which covers the overall spectral experimental
domain. The unleaded and leaded training/test samples
selected by DUPLEXwere combined as the final training/test
set.

Preprocessing methods including smoothing, taking
second-order derivative spectra, and standard normal variate
(SNV) transformation [26] were performed to improve the
classification performance.TheSavitzky-Golay (S-G)method
[27] by local polynomial fitting was used for smoothing.
S-G smoothing tends to retain features such as relative
maxima, minima, and width, which are usually distorted by
techniques such as moving average. S-G method was also
used to compute the second-order derivative spectra, as it
can reduce the degradation of signal-to-noise ratio (SNR) by
direct differencing. Because the surface curvature of egg shell
is not the same for different locations and eggs, SNVwas used
to remove both additive andmultiplicative baseline variations
caused by variations in optical path length.

For classification models, linear models tend to have
lower model complexity and better generalization perfor-
mance but poorer model flexibility compared with nonlinear
models; therefore, both linear and nonlinear models were
investigated. Based on the key method in chemometrics,
partial least squares regression (PLSR), PLSDA is a very
popular and effective pattern recognition technique. For two-
class problems, PLSDA can be trained with a PLSR between
the predictors and a response category variable. The category
variable can be assigned +1 for class A and −1 for class B. For
prediction, an object with a predicted response value above
0 can be classified into class A and otherwise class B. For
PLSDA, only one parameter, the model complexity, or the
number of latent variables needs to be optimized.

Least squares support vector machine (LS-SVM) is a
simplified version of SVMs [28]. Unlike the ordinary SVMs,
which need to perform a quadratic programming to obtain
the solution, LS-SVM uses equality type of constraints and
is much faster to compute. In this paper, the most frequently
used Gaussian radical basis function (RBF) was adopted as a
nonlinear transformation. Therefore, two parameters, 𝛾 and
𝜎, need to be optimized when developing a LS-SVM model.
The kernel width parameter, 𝜎, influences the non-linear
nature of the RBF. A narrower kernel can force the model
toward a more complex nonlinear solution. The regulariza-
tion parameter, 𝛾, controls the tradeoff between reducing
the structural risk and minimizing the training error, as a
too small value of 𝛾 cannot fit the data sufficiently and an
unnecessarily large 𝛾 would increase the risk of overfitting.
Therefore, 𝛾 and 𝜎 should be optimized simultaneously.

For both PLSDA and LS-SVM,Monte Carlo cross valida-
tion (MCCV) [29] was used to optimize model parameters.
By multiple random splitting of the training set and having
a higher proportion of samples for prediction, MCCV can
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Figure 1: Some of the raw spectra of leaded and unleaded pidan objects.

effectively reduce the risk of overfitting. In this paper, MCCV
was performed with a left-out rate of 30% and sampling
time of 100. The parameters of PLSDA and LS-SVM were
selected to obtain the lowest misclassification rate of MCCV
(MRMCCV):

MRMCCV = (
100

∑
𝑖=1

𝑀
𝑖

𝐵
𝑖

) × 100%, (1)

where 𝐵
𝑖
and 𝑀

𝑖
are the numbers of prediction objects

and misclassified objects, respectively. Sensitivity (Sens.) and
specificity (Spec.) were used to evaluate the classification
performance:

Sens. = TP
TP + FN

,

Spec. = TN
TN + FP

,

(2)

where TP, FN, TN, and FP denote the numbers of true
positives, false negatives, true negatives, and false positives,
respectively. In this work, unleaded and leaded preserved
eggs were denoted as “positives” and “negatives,” respectively.

The overall accuracy (Accu.) of classification models was
also used:

Accu. = TP + TN
TP + TN + FP + FN

. (3)

3. Results and Discussion

The detectable Pb contents of pidan objects ranged from
1.2 ppm to 12.8 ppm. Considering the LOD (0.66𝜇g/L) and
PQL (80𝜇g/L) of ICP-MS analysis, ICP-MS is sufficient as a
reference method, because the cutoff value of Pb content for
pidan is 2 ppm.

Some of the raw NIR spectra of leaded and unleaded
pidan objects are plotted in Figure 1. Seen from Figure 1,
the spectra of leaded and unleaded pidan samples have very
similar absorbance bands in the range of 4000–12000 cm−1.

The assignments of bands are as follows: 8500 cm−1 (the
second overtones of C–H stretching in various groups),
6000–7000 cm−1 (overlapping of the first overtone of O–
H stretching and N–H stretching), 5700 cm−1 (the first
overtones of C–H stretching in various groups), 5160 cm−1
(the combination of the baseband of O–H stretching and the
first overtone of C–O deformation), 4870 cm−1 (combination
of N–H stretching and deformation of peptide groups),
4600 cm−1 (combination of C=O stretching and deformation
of peptide groups), and 4270 cm−1 (combination of C–H
stretching and C–H deformation). Some bands (8500 cm−1,
5700 cm−1, and 4870 cm−1) are very weak and have a very
poor resolution. Moreover, the range of 8000–12000 cm−1 is
baseline and background and carries no chemical informa-
tion, so this interval was excluded from further data analysis.

Figure 2 shows the spectra preprocessed by taking
second-order derivatives (21 points, fourth-order polyno-
mial) and SNV transformation. Spectral smoothing with 15
points and second-order polynomial was also performed.
Compared with the raw spectra, taking second-order deriva-
tive spectra can enhance the resolution of some bands, as
well as improving some details in the spectra. The actual
effects of preprocessing should be evaluated by classification
performance. For both raw and preprocessed spectra, it is
difficult to unambiguously attribute bands to specific chem-
ical components due to overlapping of bands and significant
background; therefore, chemometricmethods are required to
extract the relevant information for classification of leaded
and unleaded pidan objects.

