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The continuous monitoring of the particle size distribution in particulate processes with suspensions or emulsions requires
measurement techniques that can be used as in situ devices in contrast to ex situ or laboratory methods. In this context, for the
evaluation of turbidimetric spectral measurements, the application of different numerical inversion algorithms is investigated with
respect to the particle size distribution determination of polystyrene suspensions. Amodified regularization concept consisting of a
Twomey-Phillips-Regularization with an integrated nonnegative constraint and amodified L-curve criterion for the selection of the
regularization parameter is used. The particle size (i.e., particle diameter) of polystyrene suspensions in the range 𝑥 = 0.03–3 𝜇m
was validated via dynamic light scattering and differential centrifugal sedimentation and compared to the retrieved particle size
distribution from the inverted turbidimetry measurements.

1. Introduction

The characterization of solid and liquid (sub)micron-sized
particle, for example, in suspensions or emulsions, is of
interest for industry and research. The industrial usage and
application are manifold, for example, in pharmaceutical,
biotechnological, and machining industry. Hereby, the mea-
surement technique needs to be reliable, rapid, in situ,
and noninvasive [1]. One promising optical measurement
technique for this application is the UV-Vis spectroscopy
(also known asmultiwavelength spectroscopy, turbidity spec-
troscopy, or turbidimetry) which had been widely applied in
scientific and industrial applications [2–4] for a broad range
of different disperse systems [5–7]. For instance, turbidimetry
proved to be capable of covering the particle size (i.e., diam-
eter) range 𝑥 = 0.02–20𝜇m for NIST-traceable polystyrene
latex standards [8].

The UV-Vis spectroscopy is an indirect optical charac-
terization method [9] which requires numerical inversion
algorithms to determine the particle size (distribution). The
underlying continuous Fredholm integral equation of the first

kind relating measured turbidity to the particle size distri-
bution function is inherently ill-posed because no unique
solution exists. Additionally, for the recreation of the size
distribution from turbidity measurements, the continuous
input signal is discretized which leads to ill-conditioned
matrices. Therefore, small measurement errors lead to large
errors and unacceptable solutions, which may be solved, for
example, by an a priori restriction of the shape or type of
the particle size distribution [10, 11]. Another critical problem
of the turbidimetry method is caused by oscillations of the
kernel function due to the dependence of Mie-extinction
on the Mie-parameter [12, 13]. The integral operators based
on continuous models like Wiener, Hammerstein, or Fred-
holm operator are treated with iterative approaches like the
Landweber-Bialy, projected Landweber, and Chahine, as well
as direct methods like nonnegative least square, Active-
Set, and the Twomey-Phillips-Regularization [14]. A general
overview over inverse problems is provided by Hansen [15]
andGhoshRoy andCouchman [16], whereas a comparison of
different conventional applied inverse algorithms is given by
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Kandlikar and Ramachandran [17], Vargas-Ubera et al. [18],
and Riefler and Wriedt [19].

Iterativemethods with an implemented nonnegative con-
straint are characterized by a good numerical stability of the
method due to the avoidance of singular value decomposition
(like the Twomey-Phillips-Regularization (TPS)) [20], but
dealing with the drawback of an increased computational
effort (slow convergence of the solution). Crilly [21] also
points out that iterative methods have advantages due to
their simplicity, because no a priori knowledge of statistics
of the measured data is needed and an easy implementation
of constraints and error boundaries are given.

The Twomey-Phillips-Regularization (also known as
Tikhonov-Regularization) treats discrete ill-posed problems
to overcome the numerical instabilities associated with the
large condition number by replacing the problem with a
nearby well-conditioned problem to yield an approximate
solution [22]. This is done by the choice of a regularization
parameter 𝛾 that controls the degree of smoothing or reg-
ularization for the applied problem [22], since a controlled
smoothing can be used to suppress unwanted oscillations
that are often found in numerical solutions [23, 24]. This
leads to more satisfactory solutions than using the ordinary
least squares solution [14]. The choice of the value of the
regularization parameter 𝛾 is the crucial point of the algo-
rithm, since its selection is “a trade off between an oscillatory
solution based on the minimization of the residuals and a
perfectly smooth solution not describing the real system” [3].
Conventionally, the selection of the regularization parameter
𝛾 is done via the L-curve criterion [22, 25] or generalized cross
validation (GCV) [10, 25]. The smoothing of the solution
is enforced by the smoothing matrix 𝐻 by penalization
of oscillations in the particle size distribution that may be
formulated as the sum of the squares of the zeroth, first,
or second differences [26]; hereby, the sums of the second
squares𝐻

2
are a “less restrictive” measure of smoothness [10]

than the identity matrix𝐻
0
or the sum of the first differences

𝐻
1
[26–28] and the most common applied smoothness

criteria [17]. Other methods improve the solution of TPR by
constraining the solution regarding to nonnegativity as well
as normalization of the PSD to unity [27, 29].

