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Nicotine, the important component of cigarette products, may have an impact on the oral environment after inhalation. The
research of interaction between nicotine and bovine submaxillary mucin (BSM) contributes to understand the binding mechanism
of nicotine and BSM, and the effects of nicotine on the structure and function of the mucin. NMR data demonstrated that the
interaction between nicotine and BSM did exist, and it was pyrrolidyl ring of nicotine playing the major role in the binding. The
quenching mechanisms of nicotine and BSM in different pH were different: for acidic environment, the quenching was dynamic;
while it became static in the alkaline circumstance. Synchronous fluorescence spectra indicated that nicotine had effect on the
microenvironment of the Trp rather than Tyr residue. Meanwhile, the impact of nicotine on the conformation of BSM was also
confirmed by 3D fluorescence and FTIR spectra.

1. Introduction

Mucins are large, abundant, and filamentous glycoproteins
and composed of secreted mucins and cell-tethered mucins
with polymerizing and nonpolymerizing forms [1, 2]. General
structural features of mucins consist of a long central domain
rich in proline, threonine, and serine (PTS domain) and are
densely grafted with anionic and hydrophilic carbohydrate
chains [3]. Mucins can act as a steric barrier, preventing non-
specific interaction of proteins and cells with the underlying
cell membrane, protecting underlying tissues against external
insult, mechanical stress, and pathogens, transducing cell
signal, and so forth [4, 5].

Salivary mucin, a kind of salivary protein, accompanies
with the whole digestive process from the oral to gastroin-
testinal organs and plays a significant role in the protection of
oral cavity [6, 7]. Submaxillary mucin is the most associated
mucin types in oral processing [5]. For BSM, the glycosylation
level of the PTS domain is about 70–85% of the total molec-
ular weight and sialic acid accounts for as much as 30% of

themolecular weight [3]. As one of themucins, BSM contains
many charged groups, resulting in its pH-dependent physic-
ochemical properties. Moreover, BSM is amphiphilic and can
be linked with each other or interact with other proteins via
noncovalent bonds [8, 9]. However, the field of investigating
the interaction between BSM and small molecules is still
blank.

Tobacco smoking is a major worldwide health prob-
lem, which can lead to high morbidity and mortality. As
the principal psychoactive agent in tobacco, nicotine (NIC,
shown in Figure 1) has been determined to be a highly addic-
tive substance with subjective effects like clear-headedness,
feelings of relief, fatigue recovery, and hyperactivity [10,
11]. During cigarette smoking, NIC is absorbed into the
body and inducesmultiple pharmacological and toxicological
effects [12]. Thus, NIC may have an effect on the activities of
the oral cavity, such as salivary mucin, after its inhalation,
which may pose a further threat to animal’s health. How-
ever, the interaction between NIC and BSM has not been
studied so far.
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Figure 1: Molecular structure of NIC.

This study was committed to probe into the interaction
of NIC with BSM in vitro by spectral approaches. Nuclear
magnetic resonance (NMR) measurements were carried out
to investigate whether and how the interaction between BSM
and NIC occurred. Fluorescence quenching measurements
were used for obtaining the quenching mechanism. Due to
the influence of pH on the forms of NIC in the solution,
the effects of pH on the binding of NIC to BSM were dis-
cussed. Synchronous fluorescence, three-dimensional (3D)
fluorescence, and Fourier transform infrared (FTIR) spectra
were used to analyze the effect of NIC on the conformation
of BSM.

2. Experimental

2.1. Chemicals and Materials. Bovine submaxillary mucin
(BSM) was purchased from Dalian Meilun Biological Tech-
nology Co., Ltd. (Dalian, China). The contents of protein
and carbohydrate were 36.6% and 56.7%, respectively. The
BSM stock solution was prepared at a concentration of 4.76 ×
10−4M in 0.05M phosphate buffer. Nicotine (NIC) (purity >
99%) and deuterium oxide at 99.9% purity were provided by
J&K Scientific, Ltd. (Beijing, China). All other reagents were
of analytical grade.

2.2. Methods

2.2.1. NMR Measurements. 1H NMR spectra experiments
were performed on a Bruker Avance 400MHz NMR spec-
trometer operating at 400.13MHz for hydrogen at 298K.The
NMR studies were carried out by fixing the concentration
of NIC (9.00 × 10−3M) while adding different ratios of BSM
(𝑟 = [BSM]/[NIC] = 0, 1/400, 1/200, 1/100, 1/50).

