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Soil organic matter (SOM) content is an important index to measure the level of soil function and soil quality. However,
conventional studies on estimation of SOM content concerned about the classic integer derivative of spectral data, while the
fractional derivative information was ignored. In this research, a total of 103 soil samples were collected in the Ebinur Lake
basin, Xinjiang Uighur Autonomous Region, China. After measuring the Vis-NIR (visible and near-infrared) spectroscopy and
SOM content indoor, the raw reflectance and absorbance were treated by fractional derivative from 0 to 2nd order (order
interval 0.2). Partial least squares regression (PLSR) was applied for model calibration, and five commonly used precision
indices were used to assess the performance of these 22 models. The results showed that with the rise of order, these parameters
showed the increasing or decreasing trends with vibration and reached the optimal values at the fractional order. A most robust
model was calibrated based on 1.8 order derivative of R, with the lowest RMSEC (3.35 g kg−1) and RMSEP (2.70 g kg−1) and
highest R2

c (0.92), R
2
p (0.91), and RPD (3.42 > 3.0). This model had excellent predictive performance of estimating SOM content

in the study area.

1. Introduction

Soil organic matter content (SOM) is an important index to
measure the level of soil function and soil quality, and detec-
tion of SOM content is an important approach to understand
the local soil fertility [1, 2]. As known to all, the correlation
between SOM and soil organic carbon (SOC) is significant.
Soil represents the largest carbon sinks on earth and plays a
major role in the global carbon cycle [3, 4]. More seriously,
along with global warming, intensified human activities,
and other factors, the loss of SOC is more severe especially
in the arid and semiarid region [5, 6]. The capacities of
SOC and carbon sequestration through SOM management
have attracted considerable attention in recent years.

Traditionally, SOM is determined by capacity and com-
bustion methods in laboratory. These methods are generally

laborious. Besides, there are possible risks of air contamina-
tion during the operational procedure. Because of high effi-
ciency, low-cost, large-scale, nondestruction, and rapid data
acquisition, remote sensing technology has been proved to
be a promising tool to strengthen or perfect traditional
methods [7, 8]. And it provides a fresh approach for quanti-
tative research of SOM content. Due to the lofty high spectral
resolution, convenience, and controllability, the analysis on
the laboratory Vis-NIR spectroscopy of soil is fashionable,
especially. It is precisely the significant quantitative relation-
ship between SOM and SOC; the estimation of SOM content
by remote sensing has been proved as a feasible approach to
grasp the condition of local SOC storage. Many studies have
shown that SOM has unique spectral response in the Vis-NIR
(visible and near-infrared) bands [9–12]. To some extent, the
soil spectral reflectance could reflect the content of SOM. Fast
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detection of SOM content could be conducted by using raw
spectral reflectance data (R) and through its mathematical
transformations.

The pretreatment of Vis-NIR spectroscopy is very nec-
essary and effective to improve the accuracy of the spectral
estimation model. To remove the effect of soil moisture
from the spectra, Minasny et al. preprocessed the mea-
sured raw spectral data using EPO (external parameter
orthogonalisation) algorithm, and it improved the stability
and accuracy of SOC predicting model in southern New
South Wales, Australia [13]. Using spectral reflectance pre-
treated by Savitzky-Golay (SG) smoothing, first derivative
with SG smoothing (FD), and other mathematical methods,
the predicting performance of the support vector machine
regression model (SVMR) was perfected [14]. These spectral
inversion models of SOM are mainly based on the R and
some commonly appropriate pretreatment methods, that
is, inversion (1/R), logarithm (lgR), logarithm-inversion
(1/lgR), and root mean square ( R) and their first or
second order derivative. As the high-dimensional data source
with massive information, the raw spectra were pretreated by
conventional integer order derivative generally, but it might
influence the effective information detection and cause the
loss of spectral information to some extent. Furthermore,
the accuracy of modeling will also be constrained. Fractional
order derivative broadened the concept of the classic integer
derivative [15, 16]. Due to the better accuracy and higher effi-
ciency, it has been widely used in system control and diagno-
sis, digital filtering, signal and image processing, and other
related fields [17–20]. For spectrum analysis, this algorithm
had been introduced in the spectral reflectance pretreatment
of saline soil in the Ebinur Lake basin [21]. The research
demonstrated that it was desirable to extract potential spec-
tral information of soil Vis-NIR spectroscopy using frac-
tional derivative algorithm in arid desert region.

