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Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is an important disease on wheat. In this study, quantitative determination
of germinability of Pst urediospores was investigated by using near infrared reflectance spectroscopy (NIRS) combined with
quantitative partial least squares (QPLS) and support vector regression (SVR). The near infrared spectra of the urediospore samples
were acquired using FT-NIR MPA spectrometer and the germination rate of each sample was measured using traditional spore
germination method. The best QPLS model was obtained with vector correction as the preprocessing method of the original spectra
and 4000-12000 cm ™" as the modeling spectral region while the modeling ratio of the training set to the testing set was 4: 1. The
best SVR model was built when vector normalization was used as the preprocessing method, the modeling ratio was 5:1 and the
modeling spectral region was 8000-11000 cm ™. The results showed that the effect of the best model built using QPLS or SVR was
satisfactory. This indicated that quantitative determination of germinability of Pst urediospores using near infrared spectroscopy
technology is feasible. A new method based on NIRS was provided for rapid, automatic, and nondestructive determination of

germinability of Pst urediospores.

1. Introduction

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is an
important air-borne disease of wheat worldwide [1-6]. This
disease can occur in most wheat growing areas of China [2, 4-
6]. Some devastating epidemics have occurred in China since
the 1950s. Especially, in 1950, 1964, 1990, and 2002, wheat
yield losses caused by this disease were as high as 6.0, 3.2,
1.8, and 1.3 million tons, respectively [2, 4]. Being an obligate
parasitic pathogen, the causing agent of this disease expands
in wheat host and has impacts on wheat growth and wheat
production. A large number of urediniospores are released
after rupture of the uredinia on wheat leaves. Generally, the
long distance dispersal of wheat stripe rust relies on the trans-
port of Pst urediniospores by airflow [2]. Up to date, isolation,
purification, cultivation, and preservation of wheat stripe
rust pathogen could not be performed on artificial medium.

The spores of Pst used for scientific research are usually col-
lected from diseased wheat leaves. Sometimes, the pathogen
is acquired by using a spore trap. Due to the effects of the vari-
ous environmental factors, the survival time of the Pst uredin-
iospores is short under natural conditions. Thus the spores of
Pst are usually preserved at low temperature. Only after ger-
mination of the Pst urediniospores landing on wheat leaves, it
is possible for the pathogen to further penetrate the leaves and
induce symptom appearance. The viable Pst urediniospores
are very important for the effective spreads of wheat stripe
rust. It is very helpful to precisely measure the germination
rate of Pst urediospores for accurate prediction of the disease.
Therefore, it is of great significance to investigate the methods
for determining the germinability of Pst urediospores for the
studies on the characteristics of pathogenic biology, pathogen
monitoring, and disease prediction.



At the present time, the determination of the germinabil-
ity of Pst urediospores is generally conducted by using the
spore germination method [7, 8]. As a destructive measure-
ment method, this method is time-consuming and laborious,
and its measurement accuracy is easily influenced by environ-
mental factors and human factors. Qiao et al. [9] evaluated the
viability of Pst urediospores by detecting the integrity of RNA
from the urediospore samples. The results showed that the
samples with high RNA integrity had high viability. However,
this method could not quantitatively evaluate the viability.
Therefore, it is necessary to explore a nondestructive, simple,
rapid, and accurate method for the determination of the
germinability of Pst urediospores.

As a nondestructive, nonpolluting, and rapid analysis
technology, near infrared reflectance spectroscopy (NIRS)
has been widely applied in agriculture, chemical industries,
pharmaceutical industries, and many other fields [10-12].
Studies on detecting plant diseases and nondestructive identi-
fication of plant pathogens based on NIRS have been reported
[13-19]. Based on NIRS, Li et al. [18] qualitatively identified
Pst and wheat leaf rust pathogen (Puccinia recondita f. sp.
tritici, Prt) using distinguished partial least squares (DPLS)
and made the quantitative determination of Pst and Prt using
quantitative partial least squares (QPLS). Based on NIRS,
Cheng et al. [19] identified three physiological races of Pst
(CYR32, CYR3L, and CYR33) using support vector machine
(SVM) with high accuracy. At this present time, there are no
reports on the quantitative determination of germinability of
Pst urediospores using near infrared spectroscopy technol-
ogy.