2.2.2. Fluorescence Measurements. Fluorescence quenching
measurements were conducted via a Cary Eclipse Fluo-
rescence Spectrophotometer (Varian, USA) equipped with
1.0 cm quartz cells. Fluorescence quenching spectra were
recorded by fixing the concentration of BSM (1.10 × 10−4M)
while varying the NIC concentration from 0.00 to 19.15 ×
10−3M at three pH (5.0, 6.9, and 8.0). Prior to fluorescence
measurements, the solutions were mixed and maintained for
1 h in a thermostat water bath at 288, 298, and 310K.

Synchronous fluorescence spectra of BSM (1.10 × 10−4M)
with different NIC concentrations (0–19.15 × 10−3M) were
measured at Δ𝜆 = 15 nm and Δ𝜆 = 60 nm, respectively.

Three-dimensional (3D) fluorescence spectra of BSM
(1.10 × 10−4M) and NIC-BSM complex (molar ratio,
1 : 1) were obtained at an excitation wavelength range of
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Figure 2: 1H NMR spectra of NIC (9.00 × 10−3M) in the absence
and presence of BSM (𝑟 = [BSM]/[NIC] = 0, 1/400, 1/200, 1/100,
1/50) at 298K.

200–400 nm with an increment of 5 nm. Emission spectra
were also monitored between 200 and 500 nm.

2.2.3. FTIR Measurements. FTIR spectra were recorded on
a Nicolet–6700 FTIR (Thermo, USA) spectrometer with a
smart OMNI-sampler accessory. The spectra of BSM (9.52 ×
10−5M) in the absence and presence of NIC (2.49 × 10−4 M)
were recorded over the spectral range 4000–600 cm−1 with a
resolution of 4 cm−1 and 64 scans at 298K. Background spec-
tra were collected before each measurement. The spectrum
of the buffer solution was subtracted from the spectra of the
BSM and the BSM-NIC complexes.

3. Results and Discussion

3.1. Characterization of Interaction between BSM and NIC

3.1.1. NMR Spectra Analysis. NMR spectrum, an effective
method for evaluating the interaction between a ligand
and its target molecule [13, 14], was conducted to study
whether and how NIC bound to BSM. The changes of NMR
parameters of ligands, such as absolute peak positions and
linewidth, can reflect the binding activity between protein
and ligand [15]. As displayed in Figure 2, different degrees of
changes in peak position as well as the overlapping of split
peaks were noticed with increasing BSM, indicating that the
molecular interaction of NIC with BSM occurred.

To present the changes in chemical shift of different
protons for NICmore intuitively, the changes of the chemical
shift (Δ𝛿) were calculated and plotted versus the molar ratio
of BSM to NIC (Figure 3). Compared with the protons on
the pyridine ring of NIC, the changes of chemical shifts
for protons (H5, H6, H7, H8, and H9) on the pyrrolidyl
ring of NIC were much more obvious under the same
condition, illustrating the pyrrolidyl ring of NIC played a
more important role in the NIC-BSM complex formation. In
conclusion, NIC, pyrrolidyl ring of NIC more particular, was
capable of interacting with BSM.

3.1.2. Fluorescence Quenching and Quenching Mechanism.
On the basis of NMR studies, the fluorescence quenching of
BSM-NIC system was studied. In order to simulate the oral
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Figure 3: Change in chemical shift (Δ𝛿) versus the molar ratio of
BSM to NIC. 𝑇 = 298K.

environment of animal, fluorescence quenching experiments
were carried out at 310 K and pH 6.9, and the results were
displayed in Figure 4(b2). As seen in Figure 4(b2), BSM can
emit strong fluorescence after being excited with wavelengths
of 280 nm. The fluorescence intensity decreased significantly
with the addition of NIC, which suggested that NIC could
interact with BSM [16]. In addition to the change in intensity,
the maximum emission wavelength was slightly red shifted,
suggesting that the conformational changes in BSM were
induced by NIC [17, 18].