Desert soil is a typical soil in the Ebinur Lake basin of
Northwest China. The Ebinur Lake basin is a typical lake
wetland in arid areas. There are few studies on fractional
derivative applied in Vis-NIR spectroscopy of desert soil,
and to this regard and motivated by the previous research,
the objective of this study was to utilize laboratory Vis-
NIR spectroscopy treated by fractional derivative algo-
rithm combining with SOM content data to establish a
predicting model with better accuracy and stability than
existing models.

2. Materials and Methods

2.1. Study Area. The study area is located in the Ebinur Lake
basin (82°36′~83°10′E, 44°30′~45°09′N) in the southwest of
Junggar Basin, Xinjiang Uighur Autonomous Region, China.
The basin is surrounded by the mountains on 3 sides, north,
west, and south side, separately [22, 23]. This region is a
major function area to prevent dust of ecological protection
system of the northern slope of Tianshan Mountain. Due to
the arid desert climate of the study area, the annual precipi-
tation in Ebinur Lake basin is approximately 102mm,
whereas the potential evaporation can reach 1447mm. The
annual average temperature ranges from 6.6 to 7.8°C. Strong

winds are typical in this region as well [24]. The main geo-
morphic types are stone desert, gravel desert, salt desert,
swamp, and so on. The soil types are mainly Piedmont pse-
phitic and Gypsum desert soil [25, 26]. The Ebinur Lake basin
is a normal closed oasis system in the inland arid areas and
also an integrated region which is composed of wetland,
hydrology, and human activities.

2.2. Soil Sample Collection and Chemical Analysis. Consider-
ing the typical landscape features of the study area, such as
oasis, desert, the soil condition, and site accessibility, we set
up 103 sites (30× 30m square area, 5 samples per site). In
every measuring unit, the corresponding coordinate of each
sample point was recorded by GPS (Figure 1). Each soil
sample (about 0.5 kg) was put into a water-tight bag, sealed,
numbered, and then brought back to the laboratory. A total
of 103 topsoil (depth 0~20 cm) samples were obtained from
the Ebinur Lake basin of Xinjiang Uighur Autonomous
Region, China, from 18 to 29 May 2015. In order to reduce
the effect of water content, all samples were air dried suffi-
ciently, after then, these soil samples were crushed and sieved
through the 2mm screen to remove the stones, plant residue,
and other impurities. Every sample was divided into 2 equal
parts for soil chemical analysis and spectral reflectance
measurement in laboratory, respectively. The potassium
dichromate method was used for the determination of SOM.

2.3. Laboratory Reflectance Measurement. All of air-dried soil
samples were individually put into wide round containers
with a diameter of 12 cm and a depth of 1.8 cm (1.5 cm
is considered optically infinitely thick for soil). To avoid
the contamination in the period of the measurement, these
containers had been painted black previously [27]. And
the surfaces had to be scraped with a plastic ruler to
ensure the same flat measuring surface, as pressing can
affect the porosity of the soil and result in false measure-
ments [28, 29]. For the controlled light conditions, the
reflectance spectra of all soil samples measurement were
conducted in a dark laboratory with an ASD FieldSpec®3
portable spectrometer (Analytical Spectral Device, Boulder,
CO, USA). The sampling intervals of this spectrometer are
1.4 nm (350~1000 nm) and 2nm (1000~2500 nm), while
the resampling interval is 1 nm. A 50W halogen lamp
served as the light source for the laboratory reflectance
measurement, shining 8° from vertical and being placed
50 cm above each soil sample surface. The optical sensor
was installed with a distance of 15 cm from the flat of each
soil sample with a 30° zenith angle. Each reflectance measure-
ment was calibrated by a standardized plate with 100% reflec-
tance to ensure the accuracy [30]. For each soil sample,
twenty spectra curves were collected, and the mean value of
the twenty spectra was taken as the final reflectance.