Horváth et al. [30] recently introduced an optimised
nonnegative Twomey-Phillips-Regularization (NNTPR) and
a modified L-curve criterion (LCC) for the identification of
the “corner” of the L-curve as the optimal regularization
parameter, which will be compared in this contribution
to conventionally applied algorithms for turbidity mea-
surements of monodisperse polystyrene suspensions. The
comparison includes the standard Tikhonov regularization
[23, 24, 31] with an applied L-curve criterion [32–34] and
generalized cross validation (GCV) [10, 35, 36] for choice of
the regularization parameter. Moreover, iterative approaches
like the nonnegative least square solution (NNLS) [32, 37],
Active-Set (AS) [38, 39], Landweber-Bialy (LB) [40, 41],
projected Landweber (PLW) [20, 42], Chahine method (CH)
[9, 43, 44], and a least square fit to a monomodal log-normal
distribution (LSF) [45, 46] are applied. The inversion results
will be evaluated for the numerical approaches as well as the
computational effort. The retrieved particle size distributions

Table 1: Comparison of the nominal and determined particle size
(diameter) of the polystyrene latex suspensions.

Supplier of
particles

Nominal particle size
[𝜇m]

Determined mean particle
size [𝜇m]

DLS DCS
Fisher Scientific 0.030 0.033 0.041
H. Lach GmbH 0.497 0.518 0.565
In-house 0.720 0.723 0.738
Sigma Aldrich 2.020 2.122 2.020
Fisher Scientific 3.002 2.866 2.850

Figure 1: REM picture of in-house produced polystyrene particles
[56].

were evaluated by the determination of the median, modal,
and Sauter mean particle size in comparison to the original
measured values.

2. Materials and Methods

2.1. Materials. Polystyrene particle samples have been used
(see Table 1) with particle diameters 𝑥 = 30 nm and 𝑥 =

3.002 𝜇m from Fischer Scientific (Niederau, Germany), with
𝑥 = 0.497 𝜇m fromHans Lach GmbH (Brunn, Austria), with
𝑥 = 2.020 𝜇m from Sigma Aldrich (St. Louis, USA), and with
𝑥 = 0.720 𝜇m produced in-house [56] (see Figure 1). The
actual particle size distribution of the polystyrene suspension
has been validated via dynamic light scattering (DLS) (Delsa
Nano C, Beckman Coulter, Brea, USA) and differential
centrifugal sedimentation (DCS) (CPS Centrifuge DC 24000
UHR, CPS Instruments, Seagate Lane, USA).The suspension
samples have been dispersed indirectly in a water-bath via
ultrasonification with a Sonopuls HD 3200 equipped with an
apexKE76 (all Bandelin, Berlin, Germany) for 15minutes and
an intensity of 50% prior to the measurement.

2.2. Spectroscopy Measurements. The UV-Vis-NIR transmis-
sion spectraweremeasuredwith aminiaturized spectrometer
HR2000+ ES, a light source DH2000-BALUV/Vis (all Ocean
Optics, Dunedin, USA), a quartz glass cuvette with a path
length of 𝐿 = 1 cm, and deionized water as continuous
phase. The spectra were recorded in the wavelength range of
240 < 𝜆

0
< 900 nm (𝜆

0
is the wavelength in vacuum) at 1454

different wavelengths; thus, the spatial wavelength resolution
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of the single beam spectrometer is Δ𝜆 ∼ 0.45 nm. All mea-
surements were carried out at room temperature 60 minutes
after warming up of the bulbs. Particle concentrations of
the suspensions were adjusted to measure a slight turbidity
to avoid multiple scattering, which lead to lower number
concentrations of the larger particles. The dark noise (i.e.,
the electronic background noise of the sensor/measurement
equipment) was measured prior to the reference spectrum
(pure water in the cuvette) and both spectra were stored
to subtract them from the measurements. To improve the
signal-to-noise ratio the spectra were averaged over 100
measurements [2].

