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The WinXCom program has been used to calculate the mass attenuation coefficients (μm), effective atomic numbers (Zeff), effective
electron densities (Nel), half-value layer (HVL), and mean free path (MFP) in the energy range 1 keV–100GeV for
Gd3Al2Ga3O12Ce (GAGOC) and CaMoO4 (CMO) scintillator materials. The geometrical progression (G-P) method has been
used to compute the exposure buildup factors (EBF) and gamma ray energy absorption (EABF) in the photon energy range
0.015–15MeV and up to a 40 penetration depth (mfp). In addition, the values of the removal cross section for a fast neutron
∑R have been calculated. The computed data observes that GAGOC showed excellent γ-rays and neutrons sensing a response
in the broad energy range. This work could be useful for nuclear radiation sensors, detectors, nuclear medicine applications
(medical imaging and mammography), nuclear engineering, and space technology.

1. Introduction

Due to the great importance of inorganic scintillator mate-
rials in the field of ionizing nuclear radiation detection, they
are a very suitable to utilize in many applications such as
technology of space, the design of nuclear devices, and
medicinal diagnostics [1]. To develop the new scintillator
materials, the knowledge of mass attenuation coefficient
(μm) is very considered for scintillators because the results
of μm show the probability of interaction. Furthermore, when
the gamma ray interacts with the material, the half-value
layer (HVL), mean free path (MFP), effective atomic number
(Zeff), effective electron density (Nel), exposure buildup
factors (EBF), and gamma ray energy absorption (EABF)
are the fundamental quantities required to explain the pene-
tration of nuclear radiation in matter. HVL, MFP, Zeff, Nel,
EBF, and EABF parameters can be computed utilizing the

values of μm [2]. Precise μm values are wanted to provide
fundamental results in many nuclear radiation fields like
computerized tomography, radiation shielding, nuclear
radiation dosimeter, fluorescence of gamma ray, and safety
inspection [3]. Various other researchers reported the prop-
erties of gamma radiation shielding for alloys, multielemental
materials, soils, solutions, polyvinyl alcohol, and biological
materials [4–11].

Hine [12] suggested a number of composite changes with
energy called effective atomic number (Zeff) to characterize
the atomic number of mixed materials with energy. Due to
the high light yield, speedy decay time, high density, high Zeff,
and good energy resolution of GAGOC scintillator materials,
it is a great nominee for many applications like gamma spec-
troscopy and position emission tomography (PET) [13]; fur-
thermore, GAGOC does not have natural radioactivity [14].
Because there is lack of knowledge of gamma ray and neutron
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interaction with GAGOC and CMO scintillator materials,
μm, HVL, MFP, Zeff, Nel, EBF, and EABF have been investi-
gated in a broad energy range. The values have been
computed for μm, HVL, MFP, Zeff, and Nel in the energy
range 1 keV–100GeV and for EBF and EABF in the energy
range 0.015–15MeV using the WinXCom program. Also,
the macroscopic fast neutron removal cross section ∑R
has been calculated.

2. Theory

Photoelectric effect, Compton scattering, and pair produc-
tion mechanisms can explain the interaction of photons with
the GAGOC and CMO scintillator materials. If the intensity
of the initial beam penetrates the sample which is I0, the
intensity of the beam will be attenuated and exponentially
decreased to I according to the Beer–Lambert law.

μm = ln I0/I
ρd

, 1

where I0 is the intensity of bombarding beam, I is the inten-
sity of transmitting beam, ρ is the density of scintillator
samples (g/cm3), and d is the thickness of the samples (cm).
The total photon interaction cross section (σt) of the samples
has been calculated with the help of the μm according to the
following equation:

σt =
Mμm
NA

, 2

whereM =∑iAini is the molecular weight of the sample, Ai is
the atomic weight of the ith element, ni is the number of the
formula units of a molecule, and NA is the Avogadro’s num-
ber. Effective atomic cross section, σa, has been calculated
using the following equation:

σa =
σa

〠
i

ni
3

Total electronic cross section, σe, has been calculated by

σe =
1
NA

〠
i

f iAi

Zi
μm i, 4

where fi indicates to the fractional abundance of the element i
and Zi the atomic number of the constituent element. The
Zeff is related to σa and σe through the following equation:

