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Diabetes has been one of the four major diseases threatening human life. Accurate blood glucose detection became an
important part in controlling the state of diabetes patients. Excellent linear correlation existed between blood glucose
concentration and near-infrared spectral absorption. A new feature extraction method based on permutation entropy is
proposed to solve the noise and information redundancy in near-infrared spectral noninvasive blood glucose
measurement, which affects the accuracy of the calibration model. With the near-infrared spectral data of glucose
solution as the research object, the concepts of approximate entropy, sample entropy, fuzzy entropy, and permutation
entropy are introduced. The spectra are then segmented, and the characteristic wave bands with abundant glucose
information are selected in terms of permutation entropy, fractal dimension, and mutual information. Finally, the
support vector regression and partial least square regression are used to establish the mathematical model between the
characteristic spectral data and glucose concentration, and the results are compared with conventional feature extraction
methods. Results show that the proposed new method can extract useful information from near-infrared spectra,
effectively solve the problem of characteristic wave band extraction, and improve the analytical accuracy of spectral and
model stability.

1. Introduction

Diabetes is one of the major diseases threatening human
health, and the number of people with diabetes is growing
at an alarming rate. More than one hundred million people
suffer from diabetes; furthermore, the number is expected
to increase to 592 million by 2035 [1]. Although proper diet
and insulin injection can be used to regulate blood glucose
levels, serious complications are caused in the later stage of
diabetes, such as heart failure and blindness [2]. Therefore,
the treatment of diabetes is very important, and the con-
centration of blood glucose detection is the foundation of
diabetes treatment. The noninvasive blood glucose detection

technology that measures the glucose concentration in the
blood under the condition of no skin damage includes
near-infrared spectroscopy, photo acoustic spectroscopy,
polarization method, fluorescence method, and dielectric
spectroscopy method [3–5]. Compared with the near-
infrared spectra method, other noninvasive blood glucose
detection methods are not perfectly suitable for real-time
detection. The signals are hard to be detected and easy to
be interfered by other components. At present, noninvasive
blood glucose detection based on near-infrared spectra
has become the research focus at home and abroad.
Near-infrared spectroscopy (NIR), which is generated from
molecular vibrations and reflects the chemical bond
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information, such as C-H, O-H, N-H, and S-H, can
measure most kinds of compounds and their mixtures.
Compared with the traditional analytical techniques, NIR
has been widely applied because it is highly efficient and
causes no damage and pollution [6–8]. The main structure
and composition of glucose information is contained in
the near-infrared spectra. The useful glucose information
can be extracted form spectral data; then, the data after
pretreatment are used to establish a mathematical model
to calculate the glucose concentration. In the field of
biomedicine, NIR combined with chemometrics is consid-
ered one of the most effective methods for noninvasive
blood glucose concentration detection [3]. The common
chemometrics methods include multiple linear regression
(MLR), principal component regression (PCR), partial
least squares regression (PLSR), and support vector
regression (SVR). The MLR is limited by the noise in
spectral data, and the irrelevance between some principal
components and the actual content appears in the PCR.
Therefore, the PLSR method and SVR method are
applied in this paper. However, certain technical difficul-
ties exist in noninvasive blood glucose measurement
because near-infrared spectral samples cannot be pretreated,
namely, the complex background, overlapped spectral
peaks, and less effective information rate. Therefore,
extracting effective information from the original spectra
is critical for establishing an ideal mathematical model.
The effective extraction of glucose characteristic informa-
tion from nonlinear and nonstationary near-infrared spec-
tral signals can improve the detection efficiency and
detection precision.