In this study, based on the germination rates of Pst
urediospores obtained by using the traditional spore ger-
mination method and the obtained near infrared spectra
of the corresponding samples, quantitative determination of
germinability of Pst urediospores was implemented by using
near infrared spectroscopy technology combined with QPLS
and support vector regression (SVR). The effects of spectral
data preprocessing methods, spectral regions, and the ratios
between training sets and testing sets on modeling were
investigated. The aim of this study was to provide a method
for rapid and nondestructive determination of the ger-
minability of Pst urediospores and to provide a reference for
the nondestructive measurement of the spore germinability
of other pathogens.

2. Materials and Methods

2.1. Materials. Three currently predominant physiological
races of Pst including CYR31, CYR32, and CYR33 in China
were used in this study. The races were multiplied on
seedlings of wheat cultivar Mingxian 169, susceptible to all
known physiological races of Pst, in the artificial climate
chamber in the Lab of Plant Disease Epidemiology, Depart-
ment of Plant Pathology, China Agricultural University.

2.2. Methods

2.2.1. Multiplication of Pst. After being soaked in sterile water
for 24 h, the seeds of Mingxian 169 were sowed in pots (10 cm
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in diameter) with about 20 seeds per pot and then were incu-
bated in the artificial climate chamber at 11-13°C and 60-70%
relative humidity with 12 h light (10000 lux) per day. When
the first leaves of the wheat seedlings were fully unfolded, the
urediospores of CYR31, CYR32, and CYR33 preserved in the
liquid nitrogen container were taken out. After water bath at
40°C for 5 min and hydration in the dark at 4°C for 12 h, the
spores were reactivated and were used to make the suspension
with 0.2% Tween 80. The leaves of wheat seedlings were
sprayed with the spore suspension, and then the seedlings
were immediately placed into a moist chamber in dark
conditions at 11-13°C for 24 h. Subsequently, the inoculated
wheat seedlings were incubated in the artificial climate cham-
ber. When the uredinia appeared on wheat leaves, the ure-
diospores of the three physiological races were individually
collected and stored in a dryer at 4°C. To obtain enough ure-
diospores with different germination rates resulting from the
different storage times, multiplication and collection of Pst
urediospores were conducted in different batches.

2.2.2. Acquisition of Near Infrared Spectra. The germina-
tion rates of the Pst urediospores under different storage
times are different. The germination rate decreases with the
prolonging of the storage time. Before acquisition of the
near infrared spectra, the collected urediospores of the three
physiological races of Pst were randomly mixed and stored
in the dryer at 4°C. Then the urediospores under different
storage times were randomly mixed to obtain pathogen
samples with the germination rates of 0%~100% in a uniform
distribution as far as possible. Totally, 64 Pst urediospore
samples (160 mg per sample) with different germination rates
were obtained. The near infrared spectra of the urediospore
samples were acquired by using FT-NIR MPA spectrometer
(Bruker, Germany). The measurement parameters were set as
follows: measured spectral range, 4000-12000 cm™!; resolu-
tion, 8 cm™'; number of scans, 32. Each urediospore sample
was equally divided into four parts (40 mg per part). One part
of 40 mg Pst urediospores was put into a sample cup (4 mm
in diameter) and its spectrum was acquired using integrating
sphere diffuse reflectance method. Then the spectra of the
other three parts were acquired using the same method. The
tightness of the spores in the sample cup should be kept in the
same consistency to reduce the experimental error caused by
different tightness. Thus, four spectra were obtained for each
urediospore sample. The average spectrum of the four spectra
was regarded as the spectrum of the corresponding sample.
A total of 64 near infrared spectra were obtained as shown in
Figure 1.

2.2.3. Microscopic Determination of the Germination Rates
of Pst Urediospore Samples. The germination rates of the
Pst urediospore samples were measured using the spore
germination method. After acquisition of the near infrared
spectra, the spores of each sample were mixed with 0.1% water
agar and were incubated in the dark at 9°C for 24 h. Then the
germinated spores were checked microscopically by examin-
ing 300 spores for each sample. In this study, a spore with a
germ tube longer than half of the diameter of the spore was
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FIGURE 1: Near infrared spectra of 64 samples of Puccinia striiformis
f. sp. tritici urediospores.

considered germinated. According to the results of micro-
scopic examination, the germination rate of each Pst ure-
diospore sample was calculated. Subsequently, data analysis
was conducted based on the near infrared spectra of the
Pst urediospore samples and the corresponding germination
rates.