Zef f =
σa
σe

5

The effective electron densities (Nel) of GAGOC and
CMO have been calculated from the following:

Nel =
Zef fNA

M
〠
i

ni 6

Half-value thickness (HVL) is the thickness of any given
material where 50% of the incident energy has been

attenuated and has been computed utilizing the linear atten-
uation coefficient (μ) through the following equation:

HVL = 0 639
μ

7

One of the other values that are calculated in this study of
GAGOC and CMO is the mean free path (MFP) which is
described in [15, 16]. For the detailed knowledge on calcula-
tions of the parameters of G-P fitting, exposure buildup factor
and energy absorption buildup factor, the element G-P fitting
parameters have been taken from the ANSI/ANS 6.4.3 [17].
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Figure 1: Variation of the total and partial mass attenuation
coefficient of GAGOC versus incident photon energy.
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Figure 2: Variation of total mass attenuation coefficients versus
incident photon energy for GAGOC and CMO.
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Finally, the removal cross sections for fast neutrons ∑R
for GAGOC and CMO materials can be calculated using the
following equations:

〠
R/ρ

=〠
i

wi 〠
R/ρ i

,

〠
R

=〠
i

ρi 〠
R/ρ i

,
8

Table 1: K-, L-, and M-absorption edges (keV) for elements.

Element Z K L1 L2 L3 M1 M2 M3 M4 M5

Al 13 1.560 — — — — — — — —

Ca 20 4.038 — — — — — — — —

Ga 31 10.37 1.298 1.142 1.115 — — — — —

Mo 42 20.00 2.865 2.625 2.520 — — — — —

Ce 58 40.44 6.549 6.164 5.723 1.437 1.273 1.185 — —

Gd 64 50.24 8.376 7.930 7.243 1.881 1.688 1.544 1.217 1.185

10‒3 10‒2 10‒1 100 101 102 103 104 105
0

1

2

3

4

5

6

H
V

L 
(c

m
)

Photon energy (Mev)

GAGOC
CMO

Figure 3: Variation of HVL versus incident photon energy for
GAGOC and CMO.
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GAGOC and CMO.
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Figure 5: Variation of effective atomic number (Zeff) as a function
of photon energy in the range of 1 keV to 100GeV for GAGOC
and CMO.

Table 2: Effective atomic numbers of the GAGOC and CMO
scintillators corresponding to the K-absorption edge energies of
the constituent elements.

Sample ID Element
K-edge

Zeff lower Zeff upper

GAGOC

Al (0.0505)a 37.48 35.01

Ga (0.1960) 56.06 47.38

Ce (0.1313) 47.32 50.96

Gd (0.4421) 50.23 57.95

CMO
Ca (0.2003) 32.48 27.88

Mo (0.4796) 29.03 38.36
aRefers to the elemental composition (%).
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where ρi is the partial density and ∑R/ρ i
is the mass removal

cross section of the ith element which is taken from Kaplan
and Chilten [18, 19].

3. Results and Discussion

3.1. Mass Attenuation Coefficient (μm). Coherent scattering,
incoherent scattering, photoelectric absorption, nuclear pair
production, and electron pair production are the interaction
processes of photon energy with matter. These interaction
processes can explain the dependency of total mass attenua-
tion coefficient (μm) on the photon energy, as shown in
Figure 1 for GAGOC. This figure shows that the low photon
energy range (E< 0.3MeV), intermediate photon energy
range (0.3<E< 5MeV), and high photon energy range
(E> 5MeV) are the three photon energy ranges in interaction
processes. Figure 2 shows the calculated μm values of
GAGOC and CMO scintillator materials. As shown in
Figure 2, the μm values of the samples decrease quickly,
from 3.50 × 103 to 1.68× 10−1cm2/g and 4.81× 103 to
1.17× 10−1cm2/g for GAGOC and CMO, respectively, as
the photon energy increases up to 0.3MeV. In this photon
energy range, the K-, L-, and M-absorption edges have
been observed of Al, Ca, Ga, Mo, Ce, and Gd as shown
in Table 1 due to the photoelectric effect. This behavior
of μmwith photon energy may be attributed to the photoelec-
tric absorption cross section which is relative to E3.5. In the
photon energy range 0.3<E< 5MeV, the μm values of
GAGOC and CMO scintillator materials change slowly, form
0.01179 to 0.0345 cm2/g and 0.0971 to 0.0317 cm2/g for
GAGOC and CMO, respectively. The difference of the μm
values becomes approximately equal to zero as shown in
Figure 2. This is because the process of Compton scattering
is a predominant mechanism [20]. Since, the Compton
scattering cross-section process is relative to E−1 and linearly
changes with the Z number. Figure 2 shows that, as the
photon energy increases from 5MeV to 100GeV, the values

