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This paper proposed the joint use of Fourier Transform InfraredAttenuated Total Reflectance Spectroscopy (FTIR-ATR) and Partial
Least Square (PLS) regression for the simultaneous quantification of four adulterants (coffee husks, spent coffee grounds, barley,
and corn) in roasted and ground coffee. Roasted coffee samples were intentionally blended with the adulterants, at adulteration
levels ranging from 0.5 to 66%w/w. A robust methodology was implemented in which the identification of outliers was carried out.
High correlation coefficients (0.99 for both calibration and validation) coupled with low degrees of error (0.69% for calibration;
2.00% for validation) confirmed that FTIR-ATR can be a valuable analytical tool for quantification of adulteration in roasted and
ground coffee. This method is simple, fast, and reliable for the proposed purpose.

1. Introduction

New and challenging risks, such as adulteration, have
emerged as food supply chains become increasingly global
and complex, although fraud in the food sector has been
an issue since ancient times. Food adulteration tends to be
economically motivated and is achieved through addition,
substitution, or removal of food ingredients. It is an issue that
concerns not only consumers, but producers and distributors
as well [1].

Coffee is one of the most valuable and most commonly
consumed beverages in the world. Due to its high price, this
commodity is usually targeted for adulteration. Impurities
and adulterants are the most common concern. Any low-
cost material of biological origin could be used as a potential
adulterant in coffee [2]. Roasted and ground coffee presents
physical characteristics (particle size, texture, and color) that
are easily reproduced by roasting and grinding a variety
of biological materials (cereals, seeds, parchments, etc.).
As reported in previous works, coffee husks, sticks, spent
coffee grounds, corn, barley, rice, and soybeans have been

worldwide admixed with coffee for the sole purpose of
adulteration [3, 4].

In order to develop analytical tools suitable to detect and
identify adulteration in roasted and ground coffee, different
techniques and procedures have been proposed, including
UPLC [2], GC-MS [3], Direct Infusion Electrospray Ion-
ization [5], HPAEC-PA [6], HPLC-DAD [7], UV-Vis, and
Infrared Spectroscopy [4, 8–11]. Among these techniques,
spectroscopic methods have gained attention in recent stud-
ies because they are fast, reliable, and simple to perform
and usually do not require sample pretreatment, being thus
appropriate for establishment of routine laboratory analysis.

In previous studies, we have shown that Diffuse Reflec-
tance Fourier Transform Infrared Spectroscopy (DRIFTS) is
suitable for identification, discrimination, and quantification
of adulterants in roasted and ground coffee [4, 9, 10]. How-
ever, application of this method requires that the sample be
mixed with KBr prior to analysis, and the amount employed
for analysis is quite small, which could affect representativ-
ity, considering that adulterated coffee samples are inher-
ently heterogeneous. Such problems could be minimized by
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employing Attenuated Total Reflectance (ATR) instead. ATR
does not require any sample pretreatment and also allows the
employment of larger samples [12]. Therefore, in the present
study, we evaluate whether or not Fourier Transform Infrared
Attenuated Total Reflectance Spectroscopy (FTIR-ATR) is a
more effective technique for quantification of adulteration
in roasted coffee than DRIFTS. Aside from employing a
new measurement technique, we have also further improved
our previous studies by increasing the range and number of
adulterated samples.

2. Material and Methods

2.1. Samples. Arabica coffee, barley, and corn samples were
acquired from local markets. Coffee husks were provided
by the Minas Gerais State Coffee Industry Union (Sindicato
da Indústria de Café do Estado de Minas Gerais, Brazil).
Spent coffee grounds were provided by a local soluble coffee
manufacturer (Café Braśılia, Minas Gerais, Brazil).

Coffee beans (50 g), coffee husks (30 g), barley (50 g),
and corn (30 g) samples were roasted in a convection oven
(Model 4201D Nova Ética, São Paulo, Brazil) at temperatures
ranging from 200 to 260∘C, under different time intervals.
Roasting degrees (light, medium, and dark) were established
by comparing luminosity (𝐿∗) values of the samples to
measurements performed in commercially available coffee.
A tristimulus colorimeter (Hunter Lab Colorflex 45/0 Spec-
trophotometer,Hunter Laboratories, VA,USA)with standard
D65 illumination and normal colorimetric observer angle
of 10∘ was used in the color measurements. The established
roasting degrees were defined as light (23.5 < 𝐿∗ < 25.0),
medium (21.0 < 𝐿∗ < 23.5), and dark (19.0 < 𝐿∗ < 21.0).
Spent coffee grounds (three lots of 2 kg each) were washed
with distilledwater to remove impurities.Three 200 g samples
were randomly selected from each lot and dried at 100∘C for
5 h in order to reach moisture content levels similar to that of
ground roasted coffee (∼5 g/100 g). Further details on color
measurements and roasting conditions are available in our
previous study [9]. Pure coffee and adulterants (coffee husks,
spent coffee ground, barley, and corn) were intentionally
mixed, at adulteration levels ranging from 0.5 to 66 g/100 g,
as described in Table 1.