In 1984, Shannon introduced entropy to the field of
information theory and proposed the concept of information
entropy to measure the uncertainty of events [9]. Subse-
quently, the concept of entropy was gradually generalized.
In 1991, Pincus proposed the concept of approximate
entropy (ApEn), which has the advantages of short required
calculating data and excellent antinoise ability [10] and
offsets the shortcomings of nonlinear analysis. However,
the data has no relevance and the errors are produced in
the computational process of ApEn. To observably improve
the accuracy and efficiency of the ApEn method, Richman
and Moorman proposed an improved ApEn in 2000 called
sample entropy (SampleEn) [11]. Compared with the ApEn
algorithm, SampleEn has short required data and robust
antinoise and anti-interference abilities, well consistent in
the range of large parameters such unique advantages.
The definition of SampleEn must contain a template
match; otherwise, it is meaningless. Therefore, Chen et al.
improved SampleEn and first defined a new measure of
sequence complexity, named fuzzy entropy [12]. This new
measure fuzzifies the similarity measure formula with an
exponential function to enable the fuzzy entropy value to
transition smoothly with changing parameter. Its definition
still has significance when the parameter is small, and it
inherits the relative consistency and short data set-
processing characteristics of SampleEn. Bandt and Pompe
proposed a randomness detection method of a time series,
namely, permutation entropy (PE), which can detect the

randomness of time series and dynamic mutation behavior
[13–18]. Permutation entropy calculates entropy based on
permutation patterns by comparing the neighboring values
of the time series [19]. PE between 0 and 1 has the advan-
tages of simple concept, fast calculation speed, and robust
anti-interference ability, and it is especially suitable for
nonlinear data.

The key point of near-infrared spectra noninvasive
blood glucose detection is to extract the characteristic
information from the spectral signal. The near-infrared
spectral signals of glucose solution are nonstationary and
noisy, but the calculation of PE has a certain antinoise
and anti-interference ability. In this study, the feature
extraction of spectral information is investigated with
glucose solution as the research object from the perspec-
tive of whole information from a signal. This paper is
organized as follows. Section 2 describes the principles
of ApEn, SampleEn, fuzzy entropy, and PE and then
briefly introduces the methods of near-infrared spectral
characteristic band extraction of a glucose solution, such
as fractal dimension, mutual information, and the model-
ing methods, such as PLSR and SVR. In Section 3, the
application of the proposed method is presented, and
PLSR and SVR are used to establish calibration models
with the extracted characteristic bands, as well as verify
the validity and superiority of the proposed method.
Finally, the conclusion is drawn in Section 4.

2. Theory and Methods

2.1. Entropy

2.1.1. Approximate Entropy. In 1991, Pincus defined ApEn as
a conditional probability that the similarity vector maintains
its similarity when it increases from m dimension to m + 1
dimension. The physical meaning is the probability of gener-
ating a new pattern of time series when the dimension
changes. ApEn has the following advantages: (1) short
required data, (2) robust antinoise and anti-interference abil-
ities, and (3) applicability for deterministic and stochastic
signals and a mixed signal composed of deterministic and
stochastic signals. The steps of the ApEn algorithm are as
follows [10]:

(1) Given a time series of length N , u i , i = 1,…,N ,
reconstruct am-dimensional vector Xi, i = 1, 2,…, n,
n =N −m + 1, according to the formula Xi =
u i , u i + 1 ,…, u i +m− 1 .

(2) Compute the distance between arbitrary the vector
Xi and the vector Xj j = 1, 2,…,N −m + 1, j ≠ i .

dij =max u i + j − u j + k , k = 0, 1,…,m− 1 1

The distance between the two vectors is the maxi-
mum absolute value of the difference between two
corresponding elements in two vectors.
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(3) Specify the threshold r, which is typically between 0.2
and 0.3. For each vector Xi, find the number of
dij ≤ r × SD (SD is the standard deviation of the
sequence) and calculate the ratio between this
number and the total number of distances N −m ,
which is denoted as Cm

i i .

(4) Take the logarithm of Cm
i i , average for all i, and

denote ϕm r .

ϕm r = 1
N −m + 1 〠

N−m+1

i=1
lnCm

i r 2

(5) Increase m by 1 and repeat steps 1 to 4 to obtain
Cm+1
i i and ϕm+1 r .

(6) Obtain the ApEn from ϕm+1, ϕm.

ApEn = 〠
N→∞

ϕm − ϕm+1 3

(7) For a finite time series, ApEn can be estimated by a
statistical value.

ApEn = ϕm − ϕm+1 4

The parameters N ,m, and r in the above steps are the
length of time series, length of the comparison window,
and margin of similarity, respectively. The bigger the value
of m is, the more dynamic the process can be
reconstructed.