of μm increase slowly, becoming constant and highly depen-
dent on the composition of samples. This may be attributed
to the fact that the pair production process is a predominant
mechanism. The results show that the GAGOC scintillator
material has higher μm than CMO.

3.2. HVL and MFP. The HVL and MFP results are the most
suitable quantities describing the radiation attenuation.
For a best radiation shielding mixture, lower HVL and
MFP values are required. The values of the half-value layer
as a function of photon energy are plotted in Figure 3. In
the photon energy range 1–100 keV, the values of the half-
value layer are photon energy and sample composition
independent. The half-value layer values increase when
the photon energy increases up to 6 and 10MeV for
GAGOC and CMO, respectively. Above 2000MeV, the
HVL values are dependent on the composition of GAGOC
and CMO. The values of HVL for GAGOC are lower than
those for CMO [21].

As shown in Figure 4, the values of the mean free
path (MFP) increase with increasing photon energy. In
the photon energy range 1–300 keV and 1–150 keV, the
MFP values are <1 for GAGOC and CMO. Above
5MeV, the values of MFP are dependent on the compo-
sition of the GAGOC and CMO samples. The values of
MFP for GAGOC are lower than those for CMO. The
results of HVL and MFP indicate that the GAGOC com-
pound is the excellent γ-ray sensing a response in the
broad energy range.

Table 3: Theoretically and experimentally obtained values of mass
attenuation coefficients and effective atomic numbers of the
GAGOC and CMO scintillator materials.

(a)

Energy (keV)
Mass attenuation coefficients (μm) (cm

2/g)
GAGOC CMO

This work Exp. [1] This work Exp. [1]

287.30 0.179 0.1896 0.1271 0.1264

340.80 0.142 0.1541 0.1116 0.1108

399.00 0.118 0.1259 0.1006 0.1032

481.60 0.099 0.1034 0.0900 0.0902

562.70 0.087 0.0900 0.0826 0.0843

662.00 0.077 0.0800 0.0758 0.076

(b)

Energy (keV)
Effective atomic numbers (Zeff) (e

−/atom)
GAGOC CMO

This work Exp. [1] This work Exp. [1]

287.30 32.56 38.6 17.79 18.12

340.80 29.95 35.4 17.15 17.32

399.00 28.07 31.91 16.74 17.39

481.60 26.39 29.15 16.40 16.59

562.70 25.37 27.56 16.21 16.66

662.00 24.59 26.64 16.07 16.21
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Figure 6: Correlation between effective atomic number (Zeff) and
electron density (Nel) for GAGOC and CMO.
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Table 4: Equivalent atomic number (Zeq) and G-P exposure (EBF) and energy absorption (EABF) buildup factor coefficients of GAGOC.

Energy (MeV) Zeq
EBF EABF

b c a Xk d b C A Xk d

0.015 28.83 1.00 2.02 −0.32 10.85 0.26 1.00 2.02 −0.32 10.85 0.26

0.02 29.00 1.01 0.10 0.76 10.78 −1.06 1.01 0.23 0.44 12.61 −0.51
0.03 29.31 1.10 0.38 0.20 12.58 −0.06 1.03 0.39 0.24 11.74 −0.18
0.04 29.56 1.19 0.33 0.23 14.91 −0.09 1.06 0.39 0.19 25.33 −0.28
0.05 35.17 2.13 0.53 −0.05 12.41 −0.04 1.23 0.20 0.04 10.50 0.00