The turbidity 𝜏(𝜆) is defined by

𝜏 (𝜆) =

1

𝐿

log
10
(

𝐼
0

𝐼

) (1)

with the wavelength in the medium (i.e., the continuous
phase water):

𝜆 =

𝜆
0

𝑛medium
(2)

with the path length 𝐿, the refractive index of the medium
𝑛medium, and the intensities of the incident and the attenuated
beam 𝐼

0
and 𝐼. The term ln(𝐼

0
/𝐼) is called absorbance,

extinction, or optical density.The absorbance is proportional
to the concentration (Beer’s Law) and proportional to the
optical path length (Bouguer’s Law), which is summarized by

𝐼 = 𝐼
0
⋅ 10
−𝐿𝑐𝜀

, (3)

where 𝑐 corresponds to the concentration of the dispersed
material in mol/L and 𝜀 is the molar absorptivity when no
stray light, emission, scattering, or reflection occurs.The sus-
pensions have been homogenized before each measurement
with a measurement duration shorter than 100ms. Due to
this short time span, settlement during measurements can be
neglected, which would anyway only influence the particle
concentration.

2.3. Scattering Calculation. The calculations of the Mie scat-
tering coefficient were carried out by theMATLAB code from
Mätzler [47] which is based on the work of Bohren and
Hufman [48]. The description of the optical dispersion of
the polystyrene particles was taken from the recent work of
Gaigalas et al. [49] with the assumption of spherical particles,
which seems to be valid as shown in Figure 1. The spectral
dispersion for the continuous aqueous phase was taken from
the work of Thormählen et al. [50] for standard conditions.

The Mie-theory is used to represent the scattering
behaviour of spherical particles. The turbidity 𝜏(𝜆

0
), the

wavelength of the light 𝜆
0
in vacuum, and the normalized

particle size distribution 𝑓(𝑥) for a diluted dispersion may be
calculated by [51]

𝜏 (𝜆
0
) =

𝜋

4

∫

∞

0

𝑄ext (𝑚 (𝜆
0
) , 𝑥) ⋅ 𝑓 (𝑥) ⋅ 𝑥

2
⋅ 𝑑𝑥, (4)

where 𝑥 is the size of the particle, 𝑓(𝑥) is the particle
size distribution, and 𝑄ext(𝑚(𝜆

0
), 𝑥) is the Mie extinction

coefficient. It is mentioned that the retrieved particle size
distribution 𝑓(𝑥) is “equivalent to volume-based particle size
distribution obtained from DLS” [52]. The complex relative
refractive index𝑚(𝜆

0
) is given by

𝑚(𝜆
0
) =

𝑛 (𝜆
0
) + 𝑖𝜅 (𝜆

0
)

𝑛
0
(𝜆
0
)

, (5)

where 𝑛(𝜆
0
) corresponds to the real component and 𝜅(𝜆

0
) to

the imaginary part of the refractive index of the dispersed
phase and 𝑛

0
(𝜆
0
) to the refractive index of the continuous

phase.

2.4. Numerical Inversion. By defining the Kernel𝐾

𝐾(𝜆
0
, 𝑥) =

𝜋

4

⋅ 𝑄ext (𝜆0, 𝑥) ⋅ 𝑥
2 (6)

(4) can be identified as a Fredholm integral equation of the
first kind [26], which is a classical ill-posed problem, since
different size distributions can fit the turbidity data within the
same level of accuracy [53]. Discretization of (4) requires an
appropriate linear discrete model [10], where the midpoint
approximation rule was applied. For 𝑁 − 1 intervals, the
integral can be, for a wavelength 𝜆

0,𝑖
, approximated as the

sum:

𝜏
𝑖
≅

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗

or as matrix notation: 𝜏 ≅ 𝐴𝑓, (7)

where the approximation lead to “finite error in representing
an integral as a discrete sum” [17]. The discretized kernel 𝐴
corresponds to an ill-conditioned matrix which produces a
smoothing effect on the retrieved size distribution of 𝑓

𝑗
=

𝑓
𝑗
(𝑥
𝑗
) (index 𝑗 relates to the size of the particle) for a direct

problem for the minimization of ‖𝑎
𝑖𝑗
𝑓
𝑗
− 𝜏
𝑖
‖ and, therefore,

amplifies high frequency components of 𝜏
𝑖
(index 𝑖 relates to

the measured turbidity) for indirect problems. Thus, small
measurement errors in the measured turbidity spectra 𝜏

lead to large errors in the retrieved size frequency 𝑓
𝑗
[26].