2.2. FTIR Analysis. All measurements were performed in
a dry controlled atmosphere (20 ± 0.5∘C) employing a
Shimadzu IRAffinity-1 FTIR Spectrophotometer (Shimadzu,
Japan) with a deuterated L-alanine-doped triglycine sulfate
(DLATGS) detector. A Pike sampling accessory (MIRacle),
with zinc selenide window, was employed for the ATR mea-
surements. All spectra were recorded in the range of 4000–
700 cm−1 with 4 cm−1 resolution and 20 scans and submitted
to background subtraction (atmosphere spectra). Prelimi-
nary tests were performed to evaluate the effect of particle
size (0.39mm < 𝐷 < 0.5mm; 0.25mm < 𝐷 < 0.39mm;
0.15mm < 𝐷 < 0.25mm; and 𝐷 < 0.15mm) on the quality
of the spectra, and the best quality spectra (higher intensity
and lower noise interference) were obtained for samples with
𝐷 < 0.15mm.

Because the 34 solid mixtures were manually prepared,
five replicates of each sample were obtained in the FTIR-ATR
using different parts of each sample, in order to ensure repre-
sentativity. Therefore, a total of 170 spectra were obtained for
adulterated samples.

2.3. Statistical Analysis. MATLAB software, version 7.13
(MathWorks, Natick, MA, USA), and PLS Toolbox version
6.5 (Eigenvector Technologies, Manson, WA, USA) were
employed for data analysis. PLS was employed for quantifica-
tion of adulterants mixed in roasted coffee samples using the
ATR spectra as chemical descriptors, with adulteration levels
ranging from 0.5% to 66% in mass (see Table 1). The models
were built with 170 spectra.The data were divided in two sets,
calibration and validation, employing the Kennard-Stone
algorithm, which promotes a data scan, selecting the more
representative samples for the calibration set. The resulting
calibration and validation sets were comprised of 102 and 68
spectra, respectively.

The data were submitted to two sequential evaluations.
The first was focused on the efficiency of different data
preprocessing applications. The second was related to the
importance of the variables in the quantification process. In
this step, different spectra ranges were evaluated in order to
check if the use of specific region could improve the quality
of the model.

The purpose of preprocessing is to linearize the response
of variables and remove extraneous sources of variation
(variance), which are not of interest in the analysis. Inter-
fering variance appears in almost all real data because of
systematic errors present in the experiment, requiring the
model to work harder [13]. The data preprocessing methods
tested were mean centering (1), Multiple Scatter Correction
(MSC) followed by mean centering (2), MSC followed by
first derivative, smoothing, andmean centering (3), Standard
Normal Variates (SNV) followed bymean centering (4), SNV
followed by first derivative, smoothing, and mean centering
(5), absorbance normalization followed by mean centering
(6), and first derivative followed by smoothing and mean
centering (7).

Mean centering corresponds to subtraction of the average
absorbance value of a given spectrum from each data point.
Multiple scatter correction (MSC), originally developed to
compensate the effects of light scattering in reflectance spec-
troscopy, has become a widely employed technique for
removing general spectra drift features such as day-to-day
intensity variations. Spectra derivatives are commonly used
for baseline correction, because they provide visualization
of small peaks that are difficult to detect in the original
spectra. However its application also leads to a decrease
in signal/noise ratio and thus a smoothing filter (Savitzky-
Golay) was employed to provide noise reduction. SNV is
applied to every spectrum individually; once the average
and standard deviation of all the data points of the spectra
are calculated, every data point is subtracted from the
mean and divided by the standard deviation. Absorbance
normalization consisted in dividing (i) the difference between
the absorbance value at each data point and the minimum
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Table 1: Mass composition of adulterated coffee samples.