Generally, fluorescence quenching may be either
dynamic, which is caused by the collision of fluorophore
with quencher, or static, which is caused by the formation
of ground-state complex [19, 20]. As temperature rising,
dynamic quenching constants are expected to increase
because higher temperature results in larger diffusion coeffi-
cients. Reversely, the static quenching constants are supposed
to decrease because the complex stability decreases with
increasing temperature [21]. Thus, these two mechanisms
could be distinguished by comparing the changes of
quenching constants with temperature rising.The quenching
constants could be estimated by the following well-known
Stern-Volmer equation [22, 23]:

𝐹
𝑜

𝐹

= 𝐾SV [𝑄] + 1 = 𝐾𝑞𝜏0 [𝑄] + 1, (1)

where 𝐹
𝑜

and 𝐹 denote the fluorescence intensities of BSM
in the absence and presence of NIC, respectively. [𝑄] is the
concentration of the quencher, and𝐾SV is the quenching con-
stant. 𝜏

0

is the fluorescence lifetime of the molecule without
any quencher and the fluorescence lifetime of the biopoly-
mer is about 10−8 s [24]. 𝐾

𝑞

is the quenching rate constant of
the biological macromolecule.

Table 1: Stern-Volmer 𝐾SV at different temperatures as well as at
different values of pH.

pH 𝑇 (K) 𝐾SV (M−1) 𝐾
𝑞

(×109)

5.0
288 13.67 1.37
298 18.21 1.82
310 20.08 2.01

6.9
288 15.76 1.58
298 17.83 1.78
310 18.46 1.85

8.0
288 28.17 2.82
298 27.59 2.76
310 25.34 2.53

The linear regressions of the plot of 𝐹
𝑜

/𝐹 against [𝑄] at
different temperatures were shown in Figure 4(b2), and the
corresponding values of 𝐾SV and 𝐾

𝑞

were listed in Table 1.
𝐾SV increased as the temperature rising, illustrating that the
interaction was dynamic and driven by collision.

3.1.3. Binding Constants and Thermodynamic Parameters.
The binding constants (𝐾) and number of binding sites (𝑛)
could be calculated by the following equation [25]:

log[
(𝐹
𝑜

− 𝐹)

𝐹

] = log𝐾 + 𝑛 log [𝑄] , (2)

where 𝐹
𝑜

and 𝐹 demonstrate the fluorescence intensities
in the absence and presence of BSM, respectively, and [𝑄]
refers to the concentration of BSM. 𝐾 and 𝑛, determined by
the linear regression of the plot of log[(𝐹

𝑜

− 𝐹)/𝐹] against
log[𝑄], are the binding constants and number of binding
sites, respectively. The results were listed in Table 2. The
binding constants and number of binding sites increase with
the temperature rising, which indicated that temperature
had an impact on the binding of NIC to BSM.

Thermodynamic parameters (Δ𝐻, Δ𝑆, and Δ𝐺) can
be calculated using the data of the fluorescence quench-
ing measurements and by the van’t Hoff equation as fol-
lows [26]:

ln𝐾 = −Δ𝐻
𝑅𝑇

+

Δ𝑆

𝑅

Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆 = −𝑅𝑇 ln𝐾,
(3)

where𝐾 is the associative binding constant at the correspond-
ing temperature and 𝑅 is the gas constant.

As shown in Table 2, ΔG was negative, suggesting that
the binding was spontaneous. Meanwhile, according to the
theory of Ross and Subramanian [27], the positive values of
ΔH and ΔS illustrated that the hydrophobic force played a
major role in the binding process.

3.1.4. The Effects of pH on the Fluorescence Quenching of BSM
by NIC. NIC is a weak base with different forms in different
pH [28], whichmay cause differences in the binding ofNIC to
BSM under the conditions of different pH. Besides, there are
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Table 2: The binding constant (𝐾), number of sites (𝑛), and thermodynamic parameters at different temperatures.