The kernel matrix coefficient 𝑎
𝑖𝑗
= 𝑎
𝑖𝑗
(𝜆
0,𝑖
, 𝑥
𝑗
) contains the

scattering information at the wavelength 𝑖 and the particle
size 𝑗.

The proposed solution of the vector 𝑓 (particle size
distribution) may be gained via numerical inversion algo-
rithms. Hereby, the MATLAB implementation of the Active-
Set (AS) method was taken from Roque [54] which is
based on the derivation of [38] and the Chahine (CH) and
Landweber-Bialy (LB) method from Riefler and Wriedt [19];
the nonnegative least squares (NNLS) method uses the stan-
dardMATLAB integrated “lsqnonneg” routine; the projected
Landweber (PLW) method was taken from Rennoch [42]
with a fixed relaxation parameter:

𝜔 =

0.5

norm |𝐴|
2

(8)

with the 2-norm of Eliçabe and Garćıa-Rubio [10] who have
introduced the factor 𝛽 in the elements (1, 1) and (𝑁,𝑁)

of the smoothing matrix 𝐻 forcing the size distribution
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to tend to zero for the minimal and maximal droplet size
in case of the Twomey-Phillips-Regularization (TPR). This
factor corresponds to an a priori restriction mentioned in
Section 1. A fixed value of 𝛽 = 1000 was used in case of the
standard L-curve criterion (LCC), taken from Hansen [55],
and the generalized cross validation (GCV), whereas 𝛽 = 1

was applied to the modified L-curve criterion (Mod. LCC),
based on the work of Horváth et al. [30] for the selection of
the regularization parameter 𝛾. The three applied smoothing
matrices are the following 0th, 1st, and 2nd order derivatives:

𝐻
0
=

[

[

[

[

[

[

[

[

[

1 0 ⋅ 0 0

0 1 ⋅ 0 0

⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ 1 0

0 0 ⋅ 0 1

]

]

]

]

]

]

]

]

]

,

𝐻
1
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 −1 0 0 ⋅ ⋅ 0

−1 2 −1 0 0 ⋅ 0

0 −1 2 −1 0 ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 ⋅ 0 −1 2 −1 0

0 ⋅ 0 0 −1 2 −1

0 ⋅ ⋅ 0 0 −1 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐻
2
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 −2 1 0 ⋅ ⋅ 0

−2 5 −4 1 0 ⋅ 0

1 −4 6 −4 1 ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 ⋅ 1 −4 6 −4 1

0 ⋅ 0 1 −4 5 2

0 ⋅ ⋅ 0 1 −2 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(9)

Thesematrices are applied to all noniterative, direct inversion
algorithms based on the TPR scheme to investigate the
influence of higher degrees of smoothing, starting from 𝐻

0

to𝐻
2
.

The retrieved particle size distributions were discretized
into 𝑛 = 13, 26, 51, 101, 250, and 1000 linear distributed size
classes between𝑥min = 5 nmand𝑥max = 5000 nm resulting in
a spatial resolution ofΔ𝑥

13
∼ 384 nm toΔ𝑥

1000
∼ 5 nm.Thus,

the scattering matrix 𝐴 is characterized by the dimension 13
. . . 1000 × 1454.

3. Results and Discussion

The measured turbidity spectra for the polystyrene suspen-
sions with 𝑥 = 0.03, 0.497, and 3.02 𝜇m in the wavelength
range 240 nm < 𝜆 < 900 nm are illustrated in Figure 2.
The absorbance in the visible light range and the oscillation
increases with increasing particle size for the investigated
system.

300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tu
rb

id
ity

𝜏
(a

.u
.)

Wavelength 𝜆 (nm)

x = 0.030𝜇m
x = 0.497𝜇m
x = 3.020 𝜇m

Figure 2: Measured turbidimetric spectra of the polystyrene latex
suspensions.
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Figure 3: Comparison of the original 𝑥or and retrieved 𝑥re modal
value of the particle size distribution for the NNLS approach in
dependency on the discretization of the particle size distribution.