2.2.4. Establishment of the QPLS Models to Determine the
Germinability of Pst Urediospores. The specific near infrared
analysis software system CAUNIR [20] developed by China
Agricultural University was used for the establishment of
the QPLS models to determine the germinability of Pst
urediospores. The obtained near infrared spectra of the Pst
urediospore samples were randomly divided into training
sets and testing sets based on the required ratios. The QPLS
models to determine the germinability of Pst urediospores
were built using internal cross verification method. The
effects of six preprocessing methods of the original spectral
data including centralization, range normalization, vector
correction, scatter correction, first derivative transform, and
second derivative transform on modeling in the spectral
region of 4000-12000cm™" were compared. To select
the suitable spectral region for modeling, the spectral
region of 4000-12000cm ™" was divided into 36 spectral
regions including 4000-5000cm™,  4000-6000cm™,
4000-7000cm™,  4000-8000cm™,  4000-9000cm”’,
4000-10000cm™",  4000-11000cm™',  4000-12000cm ™',
5000-6000cm™',  5000-7000cm™,  5000-8000cm ',
5000-9000cm™,  5000-10000cm™',  5000-11000cm ™',
5000-12000cm ™', 6000-7000cm™',  6000-8000cm ',
6000-9000cm™,  6000-10000cm™, 600011000 cm ™',
6000-12000cm™",  7000-8000cm™!,  7000-9000 cm ',
7000-10000cm ™!, 7000-11000cm™,  7000-12000 cm ™,
8000-9000cm™',  8000-10000cm™',  8000-11000cm ',
8000-12000cm ™!, 9000-10000cm™",  9000-11000cm ™',
9000-12000 cm ™', 10000-11000 cm™, 10000-12000, and
11000-12000 cm™". The effects of different ratios between
training sets and testing sets (1:1, 2:1, 3:1, 4:1, and 5:1)
on modeling were also analyzed. Determination coefficient
(R?), standard error of calibration (SEC), standard error of
prediction (SEP), and average absolute relative deviation
(AARD) were used to evaluate the established QPLS models.

2.2.5. Establishment of the SVR Models to Determine the
Germinability of Pst Urediospores. The obtained near infrared
spectra of the Pst urediospore samples were preprocessed
by using nine methods, respectively. The nine preprocessing
methods included db2 level 1 decomposition denoising,
db2 level 2 decomposition denoising, db2 level 3 decom-
position denoising, Euclidean normalization, multiplication
scatter correction, standard normalized variate transform,
vector normalization, Savitzky-Golay (S-G) first derivative
transform, and S-G second derivative transform [10, 21].
In this study, the soft thresholding method with heursure
threshold was selected for denoising using db2 wavelet.
When Fuclidean normalization was carried out, the data were
normalized by the Euclidean norm (2-norm). When S-G first
derivative transform or S-G second derivative transform was
performed, the degree of the polynomial was set as 3 and the
span was set as 7. The calculations above were implemented
by using the software MATLAB 7.8.0 (R2009a).

Using the content-grads method [21], the spectra of the
Pst urediospore samples were divided into training set and
testing set based on the ratio of training set to testing set
equal to 1:1, 2:1, 3:1, 4:1, or 5:1, respectively. In the 36
spectral regions above, the SVR models to determine the
germinability of Pst urediospores were built with radial basis
function (RBF) as the kernel function based on the original
spectra and the spectral data obtained by using the nine
preprocessing methods, respectively. Using the grid search
algorithm, the optimal penalty parameter C and the optimal
kernel function parameter y for each SVR model were
searched in the range 27®-2® with the searching step equal to
0.8. Mean squared error (MSE) was calculated at each point
within the grid. As the minimum MSE of the training set was
achieved, the corresponding values of C and y were regarded
as the optimal parameters. The values of R* and MSE of the
training set and the testing set were used to evaluate each
SVR model. And the best model was chosen to determine the
germinability of Pst urediospores.