2.1.2. Sample Entropy. The physical meaning of SampleEn is
the same as that of ApEn. The larger SampleEn is, the higher
the complexity of the sequence and the greater the probabil-
ity of generating the new pattern will be. The specific algo-
rithm implementation process is as follows [11]:

(1) Given the time series x 1 , x 2 ,…, x N , compose
a set of dimension vectors according to the serial
number order.

Xm i = x i , x i + 1 ,…, x i +m− 1 , 

i = 1 N −m
5

(2) Define the distance between vector Xm i and
vector Xm j as the largest difference between their
corresponding elements, namely,

d Xm i , Xm j =max x i + k − x j + k 6

(3) Define the threshold r. For the value of each
i ≤N −m, find the number N i of d Xm i ,
Xm j ≤ r, and calculate the ratio between N i and
the total number of distances N −m− 1, which is
denoted as Bm i =N i / N −m− 1 . The average
for all i is as follows:

Bm r = N −m −1⋅〠
N

i=1
Bm i 7

(4) Increase the dimension tom + 1 and repeat the above
steps to obtain

Bm+1 r = N −m −1⋅〠
N

i=1
Bm+1 i 8

(5) Theoretically, the SamEn of this sequence is as
follows:

SampleEn m, r = limN→∞ −ln Bm+1 r
Bm r

, 9

where N→∞. In practice, N is not an infinite value.
When N is a finite value, SamEn is calculated as
follows:

SampleEn m, r,N = −ln Bm+1 r
Bm r

10

2.1.3. Fuzzy Entropy. In the definition of fuzzy entropy,
the concept of a fuzzy set is introduced, and the exponen-
tial function is chosen as the fuzzy function to measure
the similarity of two vectors. The exponential function
has the following expectation properties: (1) continuity of
the exponential function ensures that its value does not
have a mutation and (2) the nature of the exponential
function ensures that the self-similarity value of the vec-
tor is maximum. The definition of fuzzy entropy is as
follows [12]:

(1) The sampling sequence with N points is
u i : 1≪ i≪N .

(2) Compose a set ofm-dimensional vectors according to
the serial number order.

Xm
i = u i , u i + 1 ,…, u i +m− 1

− u0 i i = 1,…,N −m ,
11

where u i , u i + 1 ,…, u i +m− 1 represents the
continuous m values of u starting from the ith point.
u0 i is its mean value.

u0 i = 1
m

〠
m−1

j=0
u i + j 12

(3) Define the distance dmij between vector Xm
i and vector

Xm
j as the largest difference between their corre-

sponding elements, namely,
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dmij = d Xm
i , Xm

j

=maxk∈ 0,m−1 u i + k − u0 i − u j + k − u0 j , 

i, j = 1 N −m, j ≠ i

13

(4) Define the similarity Dm
ij between vector Xm

i and
vector Xm

j , with a fuzzy function dmij , n, r , namely,

Dm
ij = dmij , n, r = exp

− dmij
n

r
, 14

where the fuzzy function dmij , n, r is an exponential
function, and n and r are the gradient and width of
the exponential function boundary, respectively.

(5) Define the function as follows:

Om n, r = 1
N −m

〠
N−m

i=1

1
N −m− 1 〠

N−m

j=1,j≠i
Dm
ij 15

(6) Similarly, repeat steps 2 to 5, reconstruct a set of
m + 1-dimensional vector according to the serial
number order, and define the following function:

Om n, r = 1
N −m

〠
N−m

i=1

1
N −m− 1 〠

N−m

j=1,j≠1
Dm+1
ij

16

(7) Define the fuzzy entropy as follows:

FuzzyEn m, n, r = limN→∞ lnOm n, r

− lnOm+1 n, r
17

When N is a finite value, the value obtained by the
above steps is the estimated value of the fuzzy
entropy of the sequence with length N .