An issue to be addressed is the discretization of the
retrieved particle size distribution. A decreased width of the
size classes leads an increased spatial resolution, which may
lead to oscillation in the resulting particle size distribution
[19]. This is illustrated in Figure 3 for the modal value of
the size distribution of the NNLS algorithm. It can be seen
that 26–51 size classes led to a sufficient determination of
the particle size and a further increased resolution led to
no significant increased resolution, but a strong increase in
computational effort.
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Figure 4: Measured particle size distribution of the polystyrene suspension for 𝑥nominal = 0.497 𝜇m with (a) DCS (𝑥
3,2

= 0.518 𝜇m) and (b)
DLS (𝑥

3,2
= 0.565 𝜇m).
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Figure 5: Retrieved particle size distribution of the polystyrene suspension via (a) least square fit, (b) Chahine method, (c) Active-Set, (d)
NNLS, (e) Landweber-Bialy, and (f) projected Landweber approach for 250 size classes for 𝑥nominal = 0.497 𝜇m.

Table 2 gives an overview over the normalized (normal-
ization with respect to the NNLS method) computational
demand of the applied numerical inversion algorithms for a
discretization of 1000 size classes, 1454 measurement points,
and a fixed iteration number of 50000 for the (projected)
Landweber (LB and PLW) and Chahine (CH) method.
Because of this fixed iteration number, the computational
demand of LB, PLW, and CH is not directly comparable.
Further investigations on convergence behaviour of each

method need to be done.The Least square fit (LSF) and GCV
method were implemented as a slower brute force approach.

Figure 4 illustrates themeasured particle size distribution
using DLS and DCS, while Figure 5 shows the retrieved
particle size distribution for the case of 𝑥nominal = 0.497 𝜇m
for the nonregularization algorithms. The least square fit,
Chahinemethod,NNLS, and theActive-Setmethod obtained
a narrow distribution close to the original value 𝑥nominal of
the polystyrene suspension. The good results of the least
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Table 2: Comparison of the normalized computational demand of the applied numerical inversion techniques; CH, LB, and PLW have fixed
iteration number.

Algorithm AS CH LSF LB PLW NNLS TPR NNTPR
LCC GCV Mod. LCC

Reference [38] [19] [45] [19] [42] [32] [55] [55] [30] [30]
Normalized mean time 81 689 5036 18100 1376 1 17 3919 21 85
Normalized standard
deviation of the mean time 15.2 13.2 61.1 103.2 61.1 0.01 0.15 30.4 0.14 32.7

Table 3: Comparison of the retrieved Sauter mean particle size 𝑥
3,2

and 𝑙 = 1000.

𝑥nominal [𝜇m] AS CH LSF LB PLW NNLS TPR (𝐻
1
) NNTPR (𝐻

0
)

LCC GCV Mod. LCC
0.030 0.052 0.070 0.059 0.103 0.112 0.055 3.17 3.75 3.00 0.070
0.497 0.520 0.502 0.515 0.527 0.530 0.520 2.69 3.71 3.16 0.506
0.720 0.737 0.733 0.734 0.741 0.744 0.738 2.59 3.67 2.99 0.716
2.020 2.05 2.05 2.03 2.05 2.05 2.05 3.19 3.37 2.70 2.01
3.000 2.97 2.97 2.91 2.97 2.97 2.97 2.95 3.35 3.15 2.91

Table 4: Comparison of the retrieved median particle size 𝑥
50
and 𝑙 = 1000.

𝑥nominal [𝜇m] AS CH LSF LB PLW NNLS TPR (𝐻
1
) NNTPR (𝐻

0
)

LCC GCV Mod. LCC
0.030 0.053 0.068 0.056 0.065 0.070 0.053 1.20 2.22 1.19 0.070
0.497 0.506 0.496 0.509 0.515 0.510 0.506 0.380 1.97 0.550 0.503
0.720 0.735 0.725 0.719 0.730 0.720 0.735 0.800 1.87 0.795 0.713
2.020 2.07 2.06 2.02 2.03 2.02 2.07 2.23 2.07 2.10 2.01
3.000 3.00 3.00 2.87 2.97 2.97 3.00 2.83 2.17 1.87 2.91

Table 5: Comparison of the retrieved modal particle size xmod and 𝑙 = 1000.