2.4. Spectral Processing and Data Analysis. The real sample
information was inevitably contaminated by the instrument
noise [31, 32]. In order to reduce the noise, the ViewSpecPro
software version 6.0 was applied to correct and eliminate
the breakpoints and remove the marginal wavebands
with large noise (350~400nm and 2401~2500 nm). The SG
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smoothing method (polynomial order of 2 and frame size
of 5) was employed for the smoothness of 103 spectral
curves with OriginPro version 9.0.0. The processed spectra
constituted the final data for further analysis. The proc-
essed spectral reflectance of all soil samples is shown in
Figure 2.

Fractional calculus is a theory branch of mathematics
and generalizes the classic integer derivative to arbitrary
(noninteger) order [31, 32]. Fractional derivative has dif-
ferent definitions, that is, Grümwald-Letnikov (G-L),
Riemann-Liouville (R-L), and Capotu. For less computa-
tional cost, G-L definition was applied in this research.
Thereinto, v means the order, and zeroth order means
the data are not processed by the algorithm.

dvf x
dxv

≈ f x + −v f x− 1 + −v −v + 1
2 f x− 2

+⋯ + Γ −v + 1
n Γ −v + n + 1 f x− n

1

Commonly, lg(1/R) spectra was used because it repre-
sented the absorbance, in spectrum analysis. For more
modeling results and the improvement of nonliner relations,
the smoothed and predenoised reflectance data were trans-
formed by the absorbance (lg(1/R)). According to (1), R
and its absorbance 0~2nd fractional derivatives (order inter-
val 0.2) were computed under the platform Eclipse.

2.5. Data Modeling and Validating. Due to its advantage of
dimension reduction, synthesis, and solving colinearity prob-
lems among independent variables, partial least squares
regression (PLSR) has been proved as a robust and reliable
approach in spectral quantitative research [7, 33–35]. For
modeling, the benefit of PLSR is that it uses significance test
wavelengths in the range selected to arrive at a prediction
equation that uses wavelengths highly correlated to the ana-
lyte and gives little weight to the nonpredictive wavelengths.
In order to take full advantage of the spectral reflectance, all
wavelengths ranging from 401 to 2400 nm were applied in
modeling calibration by PLSR. Ranking based the principle
from the highest to lowest. The calibration set (n = 69) and
the validation set (n = 34) were selected at equal interval for
the calibration and precision test.

The capacity of estimation models were tested by five
performance indices: ratio of performance to deviation
(RPD), the determinant coefficients of calibration (R2

c), root
mean square errors of calibration (RMSEC), and accordingly
in prediction (R2

p, RMSEP). The optimal models are repre-

sented by high values of R2
c , R

2
p, and RPD, but low RMSEC

and RMSEP. Generally, if 1.5 < RPD≤ 2.0, it indicates that
the model only estimates high and low level of SOM poorly.
If 2.0 < RPD≤ 2.5, it indicates a better predictive ability, while
if 2.5 < RPD≤ 3.0, a very good predictive ability, and if
RPD > 3.0, the model has excellent predictive performance
[12, 36]. All of the above indicators were calculated by
MATLAB software version R2012a (MathWorks, Natick,
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Figure 1: Distribution of the all sampling sites and the location of the study area.
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MA, USA). The final results were used to assess the perfor-
mance of the models.

3. Results

3.1. Statistical Analysis of SOM Content. The descriptive sta-
tistical characteristics for organic matter of soil samples of
the whole dataset, the calibration set, and the validation set
were presented in Table 1. Compared with the range of
SOM content (0.68–78.39 g kg−1) for both the whole dataset
and the calibration set, the validation set had a narrower
range with 4.79–39.16 g kg−1, because of the deficient soil
samples. The average SOM content and coefficient of varia-
tion of whole set were 21.43 g kg−1 and 50.46% between the
range of the values of calibration and validation set, respec-
tively, while the descriptive statistical characteristics of
SOM content in the calibration and validation set were sim-
ilar to the six parameters of the whole set. Thus, the SOM
content of the calibration and validation set could represent
those of the whole dataset sufficiently.