FuzzyEn m, n, r,N = lnOm n, r − lnOm+1 n, r
18

2.1.4. Permutation Entropy. According to [13], the definition
of PE is setting a time sequence X i , i = 1, 2,…, n , and
reconstruct it in phase space to obtain the matrix

x 1 x 1 + τ ⋯ x 1 + m− 1 τ

⋮ ⋮ ⋮
x j x j + τ ⋯ x j + m− 1 τ

⋮ ⋮ ⋮

x K x K + τ ⋯ x K m− 1 τ

, j = 1, 2,…, K ,

19

wherem and τ are the embedding dimension and delay time,
respectively, and K = n− m− 1 τ. Each row in the matrix
can be regarded as a reconstructed component, with a total
of K reconstruction components. The jth reconstruction
component x j , x j + τ ,…, x j + m− 1 τ of the recon-
struction matrix X i is rearranged according to the values
in ascending order. j1, j2,…, jm represents the index of the
column in which the individual elements of the reconstructed
component are as follows:

x i + j1 − 1 τ ≤ x i + j2 − 1 τ ≤⋯≤ x i + jm − 1 τ 20

If equal values in the reconstructed component are
observed,

x i− j1 − 1 τ = x i− jm − 1 τ , 21

the components are arranged according to the size of
the value of j1 and j2, that is, when j1 < j2,
x i− j1 − 1 τ ≪ x i− j2 − 1 τ .

Therefore, for an arbitrary time series X i , a set of
symbol sequences can be obtained from each row in the
reconstructed matrix

S l = j1, j2,…, jm , 22

where l = 1, 2,…, k and k≪m . m is observed when the
m-dimensional phase space map has a different symbolic
sequence j1, j2,…, jm , and the symbolic sequence S l is
one kind of arrangement. If the probability of the occurrence
of each symbol sequence is P1, P2,…, Pk, the PE of k kinds of
different symbol sequences of time series X i in terms of
Shannon entropy is as follows:

Hp m = −〠
k

j=1
Pjln Pj 23

When Pj = 1/m , Hp m reaches the maximum value ln m .
For convenience, Hp m is typically normalized with ln m ,
namely,

0≪Hp =
Hp

ln m ≪ 1 24

The magnitude of Hp represents the randomness degree
of the time series X i . The smaller the value of Hp is, the
more inerratic the time series will be; otherwise, the more
stochastic the time series will be. The change in Hp reflects
and amplifies the minute details of the time series.

2.1.5. Application to Simulation Signal. In order to compare
the ApEn, SampleEn, fuzzy entropy, and PE, define a mixed
signal composed of deterministic signal and stochastic signal
with a different probability,

MIX N , p = 1− p x t + py t , 25
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where x t = 2sin 2πt , y t is the stochastic signal in
−0 5, 0 5 , N is the data length, and p ∈ 0, 1 . Considering
the four kinds of entropy of signal with MIX 1024, 0 4 and
MIX 1024, 0 2 , note ApEn1, SampleEn1, FuzzyEn1, PE1,
ApEn2, SampleEn2, FuzzyEn2, and PE2 for convenience,
respectively. Their change relation with signal amplitude A,
signal length N , and signal-to-noise ratio of signal are shown
in Figures 1–3.

Figure 1 shows that ApEn, SampleEn, and FuzzyEn
change slightly with the same probability, when signal
amplitude A changes bigger gradually. However, the PE

has been the same all the time with a different
probability, which illustrates that the PE has excellent
stability and consistency.

Figure 2 shows that the ApEn, SampleEn, and FuzzyEn
change with the signal length N and remain unchanged after
N = 512 with the same probability, which illustrates that the
values of ApEn, SampleEn, and FuzzyEn are related to
the data length. However, the PE has been the same
all the time with a different probability, which illustrates
that the required time sequence of PE is shorter in the
calculation process.
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Figure 1: Four kinds of entropy values with different amplitudes.
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Figure 2: Four kinds of entropy values with different data lengths.
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Figure 3 shows that the ApEn, SampleEn, and FuzzyEn
change with the signal-to-noise ratio of the signal as the
same trend with the same probability, which illustrates
that the values of ApEn, SampleEn, and FuzzyEn are
affected by SNR of the signal. However, the PE has been
the same all the time with a different probability, which
illustrates that the PE has robust antinoise ability.
Therefore, the PE is used for extracting the feature
information of near-infrared spectral data of glucose
solution in this study.