3. Results

3.1. The Effects of Spectral Data Preprocessing Methods,
Spectral Regions, and Modeling Ratios on the QPLS Models

3.1.1. The Effects of Different Preprocessing Methods on the
QPLS Models. In the spectral region of 4000-12000 cm ™",
the effects of different preprocessing methods of the original
spectral data on the QPLS models for determination of the
germinability of Pst urediospores are shown in Table 1. For
the QPLS model built based on the original spectra, R*, SEC
and AARD of the training set were 0.9895, 0.02%, and 5.32%,
respectively, and R?, SEP, and AARD of the testing set were
0.8705, 0.08%, and 20.23%, respectively. For the QPLS model
built when centralization, first derivative transform or second
derivative transform was used as the preprocessing method,
the value of R? of the training set was relatively low. This indi-
cated that any of these three methods was not the optimal pre-
processing method. For the QPLS model built based on the
spectra preprocessed by range normalization, R, SEC, and
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TaBLE 1: Influence of different preprocessing methods of the near infrared spectra on prediction results of QPLS models for quantitative
determination of germinability of Puccinia striiformis f. sp. tritici urediospores.

Preprocessing method The number of principal components 5 Iraining set , Testing set
R SEC/%  AARD/% R SEP/%  AARD/%

No preprocessing 9 0.9895 0.02 5.32 0.8705 0.08 20.23
Centralization 4 0.7032 0.11 22.87 0.7498 0.11 16.76
Range normalization 9 0.9833 0.03 6.93 0.8686 0.08 20.06
Vector correction 8 0.9665 0.04 9.44 0.8961 0.07 1731
Scatter correction 8 0.9592 0.04 10.71 0.8455 0.08 21.09
First derivative transform 4 0.8081 0.09 19.31 0.8616 0.08 19.41
Second derivative transform 5 0.7851 0.10 20.59 0.8758 0.08 14.34
Average 7 0.8850 0.06 13.40 0.8526 0.08 18.46

AARD of the training set were 0.9833, 0.03%, and 6.93%,
respectively, and R*, SEP, and AARD of the testing set were
0.8686, 0.08%, and 20.06%, respectively. For the QPLS model
built when scatter correction was used as the preprocessing
method, R?, SEC, and AARD of the training set were
0.9592, 0.04%, and 10.71%, respectively, and R?, SEP, and
AARD of the testing set were 0.8455, 0.08%, and 21.09%,
respectively. The results indicated that the QPLS model built
when range normalization or scatter correction was used as
the preprocessing method was not better than that built based
on the original spectra. For the QPLS model obtained with
vector correction as the preprocessing method, R, SEC, and
AARD of the training set were 0.9665, 0.04%, and 9.44%,
respectively, and R*, SEP, and AARD of the testing set were
0.8961, 0.07%, and 17.31%, respectively. Compared with the
QPLS model built based on the original spectra, for the model
QPLS model built when vector correction was used as the pre-
processing method, R* of the training set was slightly lower,
and SEC and AARD of the training set were slightly higher;
however, the values of R?, SEP, and AARD of the testing set
were all better. Therefore, vector correction was used as the
optimal preprocessing method of the original spectra in this
study.

3.1.2. The Effects of Different Spectral Regions on the QPLS
Models. After the original spectra were preprocessed using
vector correction method, the QPLS models for determina-
tion of the germinability of Pst urediospores were built in
the 36 spectral regions above, respectively. The effects of the
different spectral regions on the QPLS models are shown in
Table 2. The QPLS model built in the spectral region 4000-
12000 cm ™" and the QPLS model built in the spectral region
5000-12000 cm ™! were better than that built in other spectral
regions. For the QPLS model built in the spectral region
4000-12000 cm ™', R*, SEC, and AARD of the training set
were 0.9665, 0.04%, and 9.44%, respectively, and R?, SEP,
and AARD of the testing set were 0.8961, 0.07%, and 17.31%,
respectively. For the QPLS model built in the spectral region
5000-12000 cm™", R?, SEC, and AARD of the training set
were 0.9727, 0.03%, and 8.92%, respectively, and R?, SEP, and
AARD of the testing set were 0.8493, 0.08%, and 21.81%,
respectively. In comparison with the QPLS model built in

the spectral region 5000-12000 cm ™, for the QPLS model
built in the spectral region 4000-12000cm™", R* of the
training set was slightly lower, and SEC and AARD of the
training set were slightly higher. However, the values of
R?, SEP, and AARD of the testing set for the QPLS model
built in the spectral region 4000-12000 cm™" were all better
than that for the QPLS model built in the spectral region
5000-12000 cm ™. Therefore, the spectral region of 4000~
12000 cm™" was chosen for modeling.