3.2. Reflectance of Different Soil Organic Matter Content. In
the visible region, absorption bands related to soil color are
because of electron excitations, which assist the measurement
of SOM, the content of SOM, and the spectral reflectance are
correlative [12, 37]. For researching the relationship between
SOM content and spectral reflectance of the corresponding
soil sample, five representative soil samples with different
contents were selected for the curve plotting. The diagram

showed that SOM content of 0.68 g kg−1 and 78.39 g kg−1cor-
responded to the highest and lowest reflectance, separately.
Spectral curves of soil samples with different organic matter
content had similar reflectance and curve slopes, and there
were three main obvious absorption features located near
1400, 1900, and 2200 nm, respectively (Figure 3). The
absorption peak at 1400 nm is a typical absorption band for
water which is associated with the bending and stretching
of the O–H bonds of free water. The regions near 1900 and

Table 1: The statistical characteristics of organic matter content of soil samples (g kg−1).

Type of samples Observations Min Max Mean Standard error Standard deviation Coefficient of variation

Whole set 103 0.68 78.39 21.43 1.07 10.81 50.46%

Calibration set 69 0.68 78.39 21.69 1.39 11.56 53.32%

Validation set 34 4.79 39.16 20.90 1.59 9.24 44.22%
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Figure 2: Spectral reflectance of soil samples after processing.
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2200 nm in the combination range are due to the bending
and stretching vibration of Al–OH and Mg–OH, respectively
[38–40]. From 401 to 760nm, reflectance increased sharply
with increasing wavelength. Reflectance gradually decreased
and tended to flat between 760 and 1900 nm. The second
spectral absorption peak was measured around 1900nm.
Reflectance had acute changes with wavelength increasing
from 1900 to 2400nm. There was a negative correlation rela-
tionship between soil spectral reflectance and SOM content
in the range of 401–2400nm; that soil reflectance increased
with SOM content decreasing and vice versa. It was easy to
distinguish the soil reflectance with different SOM contents
through the entire spectrum range, although spectral curves
of five soil samples had some overlap sections but could be
discriminated approximately from 400 to 600nm and from
1900 to 2000nm. The results were consistent with conven-
tional researches [30, 41, 42].

3.3. Model Calibration and Validation. Model calibration
with all wavelengths could take advantage of the whole spec-
tral information of the reflectance. The derivative pretreat-
ment could effectively eliminate the effect of background
noise on the target spectrum and highlight the spectral
characteristics of analyte. In this research, all raw spectral
reflectance and according absorbance data pretreated by frac-
tional derivative algorithm were applied in the process of
model calibration. As the order interval set to 0.2, all 22
inversion models were built by PLSR. The five performance
indices of calibration and validation were summarized in
Table 2 and Table 3. For R, during the range from 0 to 1st
order, the preference of models did not increase significantly,
the highest R2

c , R
2
p, and RPD were only 0.41, 0.28, and 1.18,

respectively. And the parameters did not reach the maximum
at the same order. Five performance indices had a slight
improvement with increasing order from 1st to 1.6 order.
The RMSEC and RMSEP of model based on 1.6 order deriv-
ative reached 8.84 and 6.47 g kg−1, separately. When the
order reached 1.8, the performance of this model had

significant promotion with the lowest RMSEC (3.35 g kg−1)
and RMSEP (2.70 g kg−1) and highest R2

c (0.92), R2
p (0.91),

and RPD (3.42 > 3.0). With the order increasing to 2, the
capability of model decreased slightly.

The variation trend of absorbance model built-up by
PLSR was similar with R model from 0 to 1st order. The
RMSEC and RMSEP of 6 models were kept in the high level
of values, that is, significant error. When the order is greater
than 1, R2

c and R2
p increased sharply and reached highest at

1.8 order. The stability and accuracy of this model were
perfected with the lowest RMSEC (3.06 g kg−1) and RMSEP
(3.06 g kg−1). The sensitivity of the spectrum to SOM, the
stability, and accuracy of models were enhanced. Both the
models based on 1.8 order derivative of R and absorbance
had the best predicting accuracy.