𝑥nominal [𝜇m] AS CH LSF LB PLW NNLS TPR (𝐻
1
) NNTPR (𝐻

0
)

LCC GCV Mod. LCC
0.030 0.055 0.070 0.059 0.055 0.055 0.055 0.305 0.965 1.12 0.070
0.497 0.510 0.500 0.520 0.540 0.540 0.510 0.535 0.495 0.515 0.505
0.720 0.725 0.725 0.719 0.735 0.735 0.725 0.780 0.720 0.780 0.715
2.020 2.07 2.08 2.02 2.08 2.08 2.07 2.08 2.07 2.14 2.02
3.000 3.01 3.01 2.86 5.00𝑒 − 3 5.00𝑒 − 3 3.01 2.96 3.01 1.21 2.91

square fit are caused by the low noise in the measured spectra
𝜏(𝜆
0
), since there is a strong dependence on the spectral noise

for this algorithm in synthetic data experiments. The two
iterative approaches Landweber-Bialy and projected Landwe-
ber method are characterized by a broader distribution
with a mode value close to the original particle size, where
the projected Landweber method was less computational
demanding.

The NNTPR approach is characterized by a good inver-
sion quality, where the retrieved distribution got slightly
broader with an increasing degree of the smoothing matrix
𝐻 (Figures 6(a)–6(c)). The regular solution of the Twomey-
Phillips-Regularization with an applied L-curve criterion
is shown in Figures 6(d)–6(f). Here, the mode value of
the retrieved distribution is close to the original size dis-
tribution but with some numerical noise in the range of
𝑥retrieved > 1 𝜇m (negative values are not shown). Even this

result surpasses the regular approach for the selection of the
corner of the L-curve criterion for this experimental case
(see Figures 6(g)–6(i)). However, by the GCV (Figures 6(j)–
6(l)) worse results are obtained due to the flat shape of the
objective function which has to be minimized. As reported,
the objective function may form a flat global minimum that
could be difficult to detect [22].

Figure 7 illustrates the benefit of the second step of
the NNTPR approach compared to the regular Twomey-
Phillips-Regularization with the modified L-curve criterion
for 𝑥retrieved = 2.020 𝜇m and the smoothing matrix 𝐻

1
.

The numerical noise caused by the oscillating character
of the Twomey-Phillips-Regularization of the solution is
reduced and the nonnegative constraint that suppresses the
nonphysical solutions.

Tables 3–6 give an overview over the retrieved particle
sizes 𝑥

3,2
, 𝑥
50
, and 𝑥mode for the discretization of the retrieved



Journal of Spectroscopy 7

0 1 2 3 4 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
or

m
al

iz
ed

 f

Smoothing matrix: H0

Particle size (𝜇m)

(a)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 f

H1

Particle size (𝜇m)

(b)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 f

H2

Particle size (𝜇m)

(c)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 f

Particle size (𝜇m)

(d)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 f

Particle size (𝜇m)

(e)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 f

Particle size (𝜇m)

(f)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 f

Particle size (𝜇m)

(g)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 f

Particle size (𝜇m)

(h)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
N

or
m

al
iz

ed
 f

Particle size (𝜇m)

(i)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 f

Particle size (𝜇m)

(j)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 f

Particle size (𝜇m)

(k)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 f

Particle size (𝜇m)

(l)

Figure 6: Retrieved particle size distribution of monodisperse polystyrene suspension (𝑥nominal = 0.497 𝜇m) for the different smoothing
matrices; (a)–(c) NNTPR, (d)–(f) TPR with applied modified L-curve, (g)–(i) TPR with applied regular L-curve, and (j)–(l) TPR with GCV
for 250 size classes.
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Table 6: Comparison of the retrieved Sauter mean particle size 𝑥
3,2

and 𝑙 = 250.