0.06 49.54 2.92 0.22 0.03 5.66 −0.06 1.56 0.24 −0.03 20.84 0.04

0.08 50.32 1.82 0.03 0.77 15.50 −0.14 1.40 0.04 0.69 14.23 −0.21
0.1 50.78 1.40 0.05 0.68 13.87 −0.30 1.35 0.07 0.66 13.51 −0.34
0.15 51.48 1.21 0.31 0.30 13.90 −0.17 1.44 0.17 0.45 13.84 −0.25
0.2 51.89 1.24 0.49 0.18 14.50 −0.10 1.59 0.26 0.35 13.90 −0.20
0.3 52.33 1.37 0.62 0.11 14.09 −0.05 1.88 0.42 0.23 13.72 −0.13
0.4 52.61 1.49 0.76 0.07 14.13 −0.05 2.19 0.55 0.17 13.87 −0.12
0.5 52.77 1.56 0.84 0.05 14.08 −0.04 2.26 0.67 0.12 13.87 −0.09
0.6 52.89 1.60 0.90 0.03 13.93 −0.03 2.31 0.74 0.09 13.72 −0.08
0.8 53.01 1.64 0.97 0.01 13.90 −0.02 2.29 0.83 0.06 13.62 −0.06
1 53.06 1.65 1.00 0.01 13.34 −0.02 2.22 0.88 0.05 13.51 −0.05
1.5 52.13 1.56 1.11 −0.02 14.09 −0.01 1.95 1.00 0.01 13.62 −0.03
2 49.55 1.56 1.11 −0.02 13.08 −0.01 1.85 1.00 0.02 13.12 −0.04
3 45.55 1.54 1.06 0.00 12.91 −0.03 1.72 0.94 0.04 13.24 −0.06
4 42.05 1.50 1.02 0.02 13.36 −0.04 1.60 0.91 0.05 13.52 −0.07
5 42.79 1.52 0.94 0.05 13.60 −0.07 1.57 0.83 0.08 13.79 −0.10
6 42.27 1.50 0.92 0.06 13.82 −0.08 1.51 0.81 0.10 14.00 −0.11
8 41.62 1.53 0.88 0.08 14.13 −0.10 1.48 0.80 0.11 14.28 −0.12
10 41.26 1.49 0.96 0.06 14.20 −0.08 1.40 0.88 0.08 14.35 −0.10
15 41.00 1.55 1.11 0.04 14.18 −0.06 1.39 1.01 0.06 14.31 −0.08

Table 5: Equivalent atomic number (Zeq) and G-P exposure (EBF) and energy absorption (EABF) buildup factor coefficients of CMO.