2.2. Fractal Dimension. Dimension, an important feature of
geometry, characterizes the size of the space a shape
occupies. Because Euclidean geometry objects are relatively
regular shapes, the obtained dimension is an integer. How-
ever, Euclidean geometry is not applied for irregular
complex shapes. Most natural geometries exhibit similar
properties. Therefore, the spatial dimension of an object
is not always an integer; it can also be fractional. The non-
integer dimension is the real dimension of most geometric
shapes; integers are only special cases. The noninteger
dimension is a different concept, but it is suitable for all
the geometric shapes in nature. In 1919, Hausdorff, who
studied the properties of singular sets, first proposed the
concept of fractal dimension [20] and defined the Haus-
dorff measure and dimension theory. Since then, several
scholars have developed various dimensions, such as self-
similar dimension, box dimension, information dimension,
correlation dimension, and Lyapunov dimension. The box
dimension is one of the most common fractal dimensions
because of its ease of calculation, few parameters, and ease
of application. The box dimension is defined as the way
that the set X is covered by a hypercube with size ε.

X is a nonempty and bordered subset Rn. If it is covered
by N ε hypercube with length ε, then

DB X = limε→0
lnN ε

ln 1/ε 26

The above formula is the definition of the fractal box
dimension. The steps are as follows:

(1) Set discrete signal y i ⊂ Y , and Y is the closed set in
the n-dimensional Euclidean space Rn.

(2) Divide Rn with the ε grids as small as possible, and
N ε is the grid counts of set Y . The limit in the above
formula cannot be determined by definition; so, an
approximate method is used in calculation. The ε
grid is used as the reference, and it is enlarged to
the kε grid, where k ∈ Z+. In this way, NkεN kε is
the grid count of set Y in discrete space, and the
following formula can be obtained:

P kε = 〠
N/k

i=1
max yk i−1 +1, yk i−1 +2,…, yk i−1 +k+1

−min yk i−1 +1, yk i−1 +2,…, yk i−1 +k+1 ,
27

where i = 1, 2,…,N/k, k = 1, 2,…,M,M <N , and N
is the number of sampling points.

The grid count is as follows:

N kε = P kε
kε

+ 1, 28

where N kε > 1. In the graph of lgkε− lgN kε , the scale-
free region is determined with good linearity. The beginning
and end points of the scale-free region are k1 and k2; thus,
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Figure 3: Four kinds of entropy values with different signal-to-noise ratios of signal.
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lgN kε = algkε + b, k1 ≤ k ≤ k2 29

Finally, the slope of the line is determined by the least
square method,

â =
k2 − k1 + 1 〠lgk〠lgN kε −〠lgk〠lgN kε

k2 − k1 + 1 〠lg2k− 〠lgk
2 30

The box dimension DB is as follows:

DB = â 31

2.3. Mutual Information. Information is the movement state
and the way the movement state changes items that are felt
and expressed by the cognitive subject. Two kinds of metric
forms are identified for information. One measures how
much information the message or message collection itself
contains; another one is the measure of how much infor-
mation is provided between messages or message sets.
The former is described by self-information entropy and
message entropy, whereas the latter is described by mutual
information (MI) and average mutual information. Mutual
informationmeasures the degree of interdependence between
two variables and represents the amount of shared informa-
tion between two variables. For two given random variables
X and Y , if their respective marginal probability distribu-
tion and joint probability distribution are p x , p y , and
p x, y , the definition of mutual information between them
is as follows:

I X Y = 〠
x

〠
y

p x, y log p x, y
p x p y 32

When the variables X and Y are completely unrelated or
independent with each other, the mutual information is the
minimum 0, which means no information overlaps between
the two variables. By contrast, the higher the degree of
interdependence between the two variables is, the greater
the value of mutual information will be, and the more similar
the information it contains.

2.4. Partial Least Squares Regression. In 1984, Wold and
Albano first proposed PLSR, which was a new multivariate
statistical data analysis method and studied the regression
modeling of multiple dependent variables [21].