3.1.3. The Effects of Different Modeling Ratios on the QPLS
Models. After the original spectra were preprocessed using
vector correction method, the QPLS models for determi-
nation of the germinability of Pst urediospores were built
in the spectral region 4000-12000 cm ™' based on different
modeling ratios. The effects of the different modeling ratios
between training sets and testing sets on the QPLS models
are shown in Table 3. For the QPLS model built when the
ratio of the training set to the testing set was 4:1, R?, SEC,
and AARD of the training set were 0.9665, 0.04%, and
9.44%, respectively, and R*, SEP, and AARD of the testing
set were 0.8961, 0.07%, and 17.31%, respectively. The results
demonstrated that the QPLS model built when the ratio of
the training set to the testing set was 4 : 1 was better than other
models. Therefore, the ratio of 4 :1 was chosen as the optimal
modeling ratio for building the QPLS model to determine the
germinability of Pst urediospores. The best QPLS model was
obtained as the number of principal components was 8.

3.2. The Effects of Spectral Data Preprocessing Methods, Mod-
eling Ratios, and Spectral Regions on the SVR Models. The
prediction results of the optimal SVR models using different
preprocessing methods of the near infrared spectra for quan-
titative determination of germinability of Pst urediospores
are shown in Table 4. As shown in Table 4, for the optimal
SVR model built based on the original spectra, R? and MSE
of the training set were 0.9475 and 0.002277, respectively,
and those of the testing set were 0.8996 and 0.005421,
respectively. In contrast, the SVR model built when each of
the three wavelet denoising methods was used as the prepro-
cessing method was worse than that built with the original
spectra. When vector normalization was used as the prepro-
cessing method, four SVR models with satisfactory effects
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TaBLE 2: Influence of different spectral regions on prediction results of QPLS models for quantitative determination of germinability of
Puccinia striiformis f. sp. tritici urediospores.

. -1 L Training set Testing set
Spectral region/cm The number of principal components B )
R SEC/% AARD/% R SEP/% AARD/%

4000-5000 3 0.5836 0.13 26.72 0.6083 0.14 16.89
4000-6000 3 0.5194 0.14 28.96 0.4696 0.16 23.84
4000-7000 3 0.4930 0.15 30.41 0.4259 0.16 30.59
4000-8000 4 0.5618 0.14 28.93 0.6174 0.13 18.56
4000-9000 6 0.7306 0.11 2491 0.8814 0.07 13.42
4000-10000 5 0.6402 0.12 26.16 0.7436 0.11 17.74
4000-11000 8 0.8850 0.07 15.45 0.8785 0.08 16.72
4000-12000 8 0.9665 0.04 9.44 0.8961 0.07 17.31
5000-6000 5 0.6665 0.12 26.81 0.8143 0.09 18.09
5000-7000 4 0.5494 0.14 29.45 0.8216 0.09 16.80
5000-8000 4 0.5562 0.14 30.00 0.7434 0.1 19.36
5000-9000 7 0.7597 0.10 23.74 0.9382 0.05 11.41
5000-10000 5 0.6424 0.12 26.38 0.8888 0.07 13.70
5000-11000 7 0.8419 0.08 19.29 0.8892 0.07 14.96
5000-12000 8 0.9727 0.03 8.92 0.8493 0.08 21.81
6000-7000 6 0.8378 0.08 18.03 0.8565 0.08 18.46
6000-8000 6 0.7228 0.11 23.87 0.8833 0.07 13.15
6000-9000 7 0.8279 0.09 19.22 0.8632 0.08 16.95
6000-10000 6 0.7538 0.10 23.67 0.9034 0.07 13.51
6000-11000 6 0.8014 0.09 21.91 0.9085 0.07 13.77
6000-12000 5 0.7877 0.10 21.50 0.8924 0.07 14.43
7000-8000 5 0.6788 0.12 25.21 0.8051 0.10 16.77
7000-9000 6 0.8309 0.08 18.77 0.9244 0.06 15.06
7000-10000 5 0.7259 0.11 23.80 0.8707 0.08 15.13
7000-11000 4 0.6979 0.11 23.69 0.8990 0.07 14.60
7000-12000 4 0.7897 0.09 21.82 0.8904 0.07 16.61
8000-9000 4 0.8103 0.09 21.18 0.8874 0.07 17.35
8000-10000 4 0.7189 0.1 26.65 0.8694 0.08 20.78
8000-11000 5 0.8231 0.09 19.75 0.8791 0.08 18.67
8000-12000 4 0.7531 0.10 24.59 0.8478 0.08 22.12
9000-10000 4 0.7938 0.09 21.51 0.8550 0.08 20.46
9000-11000 4 0.8038 0.09 20.88 0.8145 0.09 22.65
9000-12000 3 0.6436 0.12 31.45 0.7053 0.12 24.85
10000-11000 4 0.7863 0.10 21.93 0.7605 0.11 26.12
10000-12000 3 0.6754 0.12 29.52 0.7342 0.11 25.76
11000-12000 2 0.6252 0.13 31.85 0.6024 0.14 34.99
Average 5 0.7294 0.10 23.51 0.8088 0.09 18.70