Samples Adulteration level (%) Mass fraction (%)
Coffee Spent coffee grounds Coffee husks Barley Corn

1 66 33.3 33.3 33.3
2 50 50 50
3 50 50 50
4 40 60 10 10 10 10
5 40 60 20 20
6 40 60 20 20
7 20 80 5 5 5 5
8 20 80 10 10
9 20 80 10 10
10 10 90 5 5
11 10 90 5 5
12 10 90 3.33 3.33 3.33
13 10 90 10
14 10 90 10
15 10 90 10
16 10 90 10
17 1 99 1
18 1 99 1
19 1 99 1
20 1 99 1
21 2 98 1 1
22 2 98 1 1
23 2 98 1 1
24 2 98 1 1
25 4 96 1 1 1 1
26 4 96 2 2
27 4 96 2 2
28 8 92 2 2 2 2
29 8 92 4 4
30 8 92 4 4
31 0.5 99.5 0.5
32 0.5 99.5 0.5
33 0.5 99.5 0.5
34 0.5 99.5 0.5

absorbance value by (ii) the difference between themaximum
and minimum absorbance values [13, 14].

The optimal number of latent variables (LV) for each
model was estimated by a cross-validation method (venetian
blinds), based on the smallest value of root mean square
error of cross-validation (RMSECV). Model performance
was measured by evaluation of the root mean square errors
for both calibration (RMSEC) and validation (RMSEP) sets,
calculated as follows:

RMSEC = √
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where 𝑦
𝑖
and 𝑦̂

𝑖

correspond to the real and predicted adul-
teration levels of sample 𝑖 and 𝐼

𝐶
and 𝐼
𝑃
are the total number

of samples in the calibration and prediction (validation) sets,
respectively.Themodels with better prediction ability should
present lower values of RMSEC and RMSEP.

Model optimization was performed by detection and
elimination of outliers. Outliers correspond to samples that
are very different from the rest of the data set, and their
detection is crucial when developing multivariate models. In
this study, outlier detection in the calibration set was based on
themethodology proposed by Valderrama et al. [15], which is
appropriate for detection of samples with extreme leverages,
for example, large residuals in the 𝑋 block (data) or large
residuals in the𝑌block (model response). If a sample presents
leverage (measure of the influence of each sample on the PLS
model) larger than a limit value, it is considered an outlier.
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Figure 1: Full-spectrum regression coefficients (4000–700 cm−1) of
the PLS model based on the data submitted to SNV followed by
mean centering.

Such limit can be evaluated as three times the ratio between
the number of latent variables and the number of samples
[15]. The outliers of validation set were detected by jackknife
residue test, as described by De Souza and Junqueira [16].

3. Results and Discussion

Table 2 shows the results obtained for the PLS models
based on the full-spectrum (4000–700 cm−1) approach and
employing the different preprocessing techniques cited in
Section 2.3. For the obtained models, the LV number ranged
from 4 to 8, and the RMSEC and RMSEP values ranged
from 1.44 to 3.80 and from 2.42 to 3.56, respectively. Among
the tested pretreatments, the ones that provided a significant
improvement in model performance with the lowest RMSEC
and RMSEP values were SNV followed by mean centering.
This model was built with 8 LV that together explained 93.5%
and 99.3% of the cumulative variance in𝑋 (spectra data) and
in 𝑌 (adulterants concentration), respectively. The obtained
RMSEC and RMSEP values were 1.44 and 2.42, respectively,
and the correlation coefficient values of calibration (𝑅

𝑐
) and

validation (𝑅V) were 0.99 for both parameters (Table 2). It is
noteworthy to mention that such model is more robust in
comparison to the one obtained in our previous study [10]
employing DRIFTS (LV = 10, RMSEC = 2.01, 𝑅

𝑐
= 0.99,

RMSEP = 3.70, and 𝑅V = 0.96).
The next step was to evaluate if the selection of a specific

spectral range could improve prediction accuracy, given that
the full spectra could present some systematic variables
that do not necessarily represent samples variance. For this
reason, the plot of correlation coefficient that provided the
main regions responsible for the quantification process is
shown in Figure 1. The spectra regions that present greater
contribution in the prediction process are characterized
by having high absolute values of correlation coefficient.
Analyzing the plot in Figure 1 it is possible to see that the
highest values of correlation coefficient are concentrated in
the range of 1134–700 cm−1 and that extending the spectra
range from 700 up to 1735 cm−1 would still provide significant
values of correlation coefficients, so both regions were tested.
Comparing the data of Figure 1 with the data of Figure 2, in
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Figure 2: Average normalized ATR spectra obtained for roasted
coffee (brown color), roasted coffee husks (pink color), spent coffee
grounds (blue color), roasted barley (yellow color), and roasted corn
(green color).