𝑇/𝐾 𝐾 (M−1) 𝑛 Δ𝐺 (KJ⋅mol−1) Δ𝐻 (KJ⋅mol−1) Δ𝑆 (J⋅mol−1⋅K−1)
288 13.61 0.991 −62.03

55.61 215.58298 38.82 1.195 −64.19
310 74.45 1.302 −66.77
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Figure 4: Fluorescence emission spectra of BSM (𝐶BSM = 1.10 × 10−4M) in presence of NIC (𝐶NIC = 0–19.15 × 10−3M) at pH = 5.0, 6.9, 8.0 (a1,
b1, and c1). The Stern-Volmer plots for BSM-NIC interaction (a2, b2, and c2) at 288, 298, and 310K.
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Figure 5: Structural formula of free NIC and its protonated forms.

differences in pH of individual oral environment. Therefore,
the effects of pH on the interaction of NIC to BSM are
valuable to be investigated. In addition to the above pH (pH
6.9), the fluorescence quenching in pH 5.0 and pH 8.0 was
also investigated. All the results were summarized in Figure 4
and Table 1.

As shown in Table 1, the quenching mechanism in pH
5.0 was similar to that in pH 6.9; namely, it was dynamic
under the condition of acidity. While it was opposite under
alkaline condition (pH 8.0), 𝐾SV decreased with increasing
of the temperature; that is to say, the quenching was static
along with the formation of ground-state complex. Besides,
the larger 𝐾SV in alkaline condition showed that the bind-
ing of NIC to BSM was stronger in alkaline environment.
Putting it another way, the content of NIC in the cigarettes
for people who are in more alkaline oral environment should
be lower.

The different mechanisms and quenching ability may
be due to the different forms of NIC and BSM in different
values of pH. As mentioned above, NIC which is a binary
organicweak base satisfied the following equilibrium (𝑝𝐾a1 =
3.1, 𝑝𝐾a2 = 8.0) [28].

The forms of NIC in the acid and alkaline condition
are different: C

10

H
14

N
2

H
2

2+ in acid, and C
10

H
14

N
2

as well
as C
10

H
14

N
2

H+ in alkaline, as shown in Figure 5. Thus,
when pH reaches to 5, NIC is in the form of C

10

H
14

N
2

H
2

2+,
while BSM is near to its isoelectric point with relatively
tight structure and the aromatic amino acid residues which
contributed to the fluorescence are mainly in hydrophobic
region. NIC with a strong positive charge is equivalent to the
molecular ion, which will limit its access to the hydrophobic
region; thereby the opportunity to interact with the aromatic
amino acid residues in the hydrophobic region will be
reduced. However, when pH > 7, more amino acid residues
are exposed to the surface of BSM and the solution, and the
positive charges of NIC are decreased to be more neutral,
which will strengthen the interaction between NIC and BSM,
as well as the formation of complex.

3.2. Conformation Investigations

3.2.1. Synchronous Fluorescence Measurements. Synchronous
fluorescence spectroscopy is a very simple, sensitive, and
effective technique to probe into the microenvironment of
amino acids residues of protein, and it can be obtained by
setting a fixed interval (Δ𝜆) between the excitation and emis-
sion monochromator [29]. Specifically, when the scanning
interval (Δ𝜆) is set to 15 nm and 60 nm, the synchronous

Δ𝜆 = 60nm
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Figure 6: Synchronous fluorescence spectra of BSM (𝐶BSM = 1.10 ×
10−4M) in different NIC concentrations: 𝐶NIC = 0–19.15 × 10−3M
(from top to bottom). Δ𝜆 = 60 nm (𝑇 = 298K, slit width: 𝐸

𝑥

=

𝐸
𝑚

= 10 nm).

fluorescence gives the characteristic information of tyrosine
(Tyr) and tryptophan (Trp) residues, respectively [30]. There
was a slight emission wavelength at Δ𝜆 = 15 nm (data not
show), indicating the emission of BSM is primarily attributed
to the Trp residues. The effect of NIC on BSM synchronous
fluorescence (Δ𝜆 = 60 nm) was displayed in Figure 6. The
maximum emission wavelength shows a gradual red shift
with the addition of NIC, which demonstrated the polarity
around the Trp residue was slightly changed to be more polar
in the presence of NIC [31]. Besides, the decrease of fluo-
rescence intensity could also be observed in Figure 6, which
further indicates the occurrence of fluorescence quenching
during the binding process.Moreover, the decrease of fluores-
cence intensity might due to the reduction of energy transfer
between aromatic amino acid residues, resulting from the
stretch of BSM caused by high concentration of NIC.