TaBLE 3: Influence of different modeling ratios on prediction results of QPLS models for quantitative determination of germinability of
Puccinia striiformis f. sp. tritici urediospores.

The ra.tio of training set The number of principal components Training set Testing set

to testing set R SEC/%  AARD/% R SEP/%  AARD/%
1:1 6 0.8919 0.06 12.78 0.7585 0.11 28.80
2:1 7 0.9046 0.06 14.03 0.7653 0.11 17.27
3:1 7 0.9149 0.06 12.71 0.7727 0.11 26.88
4:1 8 0.9665 0.04 9.44 0.8961 0.07 17.31
5:1 6 0.8288 0.08 18.48 0.8765 0.09 15.70
Average 7 0.9013 0.06 13.50 0.8138 0.10 21.19
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TABLE 4: The prediction results of the optimal SVR models using different preprocessing methods of the near infrared spectra for quantitative
determination of germinability of Puccinia striiformis f. sp. tritici urediospores.

The ratio of training

p i thod .
reprocessing metho set to testing set

Spectral region/cm™

1 Optimal parameters  Training set Testing set
C y R MSE R MSE

No preprocessing 3:1 4000-12000 3.0314 5278  0.9475 0.002277 0.8996 0.005421
Level 1 decomposition denoising 3:1 4000-12000 3.0314 5278  0.9464 0.002322 0.8996 0.005422
using db2 wavelet
Level 2 decomposition denoising 3:1 4000-12000 3.0314 5278  0.9429 0.002474 0.8978 0.005508
using db2 wavelet
Level 3 decomposition denoising 3:1 4000-12000 3.0314 5278  0.9393 0.002630 0.8954 0.005574
using db2 wavelet
Euclidean normalization 3:1 7000-12000 84.4485 1470334 0.9047 0.004231 0.8956 0.005408
Multiplication scatter correction 3:1 7000-12000 48.5029 1 0.8925 0.004805 0.8754 0.007024
Standard normalized variate 3:1 60009000 84.4485  0.0359  0.8531 0.006267 0.9065 0.007758
transform

2:1 4000-12000 1470334 03299  0.9340 0.003024 0.9034 0.004604

o 5:1 8000-11000 27.8576 16 0.9461 0.002464 0.9262 0.003488

Vector normalization

3:1 8000-12000 256 03299  0.9320 0.003128 0.9129 0.007432

5:1 8000-12000 1470334 05743 0.9462 0.002639 0.9259 0.004726
S-G first derivative transform 3:1 5000-9000 1470334 256 0.9324 0.002947 0.8817 0.007193
S-G second derivative transform 5:1 8000-10000 256 256 0.9099 0.004248 0.8519 0.010270

were picked out and shown in Table 4. For the SVR model
built when vector normalization was used as the preprocess-
ing method, the ratio of the training set to the testing set was
2:1and 4000-12000 cm™" was chosen as the modeling spec-
tral region, R* and MSE of the training set were 0.9340 and
0.003024, respectively, and those of the testing set were 0.9034
and 0.004604, respectively. For the SVR model built when
vector normalization was used as the preprocessing method,
the ratio of the training set to the testing set was 5:1 and
8000-11000 cm™" was chosen as the modeling spectral region,
the values of R* and MSE of the training set were 0.9461 and
0.002464, respectively, and those of the testing set were
0.9262 and 0.003488, respectively. For the SVR model built
when vector normalization was used as the preprocessing
method, the ratio of the training set to the testing set was 3:1
and 8000-12000 cm™" was chosen as the modeling spectral
region, the values of R* and MSE of the training set were
0.9320 and 0.003128, respectively, and those of the testing set
were 0.9129 and 0.007432, respectively. For the SVR model
built when vector normalization was used as the preprocess-
ing method, the ratio of the training set to the testing set was
5:1and 8000-12000 cm ™" was chosen as the modeling spec-
tral region, R* and MSE of the training set were 0.9462 and
0.002639, respectively, and those of the testing set were 0.9259
and 0.004726, respectively. The results indicated that the pre-
diction effects of the four SVR models above for the training
sets were worse and that for the testing sets were better in
comparison with the optimal SVR model built based on the
original spectra. Among these four models, the SVR model
built when vector normalization was used as the preprocess-
ing method, the ratio of the training set to the testing set
was 5:1, and 8000-11000 cm ™" was chosen as the modeling