After repeated siftings for excellent predictive perfor-
mance, there were 2 models having acceptable results with
RPD > 3, R, and its absorbance model based on 1.8 order
derivative, respectively. And among these 22 models, there
was only one best model which was built-up based on 1.8
order derivative of R, represented the high values of R2

c , R
2
p,

and RPD, but low RMSEC and RMSEP, relatively. The coef-
ficients of all bands and the constant term were demonstrated
in Figure 4. The scatter plot of measured and predicted SOM
content of the optimal model is shown in Figure 5. R2 of mea-
sured and predicted values in calibration and validation set
both reached 0.91, and the whole performance indices meant
the model based on Vis-NIR spectroscopy treated by frac-
tional derivative could be used to predict the SOM content
in the Ebinur Lake basin.

4. Discussion

Due to the massive information, continuous bands, and high
resolution of the spectral reflectance, the measured spectra
are easily effected by individual differences (the particle size
of samples, the angle of light source, the condition of analyte,
etc.), and substantial noises [43, 44]. Therefore, the necessary

Table 2: Performance statistics of R model for calibration set and
validation set based on PLSR.

Order
Principal

components

Calibration set Validation set

R2
c

RMSEC
(g kg−1)

R2
p

RMSEP
(g kg−1)

RPD

0 2 0.12 10.87 0.16 8.50 1.09

0.2 2 0.28 9.84 0.23 8.13 1.14

0.4 2 0.36 9.24 0.28 7.84 1.18

0.6 2 0.38 9.11 0.28 7.87 1.17

0.8 3 0.41 8.91 0.25 8.01 1.15

1 3 0.38 9.09 0.23 8.09 1.14

1.2 4 0.42 8.79 0.36 7.42 1.24

1.4 4 0.38 9.07 0.47 6.70 1.38

1.6 4 0.42 8.84 0.51 6.47 1.43

1.8 5 0.92 3.35 0.91 2.70 3.42

2 5 0.90 3.64 0.91 2.77 3.34
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pretreatment should be applied to minimize the irrelevant
and useless information of the spectra and increase the corre-
lation between the spectra and measured values. The usual
pretreatment methods of soil spectrum mainly include
smoothing, denoising, normalization, derivative processing,
and multiple scatter correction [45]. For derivative process-
ing, the applications of first and second derivatives are
popular [46]. The first derivative could reduce the effect
caused by the background noise of partially linear or near
linear. Through the second derivative, signal wander of
spectra could be weakened.

The 1st and 2nd derivatives mean the slope and curva-
ture of spectral curves, respectively. Although the explicit
spectral meaning of fractional derivative has not been
clarified yet, the nonlocal and genetic characteristics of
fractional derivative are widely recognized. But it suggests

that between 0 and 2nd order of fractional derivative
could be identified as the sensitivity to the slope and cur-
vature of spectral curves. The derivative value becomes
more sensitive to the slope and less sensitive to reflectance
with the order increasing from 0 to 1st, and from 1st to
2nd order, the derivative value become more sensitive to
the curvature and less sensitive to the slope [15]. In the
case of R model in this research, RPD and other parame-
ters of regression models did not increase or decrease
monotonously as the order is increasing. The process of
change was undulant. They achieved optimal values at
fractional order (1.8 order). These indices did not continue
to improve at 2nd order as expected; the capability of
model decreased slightly. The sensitivity of the spectrum
to SOM was enhanced by pretreatment. RPD, R2

c , R2
p,

RMSEC, and RMSEP all revealed the sensitivity. For con-
ventional researches based on integer order derivative,
these process details were ignored, which might cause the
concealment of better models.

The soil spectral reflectance differ due to the influence
of the parent material and soil type [47]. Shi et al. com-
pared the correlations between the reflectance and SOM
in different types, just like limestone soils and red soils.
The results manifested that the reflectance in the wave-
length from 580 to 820 nm could be used to predict the
SOM content [12]. Liu et al. confirmed that the reflectance
in the range of 620–810nm was relevant to SOM, and the
maximum correlation coefficient was discovered at 710nm
[48]. With SOM content of 2% as a boundary, that is,
when SOM content exceeded 2%, the SOM played a prin-
cipal role in masking out the spectral features, while the
SOM content was less than 2%, it became less effective
[30, 37, 49]. Though, it is hard to estimate SOM content
of desert soil precisely when it is less than 2%. In this
research, the spectral reflectance displayed the higher
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Figure 5: Comparison of measured SOM content and estimated values of modeling sample (a) and testing sample (b) through R 1.8-order
derivative.