𝑥nominal [𝜇m] AS CH LSF LBW PLW NNLS TPR (𝐻
1
) NNTPR (𝐻

0
)

LCC GCV Mod. LCC
0.03 0.065 0.065 0.065 0.100 0.113 0.065 0.572 0.821 3.16 0.065
0.497 0.520 0.503 0.514 0.533 0.529 0.520 0.672 1.61 3.00 0.507
0.720 0.738 0.733 0.733 0.741 0.744 0.738 0.833 1.73 2.54 0.716
2.020 2.05 2.05 2.03 2.06 2.04 2.05 3.11 2.11 2.72 2.01
3.000 2.97 2.97 2.91 2.97 2.97 2.97 2.95 1.66 3.15 2.91
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Figure 7: Retrieved particle size distribution of the polystyrene suspension for smoothing matrices 𝐻
1
and (a) TPR with applied modified

L-curve and (b) NNTPR for 250 size classes for 𝑥nominal = 2.02 𝜇m.

particle size distribution into 𝑙 = 1000 size classes and the
particle size 𝑥

3,2
for 𝑙 = 250 size classes.The application of the

Landweber-Bialy and projected Landweber method did not
lead to a reasonable prediction of themode particle size 𝑥mode
for the largest particle size 𝑥nominal = 3.0 𝜇m, while for 𝑥 <

3 𝜇m these two methods led to comparable results. It should
be noted that the improved resolution of the retrieved particle
size distribution did not lead to an improved determination of
the particle size 𝑥

3,2
. It was possible to determine the particle

sizes𝑥
3,2
,𝑥
50
, and𝑥mode within a range of±10%of the original

particle size for 𝑥 = 0.497–3 𝜇m with the Chahine method,
Active-Set, least square fit, NNLS, and NNTPR, whereas the
polystyrene particles with a nominal size of 𝑥nominal = 30 nm
were slightly overestimated by these methods. It is assumed
that the reason for the overestimation is the small difference
of the turbidity spectra between different particle sizes in the
Rayleigh scattering regime. However, simulations show that
the extinction spectra curves have slightly different slopes
and, therefore, distinction between different particle sizes is
in principle possible.

The conventional Twomey-Phillips-Regularization is not
able to predict the Sauter mean diameter 𝑥

3,2
caused by the

oscillating behaviour and the numerical noise in the particle
size distribution; however, the regular L-curve criterion led
to comparable results for the particle sizes 𝑥

50
and 𝑥mode for

𝑥nominal > 30 nm and the modified L-curve criterion for

30 nm < 𝑥nominal < 3 𝜇m. The generalized cross validation is
able to predict the modal value 𝑥mode for 𝑥nominal > 30 nm.

4. Summary and Conclusion

The characterization of polystyrene latex particle suspen-
sions with particle sizes in the range 𝑥 = 0.03–3 𝜇m via
turbidimetric measurements was demonstrated. Hereby, dif-
ferent conventional applied numerical methods have been
evaluated and compared to a recently introduced approach
of Horváth et al. [30] consisting of a Twomey-Phillips-
Regularization with an integrated nonnegative constraint
(NNTPR) and a modified L-curve criterion for the selection
of the regularization parameter (no other a priori information
are introduced).

The comparison showed that the Chahine method,
Active-Set, least square fit, and nonnegative least squares
(NNLS) were able to determine the characteristic particle
sizes 𝑥

3,2
, 𝑥
50
, and 𝑥mode within a range of ±10% of the

original particle size for 𝑥 = 0.497–3𝜇m but overestimate
the nanoscalic polystyrene system with 𝑥 = 30 nm. The
Landweber-Bialy and projected Landweber method were
not able to sufficiently retrieve the modal particle size
𝑥mode for the largest particle size 𝑥 = 3 𝜇m. The NNTPR
approach obtained comparable good results surpassing the
results of the standard Twomey-Phillips-Regularization with
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an applied L-curve criterion and generalized cross validation.
How to compensate a poorly chosen regularization parameter
by the applied nonnegative constraint could be shown.
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[34] M. Karamehmedović and K. Knudsen, “Inclusion estimation
from a single electrostatic boundary measurement,” Inverse
Problems, vol. 29, no. 2, Article ID 025005, 18 pages, 2013.

[35] G. Wahba, “Practical approximate solutions to linear operator
equations when the data are noisy,” SIAM Journal on Numerical
Analysis, vol. 14, no. 4, pp. 651–667, 1977.

[36] P. Craven and G. Wahba, “Smoothing noisy data with spline
functions,” Numerische Mathematik, vol. 31, no. 4, pp. 377–403,
1979.

[37] F. P. Seelos IV and R. E. Arvidson, in Proceedings of the Lunar
and Planetary Science Conference, League City, Tex, USA, 2003.
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