spectral region was the best. The effect of the optimal SVR
model built when Euclidean normalization, multiplication
scatter correction, standard normalized variate transform, S-
G first derivative transform, or S-G second derivative trans-
form was used as the preprocessing method was worse than
that of the optimal SVR model built based on the original
spectra, and the optimal SVR model built when S-G second
derivative transform was used as the preprocessing method
was the worst among them. In contrast with other SVR
models, for the SVR model built when vector normalization
was used as the preprocessing method, the ratio of the
training set to the testing set was 5:1 and 8000-11000 cm™
was chosen as the modeling spectral region, R* of the training
set was relatively high, MSE of the training set was relatively
low, R? of the testing set was the highest, and MSE of the
testing set was the lowest; in addition, the spectral range for
modeling was relatively small. Therefore, this SVR model was
regarded as the best SVR model for quantitative determina-
tion of germinability of Pst urediospores.

4. Conclusions and Discussion

In this study, the effect of the optimal QPLS model or the
optimal SVM model built for quantitative determination of
germinability of Pst urediospores using near infrared spec-
troscopy technology was satisfactory. The results indicated
that it is feasible to rapidly and nondestructively determine
the germinability of Pst urediospores by using near infrared
spectroscopy technology. A new method based on NIRS was
provided for rapid, automatic, and nondestructive determi-
nation of germinability of Pst urediospores in this study.
Meanwhile, a reference was provided for nondestructive
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determination of spore germinability of other kinds of
pathogens.

When the germination rate measurement models of Pst
urediospores were built using QPLS, the effects of different
preprocessing methods of the original spectral data, different
spectral regions, and different ratios between training sets
and testing sets on modeling were analyzed. The results
showed that the best QPLS model was obtained when vector
correction was used as the preprocessing method, the spectral
region of 4000-12000cm™" was selected as the modeling
spectral region, the ratio of the training set to the testing
set was 4:1, and the number of principal components was
8. For this model, R?, SEC, and AARD of the training
set were 0.9665, 0.04%, and 9.44%, respectively, and R?,
SEP, and AARD of the testing set were 0.8961, 0.07%, and
17.31%, respectively. When the germination rate measurement
models of Pst urediospores were built using SVR, the effects
of different preprocessing methods, different spectral regions,
and different ratios between training sets and testing sets on
modeling were also analyzed. The results showed that the best
SVR model was built when vector normalization was used
as the preprocessing method, the ratio of the training set
to the testing set was 5:1, and the spectral region of 8000-
11000 cm ™" was selected as the modeling spectral region. For
this SVR model, the values of R* and MSE of the training
set were 0.9461 and 0.002464, respectively, and those of the
testing set were 0.9262 and 0.003488, respectively. The results
demonstrated that QPLS and SVR could be used to build
the model for nondestructive and quantitative determination
of germinability of Pst urediospores based on near infrared
spectra.

SVR is suitable to solve small sample, nonlinearity, high
dimension, and other complex problems [22]. Moreover, the
spectral range of 8000-11000cm™" in which the best SVR
model was built was smaller than the spectral range of 4000-
12000 cm ™! in which the best QPLS model was built in this
study. Therefore, in the practical application, it is preferred to
use SVR to build the model for quantitative determination
of germinability of Pst urediospores. In addition, there are
many factors that can affect the germinability of the Pst ure-
diospores. In particular, ultraviolet radiation, temperature,
humidity, and many other environmental factors can influ-
ence the vitality and the survival of Pst urediospores during
their long distance dispersal [2, 6, 23]. Further studies are
needed to determine whether these factors would affect the
relationship between the near infrared spectra and the ger-
minability of Pst urediospores.
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