Table 3: Performance statistics of absorbance model for calibration
set and validation set based on PLSR.

Order
Principal

components

Calibration set Validation set

R2
c

RMSEC
(g kg−1)

R2
p

RMSEP
(g kg−1)

RPD

0 2 0.11 10.91 0.12 8.69 1.06

0.2 2 0.20 10.35 0.19 8.31 1.11

0.4 2 0.35 9.34 0.24 8.04 1.15

0.6 2 0.38 9.13 0.26 7.98 1.16

0.8 3 0.36 9.27 0.20 9.27 1.12

1 3 0.36 9.27 0.21 8.21 1.13

1.2 3 0.38 9.11 0.32 7.60 1.22

1.4 4 0.52 8.03 0.58 5.99 1.54

1.6 4 0.44 8.63 0.50 6.55 1.41

1.8 5 0.93 3.06 0.89 3.06 3.02

2 5 0.92 3.32 0.88 3.15 2.94
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correlation with the SOM content in the range of 600–
900nm (Figure 4). Our results are consistent with the
finding of above studies.

For higher SOM content, prediction based on Vis-NIR
spectroscopy was widely researched in the black-soil region
[7, 30, 50]. However, this kind of application is relatively
few in the arid and semiarid desert soils. Yang et al. dis-
covered an optimal model to estimate SOM content in
brown calcic soil region of Xinjiang and model with
R2 = 0 89 and RMSE=0.32 [50]. Nawar et al. used multi-
variate adaptive regression splines with first derivative
reflectance data to predict SOM in El-Tina Plain, Egypt;
the values of R2

p and RPD reached 0.76 and 1.98, respec-
tively [51]. Comparing our results with previous research,
in this study, not only considering the single band reflec-
tance, we excavated more potential spectral information
by using fractional derivative. It reduced the loss of infor-
mation, detailed the variation trend of 5 accuracy indexes
based on R and absorbance models of 11 order derivatives.

For abundant spectral information of all wavelengths,
models based on feature bands only utilize part of all wave-
lengths, and the number of bands is very limited. The signif-
icance test at the level of 0.01 is used in current selection
methods for choosing feature bands. This methodmight miss
some suboptimal bands and lead to the loss of some impor-
tant spectral information. For PLSR model with all wave-
lengths, spectral parameters of each wavelength in the
whole spectral region are considered. Because of the advan-
tages of PLSR, some problems just like fewer samples, more
independent variables, and multiple correlations between
variables could be solved effectively. In addition, due to the
introduction of fractional order algorithm, the related frac-
tional order spectral information of SOM is released, which
has been ignored previously. Thus, the performance of esti-
mating model is increased to some extent. The Ebinur Lake
basin is the typical arid and semiarid region. Our research
could enrich the SOM Vis-NIR spectroscopy studies and
provide a new perspective to estimate SOM content in the
special areas, where the organic matter content of desert soil
with mass fraction is less than 2%.

The characteristics of soil reflectance spectra are not only
directly relevant to SOM and water content but also obey the
obvious regional differentiation rules. The Ebinur Lake basin
is also the representative area with severe salinization. For the
predicting model of SOM content, the salt content and
texture may have a certain impact on the accuracy to some
degree. For a better precision, the next step for further
research is to distinguish the features of salt and SOM from
spectral reflectance curves.

5. Conclusion

The pretreatment of Vis-NIR spectroscopy is very necessary
and effective to improve the accuracy of the spectral estima-
tion model. In this research, the fractional derivative algo-
rithm was employed for pretreatment to determine the
most accurate model for SOM content in the Ebinur Lake
basin. We found that the whole 5 five performance indices,

that is, R2
c , R

2
p, RMSEC, RMSEP, and RPD did not increase

or decrease monotonously with the increasing order. With
the rise of order, these parameters showed the increasing or
decreasing trends with vibration and reached the optimal
values at the fractional order. Through the comparison of
the 22 models, a most robust model was calibrated based
on 1.8 order derivative of R, with the lowest RMSEC
(3.35 g kg−1) and RMSEP (2.70 g kg−1) and highest R2

c
(0.92), R2

p (0.91), and RPD (3.42 > 3.0). This model had excel-
lent predictive performance of estimating SOM content in
the study area.
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