3.2.2. 3D Fluorescence Spectra. 3D fluorescence spectrom-
etry, a new method for the study of protein conformation,
was also used to investigate the structural changes in BSM
caused by interaction with NIC. The 3D fluorescence spectra
of BSM in the absence and presence of NIC were shown
in Figure 7, and the corresponding data were summarized
in Table 3. Peak 1 refers to the spectral characteristic of
Trp and Tyr residues, and peak 2 presents the fluorescence
characteristics of the polypeptide backbone structures and
is relevant to the secondary structure of protein [32, 33].
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Figure 7: 3D fluorescence spectra of BSM (a) and BSM-NIC system (b). Contour spectra of BSM (c) and BSM-NIC system (d). 𝐶BSM = 2.20 ×
10−4M, 𝐶NIC = 0.61 × 10−2M.

Table 3: 3D fluorescence spectral parameters BSM and BSM-NIC
system.

System Peak number Peak position Stokes shift Intensity
𝜆ex/𝜆em (nm/nm) Δ𝜆 (nm)

BSM 1 280/352 72 457
2 230/348 118 468

BSM-NIC 1 280/358 78 384
2 230/352 122 131

When NIC was added, a decrease in intensity along with a
slight red shift of themaximumemissionwavelength in peaks
1 and 2 occurred. Moreover, a new fluorescence peak, named

peak a, appeared, which was considered as the fluorescence
peak of free NIC with high concentration. Owing to the
intensity changes and peak shifts, the conclusions could be
drawn that the binding of NIC to BSM induced conforma-
tional and microenvironmental changes of BSM [34]. And
these findings were basically in agreement with the results of
synchronous fluorescence measurements.

3.2.3. FTIR Spectra. FTIR has emerged as a widely used and
efficientmethod to analyze the structural and conformational
changes of protein after interactingwith smallmolecules [35].
The stability of protein secondary structure is closely related
to the formation of hydrogen bonds. Once the hydrogen
bonds in the protein molecules are influenced by the external
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Figure 8: FTIR spectra of BSM in the absence and presence of NIC. 𝐶BSM = 9.52 × 10−5M, 𝐶NIC = 2.49 × 10−4M.

factors, the vibration frequency or the absorption intensity of
these characteristic absorption peaks will be changed, which
could demonstrate the ligand interacts with protein and
induces conformational changes in the secondary structure of
protein [36]. There are three typical absorption bands in the
midinfrared region for protein: the first region (∼3300 cm−1)
refers to the stretching resonance of NH [37, 38]; the second
one (1700∼1600 cm−1) is caused by C=O stretching vibration
of amide I band [36]; the last region (1600∼1500 cm−1)
involves N–H bending vibration and C–N stretching vibra-
tion of the amide II band [39]. Due to the superior sensitivity
of amide I band, it has beenmore widely selected to study the
changes in the protein secondary structure [40].

As shown in Figure 8, the stretching resonance of NH
(3368.55 cm−1) and C=O stretching vibration of amide I
band (1645.49 cm−1) in BSM are clear to be observed. After
adding NIC, blue shifts of wavenumbers occurred in both
of the above bands: the stretching resonance of NH shifted
to 3374.59 cm−1 and C=O stretching vibration of amide I
band shifted to 1647.79 cm−1. Therefore, the addition of NIC
changed the original network of hydrogen bonds, namely,
affected the spatial structure of BSM, which could explain
the interaction betweenNIC and BSM from another perspec-
tive.

4. Conclusions

The binding of NIC to BSM was confirmed by NMR,
fluorescence, and FT–IR approaches. NMR spectra disclosed
the existence of interaction between NIC and BSM and
demonstrated that it wasmainly contributed by the pyrrolidyl
ring of NIC with the molecule of BSM. Fluorescence spectra
also proved the interaction from another perspective; namely,
the fluorescence of BSM could be quenched by NIC. The
influence of pH on the interaction of NIC with BSM was

explored to show that different values of pH corresponded to
different interactional strength and quenching mechanisms.
When pH < 7, the dynamic quenching was performed; while
pH > 7, the quenching was static with larger quenching con-
stants than those of the former. Synchronous fluorescence,
3D fluorescence, and FTIR spectra indicated that nicotine
had effect on the microenvironment of BSM and could lead
the polarity around the Trp residue increase. This study can
not only help to fill the gaps of research in the interaction
between NIC and salivary mucin but also contribute to
cognize the impact of NIC on the oral environment and
provide theoretical basis for limiting smoking.
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