Given p independent variables x1, x2,…, xp and q
dependent variables, the study of the statistical relationship
between the independent variable and dependent variable
involves the observation of n sample points, which form
the data tables X and Y of the independent variable and
dependent variable. In PLSR, the components t1 and u1
are first extracted form X and Y ; namely t1 is the linear
combination of x1, x2,…, xp and u1 is the linear combina-
tion of y1, y2,…, yq. After the first components t1 and u1

are extracted, the regression of X on t1 and Y on u1 is
performed by PLSR. The accuracy of the model is vali-
dated; if the regression equation reaches satisfactory accu-
racy, the algorithm is terminated. Otherwise, the residual
information of X interpreted by t1 and the residual infor-
mation of Y interpreted by u1 will be extracted for the sec-
ond round. This step is repeated until accuracy is
satisfactory. Finally, if m components t1, t2,…, tm form
X, PLSR can be expressed as the regression equation of
yk about the original variables x1, x2,…, xp by implement-
ing regression with yk k = 1, 2,…, q on t1, t2,…, tm.

2.5. Support Vector Regression. The support vector machine
(SVM) is a new machine learning method proposed by
Vapnik et al. based on statistical learning theory. SVM
has the characteristics of small sample learning and strong
generalization ability, which can avoid the problems of
overlearning and local minimum. By introducing the insensi-
tive loss function ε, Vapnik et al. have extended the SVM
to the regression estimation of the nonlinear system and
established the SVR algorithm. SVR has been widely used
in function estimation, nonlinear system modeling, and
other fields [22].

For the sample set G = xi, yi
n
i (xi is the input vector,

yi is the corresponding target value, and n is the number of
samples), the SVR function is as follows:

f x = ωϕ x + b, 33

where ϕ x is the nonlinear map transforming data into a
high-dimension feature space and ω and b are coefficients.

2.6. Near-Infrared Spectra Data. In the near-infrared spectra
noninvasive blood glucose measurement experiments, the
blood glucose solution is temporarily replaced by glucose
solution. All the glucose solutions, which concentration
ranges from 50mg/dL to 1000mg/dL, are continuous and
are equally distributed liquid that is uniformly configured
under the same conditions. The prepared samples of glucose
solution are put into the detection system of spectrometer.
All the experimental data are collected by Fourier spectrom-
eter Antaris II FT-NIR, produced by America Thermo
Company. Its spectral range is 833–2630 nm, resolution
is 4 cm−1 across spectral range, wavenumber reproducibility
is better than 0.05 cm−1, and wavenumber accuracy is
±0.03 cm−1. The data meet the measurement principle of
Lambert-Beer’s law. All the collected near-infrared spectral
data of glucose solution are measured five times with the
same concentration in order to get a small statistical error
and shown in Figure 4.

3. Results and Discussion

The principle of selecting optimal wave bands has two key
points: (1) information on the selected bands is large and
(2) the correlation between bands is small. The widely used
extraction methods include the information comparison of
each band, information correlation between bands, best
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index method, entropy, and joint entropy of band data. In
feature extraction, the fractal dimension (FD) can be used
as a feature because almost all signals have fractal character-
istics. The fractal dimension can distinguish different signals
on the premise that two signals have different dimensions
under the same measure. If two signals come from the same
state, they have similarities, and their fractal dimensions are
similar. The correlation or correlation coefficient can only
reflect the linear correlation between two variables but
cannot measure the nonlinear relationship between them.
However, from the view of information theory, mutual infor-
mation can estimate the total information amount between
variables, is not limited to a linear relationship, and has
greater advantages than correlation comparison. PE analysis
can effectively determine the similarity between sequences
and show the strong similarity and distinction, which can
be further applied to biological sequence analysis. PE of
the time series is calculated using the PE algorithm. The
ratio value of PE is the basis for analyzing the similarity
between sequences. Therefore, the PE, fractal dimension,
and mutual information are used in extracting the feature
information of near-infrared spectral data of glucose solu-
tion in this study.