which the mean spectra of pure coffee and of the adulterants
are shown, it is possible to check that the latter wavenumber
range is characterized by vibrations of several types of bonds
such as C–H, C–O, and C–N [17]. Chlorogenic acids, a class
of phenolic compounds comprised of quinic acid esterified to
a variety of trans-cinnamic acids, present strong absorption
in the region of 1450–1000 cm−1. Bands in the range 1085–
1050 cm−1 can be assigned to axial C–O deformation of the
quinic acid, in the range 1420–1330 cm−1 attributed to O–H
angular deformation and C–O–C ester bond absorption in
the 1300–1000 cm−1 range [18]. These chlorogenic acids are
present in significantly greater amounts in coffee and its by-
products than in barley and corn. Carbohydrates also exhibit
several absorption bands in the range of 1500–700 cm−1
[19, 20], so it is expected that this class of compounds will
contribute to many of the observed bands that occur in
the spectra. Particularly, the skeletal mode vibrations of the
glycosidic linkages in starch (present in corn and barley
but not in the other samples) are usually observed in the
950–700 cm−1 wavenumber range, the so-called anomeric
region of the spectrum [21]. Notice in Figure 2 that the
sharp bands in the region of 950–700 cm−1 are coincident
with the spectra of corn and barley but shifted in relation
to the bands for the spectra of coffee, spent coffee, and
coffee husks. These differences can be attributed to the
different types of polysaccharides present in coffee and its
adulterants. 𝛽-Glycosidic links are expected to appear in
coffee and by-products in association with arabinogalactans,
galactomannans, and cellulose, whereas 𝛼-glycosidic links
should primarily appear in corn and barley due to the
presence of starch. Other substances that naturally occur in
coffee are reported to present absorbance bands in the range
of 1700–1400 cm−1 [9]. Examples include caffeine (1700–
1600 cm−1) and trigonelline (1650–1400 cm−1), as pointed out
in the literature [22, 23].

An evaluation of the coefficients shown in Figure 1 indi-
cates that, besides the previously discussed regions, the only
other peaks with significant values of correlation coefficient
are 2918 and 2850 cm−1. In the mean spectra shown in
Figure 2, two significant absorption bands can be clearly
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Table 2: Performance results of full-spectrum PLS models based on different data preprocessing techniques.

Data before treatment LV RMSEC (%) 𝑅
𝑐

RMSEP (%) 𝑅V

Mean centering (MC) 5 3.80 0.97 3.56 0.98
Multiple Scatter Correction (MSC) + MC 7 1.70 0.99 2.53 0.99
MSC + first derivatives + smoothing + MC 4 2.54 0.99 3.37 0.98
Standard Normal Variates (SNV) + MC 8 1.44 0.99 2.42 0.99
SNV + first derivatives + CM 6 1.78 0.99 2.68 0.99
Absorbance normalization + MC 8 1.67 0.99 2.52 0.99
First derivatives + MC 6 2.39 0.99 3.00 0.98
LV: latent variables; 𝑅

𝑐
: calibration correlation coefficient; 𝑅V: validation correlation coefficient.

seen between 2920 cm−1 and 2852 cm−1, which are more
intense in coffee and spent coffee grounds spectra. Such bands
can be partly assigned to unsaturated and saturated lipids
present in coffee, corn, and barley oils, which do not undergo
changes during roasting, and, more specifically, the band at
∼2852 cm−1 can be attributed to stretching of C–H bonds
of methyl (–CH

3
) group in the caffeine molecule [9]. This

latter band is less evident in the spectra for barley and corn
in comparison to the others, since corn and barley do not
contain caffeine. The intensities of such bands are clearly
affected by both levels of caffeine and lipids in coffee and
primarily affected by caffeine in coffee husks (virtually devoid
of oil) and by the lipids in roasted corn, roasted barley, and
spent coffee grounds. The majority of the caffeine present in
coffee is extracted during soluble coffee production whereas
the lipid fraction is only partially extracted; thus spent coffee
grounds may be considered to be devoid of caffeine but still
containing significant amount of lipids.

In view of the aforementioned, the tested ranges were
4000–700 cm−1 (full spectra), 1735–700 cm−1, and 1135–
700 cm−1. Newmodels were built using these selected regions
and the data were submitted to SNV and mean centering as
preprocessing strategies. Table 3 shows the PLS results for this
evaluation. As can be seen in Table 3, the selection of spectra
ranges did not contribute to the prediction improvement;
the model built with full spectra presented better prediction
capacity than the other models.