Before data splitting, ROBPCAwas performed separately
on the raw spectra (4000–8000 cm−1) of 147 leaded and
331 unleaded preserved eggs to detect outliers. Figure 3
demonstrates the ROBPCA results of leaded and unleaded
data sets. The number of significant PCs was estimated by
examining robust pooled predicted residual sum of squares
(PRESS) values from cross validation with different PCs. For
the 147 leaded pidan objects, 4 PCs were selected to compute
OD and SD because including more PCs would not reduce
the PRESS significantly. For the leaded pidan, the first 4 PCs
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Figure 2: Some of the second-order derivative and SNV spectra of leaded and unleaded pidan objects. A shift was added to the spectra of
unleaded objects.
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Figure 3: ROBPCA results of the raw spectra (4000–8000 cm−1) of 147 leaded preserved eggs.

explain about 93.6% of the total data variances. Similarly, for
the 331 unleaded pidan objects, 4 PCs were selected and they
account for about 91.9% of the total data variances. Because
OD is a measure of the distance from the sample to the PCs
space and SD describes the sample dispersion in the class
in the PCs space, both orthogonal outliers (with small SD
and large OD) and bad PCA-leverage points (with large SD
and large OD) should be removed. To include the regular
variations in a class, good PCA-leverage points (with large
SD and small OD) should be retained. Seen from Figure 3,
three orthogonal outliers (objects 55, 78, and 142) and two
bad PCA-leverage points (objects 77 and 79) were detected
and removed. For the unleaded data set, 6 orthogonal outliers
and 3 bad PCA-leverage points were removed. The DUPLEX
algorithm was used to split the remaining data into training
and prediction objects. The 322 unleaded objects were split
into 242 training and 80 test samples; the 142 leaded objects
were split into 110 training and 32 test samples. For developing

classification models, the training set had 352 (242 + 110)
objects and the test set had 112 (80 + 32) objects.

PLSDA and LS-SVMmodels were developedwith the raw
and preprocessed spectra in the range of 4000–8000 cm−1.
With different numbers of latent variables and combinations
of 𝛾 and 𝜎, for PLSDA and LS-SVM, respectively, MRMCCV
was computed and the parameters were determined as to
obtain the lowest MRMCCV value. Based on different pre-
processing methods, the prediction results and the selected
parameters are listed in Table 2. It can be seen that prepro-
cessing generally improved the classification performance in
terms of sensitivity, specificity and total accuracy. Second
derivative and SNV significantly sharpened the classification
models by reducing the baseline and backgrounds. Taking
second-order derivative of the raw spectra reduced the
model complexity of PLSDA.The best models were obtained
with second-order derivative spectra, and the sensitivity and
specificity, were 0.975 and 1.000 for PLSDA and 0.975 and
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Table 2: Discrimination of unleaded (positive) and leaded (negative) pidan objects by PLSDA and LS-SVM.

Methods Sensitivity Specificity MRMCCV Accuracy Parameters
Raw data, PLSDA 0.925 (74/80a) 0.938 (30/32b) 0.170 0.929 (104/112c) 7d

Smoothing, PLSDA 0.913 (73/80) 0.906 (29/32) 0.191 0.911 (102/112) 7
2nd derivative, PLSDA 0.975 (78/80) 1.000 (32/32) 0.027 0.982 (110/112) 5
SNV, PLSDA 0.950 (76/80) 0.938 (30/32) 0.091 0.946 (106/112) 6
Raw data, LS-SVM 0.900 (72/80) 0.906 (29/32) 0.178 0.902 (101/112) 0.55, 12e

Smoothing, LS-SVM 0.938 (75/80) 0.875 (28/32) 0.103 0.920 (103/112) 0.40, 14
2nd derivative, LS-SVM 0.975 (78/80) 0.969 (31/32) 0.038 0.973 (109/112) 0.80, 12
SNV, LS-SVM 0.950 (76/80) 0.969 (31/32) 0.069 0.955 (107/112) 0.25, 7
aTrue positive/total positive.
bTrue negative/total negative.
cThe number of correctly classified/the total number of test objects.
dThe number of PLS components.
e
𝜎
2 and 𝛾 for LS-SVM.
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Figure 4:The predicted responses by PLSDA and LS-SVMmodels; samples 1–80 are unleaded (positive) pidan objects and 81–112 are leaded
(negative) pidan objects.

0.969 for LS-SVM, respectively. The best prediction results
were also demonstrated in Figure 4.

4. Conclusions

The results obtained in this paper demonstrate that leaded
(Pb > 2 ppm) and unleaded preserved eggs (Pb < 2 ppm)
can be safely discriminated using NIR spectroscopy and
chemometrics. Since the most stringent safety standard of Pb
content currently implemented for traditional pidan is 2 ppm,
this paper demonstrates the feasibility of NIR spectroscopy
as a rapid and nondestructive method for discrimination of
Pb in pidan. The comparison of different data preprocessing
methods demonstrates that the spectral variations caused by
scattering effects and baseline shifts played a more important
role than SNR. With comparable classification performance,
PLSDA with second-order derivative spectra should be rec-
ommended because it is linear and simpler and expected to

have a more reliable generalization performance. Our future
work will be focused on the influence of PbO on NIR spectra
of pidan.
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