In the PE calculation, there are three parameters needed
to be considered and set, namely, data length N , embedded
dimension m, and time delay λ. According to reference
[23], λ has a little effect on the PE value and there are very
small differences among the PE values with different λ.
Therefore, λ = 1 is chosen in this study. In order to discuss
the relationship of N and m with PE value, the PE values of
the given signal MIX N , p with data length 128, 256, 512,
1024, and 2048 are calculated in Figure 5. Figure 5 shows that
the PE values are almost same in m = 2, 3, 4 with different

data length N . If m is too small, the algorithms lose signifi-
cance and effectiveness because of the few states contained
in reconstructed sequence. If m is too big, the time series will
be homogenized by phase space reconstruction; thus, the
computation is time-consuming and the subtle changes in
sequence cannot be reacted. Therefor m = 3 and N = 1867,
which is the length of collected spectra data, are chosen in
this study.

Because PE cannot be affected by noise (λ = 1), the
characteristic wave bands are extracted from the collected
near-infrared spectroscopy data of the glucose solution.
Full spectral wavelength data have 1867 points in total, which
are divided into wavelength intervals with 50, 100, 150, and
200 points. The ratio of PE of the corresponding wavelength
interval between 50mg/dL, 500mg/dL, 1000mg/dL, and pure
water solution, the ratio of FD of the corresponding wave-
length interval between 50mg/dL, 500mg/dL, 1000mg/dL,
and pure water solution and the MI values of the correspond-
ing wavelength interval between 50mg/dL, 500mg/dL,
1000mg/dL, and pure water solution are shown in Figure 6.
As shown in Figure 6, the ratios of FD values and MI values
of each wavelength interval have no obvious difference. The
PE values of some wavelength intervals are substantially
consistent, and other wavelength intervals are significantly
different. Therefore, the later wavelength intervals are the
characteristic wave bands that contained abundant glucose
concentration information. However, the PE values of
wavelength intervals that are divided with less than 50 points
or more than 200 points of different concentration spectra
have no obvious distinguished law. In order to improve the
precision and accuracy of feature wavelength extraction,
the characteristic wavelength intervals are extracted in four
uniform ways (50, 100, 150, and 200), and their overlapping
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Figure 4: Near-infrared spectral data of glucose solution.
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intervals are considered as the final characteristic wavelength
intervals (Table 1).

In order to verify the effectiveness of the proposed
method, the characteristic wavelength intervals of the col-
lected spectral data of glucose solutions with the FD method,
MI method, the proposed method, successive projection
algorithm (SPA) method [24], EMD-SPA method [25], and
full spectral data are taken into the calibration models that
were established by PLSR and SVR. The correlation coeffi-
cient and root mean square error correction (RMSEC) of
the model are evaluated. The characteristic wavelength
points that were extracted based on the PE method are 150,
which is much less than the full spectral wavelength points,
and the smaller selected characteristic wavelength points
are, the shorter the established model time is. The expe-
rimental results of SVR and PLSR calibration model
(Tables 2 and 3) show that the correlation coefficient (R)
and RMSEC of established calibration model by characteris-
tic wavelength intervals that were extracted based on the PE
method reach 0.9998/0.9897 and 0.0346%/0.0468%. The
results are better than that of the established calibration
model by characteristic wavelength intervals that were
extracted based on FD method, MI method, SPA method,
EMD-SPA method, and by full spectra data. The overall
modeling results of SVR are more reliable to that of PLSR
modeling method.

4. Conclusions

The feature wave band extraction method that was based
on permutation entropy that is proposed in this study
for near-infrared spectra noninvasive blood glucose detec-
tion. The spectra data do not need denoise because PE has
the advantages of robust antinoise and anti-interference
abilities, and it is especially suitable for nonlinear data.
Taking the near-infrared spectra data of glucose solutions
as the object, all of the collected near-infrared spectra are
divided with different interval points, and the ratio values
of PE of corresponding spectra intervals are calculated. The
overlap spectral intervals contained abundant glucose con-
centration information, which were extracted for reducing
the effective range of data. Then, the PLSR and SVR methods
are introduced for establishing the calibration models with
characteristic spectra that were extracted by the proposed
method, FD method, MI method, SPA method, EMD-SPA
method, and full spectral data. According to the correlation
coefficient and RMSEC of the calibration models, the pro-
posed feature extraction method effectively solves the
redundancy problem of near-infrared spectra data, and it
also improves the robustness and predictive ability of
regression model.
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