As the best PLSmodel obtainedwas built with full spectra
and its data were submitted to SNV and mean centering,
the next step was to optimize it by using the procedure
for detection of outliers. The outliers were detected at 99%
confidence level, and the results are summarized in Table 4.
The optimization of the validation set was only performed
after finishing the optimization of the calibration set. Besides,
no more than three rounds of outlier detection (four models)
should be performed, in order to avoid the “snowballing
effect,” when repetitive rounds continue to identify out-
liers [15]. As can be seen from Table 4, three rounds of
outlier detection were performed. In the final model (4th),
twenty-three outliers were detected in the calibration set
(corresponding to 22% of the samples) and fourteen in the
validation set (corresponding to 20.5% of the samples). Most
of the outliers identified were associated with samples that
presented the highest levels of adulteration (over 40%). The
optimized model obtained after outliers removal consisted

Table 3: Performance results of PLS models based on different data
ranges.

Wavenumber range
(cm−1) LV RMSEC (%) 𝑅

𝑐

RMSEP (%) 𝑅V

4000–700 (full
spectra) 8 1.44 0.99 2.42 0.99

1735–700 7 1.74 0.99 2.77 0.98
1134–700 5 2.80 0.98 3.90 0.97
LV: latent variables; 𝑅

𝑐
: calibration correlation coefficient; 𝑅V: validation

correlation coefficient.

Table 4: Optimization of PLS model by detection and removal of
outliers.

Model 1st 2nd 3rd 4th
Number of calibration samples 102 92 86 79
Number of validation samples 68 68 68 54
LV 8 7 8 8
RMSEC (%) 1.44 1.19 0.82 0.69
RMSEP (%) 2.42 5.16 4.76 2.00
𝑅
𝑐

0.99 0.99 0.99 0.99
𝑅V 0.99 0.96 0.96 0.99
LV: latent variables; 𝑅

𝑐
: calibration correlation coefficient; 𝑅V: validation

correlation coefficient.

of 79 and 54 samples in the calibration and validation sets,
respectively. It was built with 8 LV that together explained
88.7 and 99.5% of the accumulated variance in 𝑋 (spectra
data) and in 𝑌 (adulterants concentration), respectively. The
RMSEC and RMSEP values were 0.69 and 2.00, respectively;
the obtained correlation coefficients of calibration (𝑅

𝑐
) and

validation (𝑅V) were 0.99 for both.The curve of experimental
values versus predicted values of the optimized model is
shown in Figure 3(a). As can be seen by examination of the
plot, this model is capable of predicting adulteration levels
with accuracy. Residuals are randomly distributed about the
mean value, which is satisfactorily close to zero, as is shown
in Figure 3(b).

A comparison of the model obtained in the present study
with the one based on DRIFTS [10] is shown in Table 5. The
types of adulterants and roasting conditions were the same
in both studies, as well as the outlier removal procedure. The
major difference, besides employing distinct measurements
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Figure 3: (a) Experimental versus predicted values of adulteration (% w/w) of coffee samples based on the optimized PLS model after outlier
removal. (b) Residual versus adulteration levels (% w/w) of coffee samples based on the optimized PLS model after outlier removal.

Table 5: Comparison of the performances of models based on
DRIFTS and FTIR-ATR.

Optimized models DRIFTS [10] FTIR-ATR
Number of calibration samples 88 79
Number of validation samples 44 54
LV 10 8
RMSEC (%) 1.61 0.69
RMSEP (%) 2.34 2.00
𝑅
𝑐

0.99 0.99
𝑅V 0.98 0.99
LV: latent variables; 𝑅

𝑐
: calibration correlation coefficient; 𝑅V: validation

correlation coefficient.

techniques (DR versus ATR), is that with FTIR-ATR we
employed a larger number of samples at lower adulteration
levels. A comparison of the models indicates that the one
based on FTIR-ATR is more robust and presents better
prediction abilities, with much lower RMSEC and RMSEP
values. This in association with the fact that it employed
a larger number of samples at low levels of adulteration
indicates that FTIR-ATR is more appropriate for detection of
adulteration in roasted and ground coffee.

4. Conclusion

PLS models of ATR spectra were successfully developed.
The optimized model was built with full spectra (4000–
700 cm−1) that were submitted to SNV and mean centering
as data preprocessing strategy. It was capable of predicting
adulteration levels ranging from 0.5% to 40%. For this final
model, the determination coefficients were 0.99 for both
calibration and validation sets, and the errors observed
during calibration and validation were quite low, 0.69% and
2.00%, respectively. It can be concluded that because the
use of the full spectrum provided more robust models, the
detection of adulteration and discrimination of adulterated
and nonadulterated coffee samples cannot be attributed to
a single class of components, rather being dependent on
a variety of compounds, such as lipids, chlorogenic acids,
caffeine, and polysaccharides. PLS and FTIR-ATR proved
to be promising techniques, suitable for quantification of
multiple adulterants in roasted and ground coffee.
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