Energy (MeV) Zeq
EBF EABF

b c a Xk d b c A Xk d

0.015 17.98 1.01 0.49 0.14 29.23 −0.28 1.01 0.49 0.14 29.24 −0.28
0.02 29.95 1.14 0.27 0.24 11.00 −0.97 1.03 0.39 0.41 13.09 −0.47
0.03 31.09 1.51 0.50 0.19 15.78 −0.08 1.11 0.51 0.22 14.41 −0.17
0.04 31.62 1.72 0.33 0.20 16.53 −0.08 1.14 0.38 0.18 24.93 −0.23
0.05 31.96 1.61 0.27 0.10 12.65 −0.09 1.15 0.27 0.14 11.68 −0.07
0.06 32.21 1.48 0.26 0.23 14.67 −0.14 1.18 0.25 0.41 14.64 −0.16
0.08 32.54 1.34 0.32 0.37 14.10 −0.15 1.26 0.30 0.33 14.28 −0.16
0.1 32.78 1.24 0.44 0.21 13.84 −0.11 1.32 0.44 0.20 17.56 −0.11
0.15 33.12 1.42 0.61 0.13 14.14 −0.07 1.88 0.42 0.24 13.72 −0.15
0.2 33.34 1.61 0.71 0.10 13.87 −0.06 2.48 0.53 0.19 13.67 −0.13
0.3 33.59 1.76 0.91 0.03 13.30 −0.03 2.71 0.78 0.09 13.30 −0.07
0.4 33.69 1.83 1.04 0.00 12.56 −0.02 2.75 0.93 0.04 12.89 −0.05
0.5 33.75 1.85 1.10 −0.01 11.73 −0.02 2.65 1.02 0.02 12.52 −0.04
0.6 33.80 1.85 1.14 −0.02 10.77 −0.01 2.55 1.07 0.00 11.99 −0.03
0.8 33.82 1.83 1.16 −0.02 9.93 −0.01 2.37 1.11 −0.01 10.81 −0.02
1 33.89 1.80 1.16 −0.03 9.98 −0.01 2.23 1.12 −0.01 9.83 −0.02
1.5 32.14 1.70 1.18 −0.04 15.25 0.01 1.95 1.13 −0.02 9.65 −0.01
2 29.13 1.69 1.12 −0.02 8.94 0.00 1.84 1.11 −0.02 9.53 −0.01
3 26.83 1.63 1.06 0.00 11.84 −0.01 1.68 1.03 0.00 12.51 −0.02
4 26.26 1.55 1.03 0.01 12.93 −0.02 1.56 1.00 0.01 13.96 −0.03
5 25.91 1.48 1.01 0.01 13.12 −0.03 1.48 0.97 0.02 14.14 −0.04
6 25.71 1.44 0.98 0.02 13.38 −0.04 1.40 0.98 0.02 14.33 −0.04
8 25.45 1.35 0.98 0.03 13.68 −0.04 1.30 0.96 0.03 13.99 −0.04
10 25.38 1.30 0.95 0.04 13.98 −0.06 1.24 0.96 0.04 14.26 −0.05
15 25.39 1.20 0.95 0.05 14.35 −0.06 1.15 0.96 0.04 14.59 −0.05
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3.3. Effective Atomic Numbers (Zeff ) and Electron Densities
(Nel). Figure 5 shows Zeff as a function of photon energy
for GAGCO and CMO scintillator materials. In the photon
energy range 1 keV–100GeV, the values of Zeff are dependent
on the composition of GAGCO and CMO scintillator mate-
rials. As shown in Figure 5, there are two peaks at 10 and
60 keV for GAGCO due to the K-absorption edges of Ga
and Gd, respectively. The other two peaks for CMO at 4
and 20 keV are due to the K-absorption edges of Ca and
Mo, respectively. In the photon energy range 0.03–1MeV,
the values of Zeff decrease rapidly as the photon energy
increases and then increase slowly up to 200MeV. As the
photon energy increases up to 100GeV, the values of Zeff
become nearly constant for both scintillator materials. It is
worth noting that different values of Zeff occur due to their
corresponding K-absorption edges. We have calculated the
Zeff values at K-edge energies of the constituent elements of
the scintillators and obtained two possible Zeff values, one
corresponding to the lower side and the other to the upper
side of the same energy (Table 2) [22].

The Nel results of the investigated GAGCO and CMO
scintillator materials in the photon energy 1 keV–100GeV

have been computed according to (6). There are slight varia-
tions in Nel results for various GAGCO and CMO scintillator
materials where a higher result of Nel would indicate an
increased probability of photon–electron energy transfer
and energy deposition into the material. The results of Nel
present identical photon energy dependence to what was
observed for Zeff [23]. This behavior has been confirmed in
Figure 6 which showing a correlation of Zeff and Nel.

Besides, the calculated μm and Zeff values of GAGOC and
CMO scintillators were compared with the experimental
values at different energies for the two scintillator materials
taken from [1] and the results were shown in Table 3. In gen-
eral, it can be seen that the experimental μm and Zeff values
show good agreement with the theoretical values.

3.4. Exposure Buildup Factors (EBF) and Gamma Ray Energy
Absorption (EABF). Equivalent atomic number (Zeq) and G-
P exposure (EBF) and energy absorption (EABF) buildup
factor coefficients of GAGOC and CMO are listed in
Tables 4 and 5. The variation of EBF and EABF values with
photon energy at 1, 10, 20, 30, and 40 mfp of GAGCO and
CMO scintillator materials has been presented in Figure 7.
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Figure 7: EBF and EABF variation for GAGOC and CMO with incident photon energy at 1, 10, 20, 30, and 40mfp.
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This figure shows that the maximum values of EBF and
EABF are dependent on the composition of scintillator mate-
rials and penetration depth and shifted to higher energy.
Also, it is clear that the EBF and EABF values increase up
to the maximum value with increase in photon energy and
then decrease with further increase in photon energy. In
the low-photon energy region, the EBF and EABF values
are smallest because a great number of photons were
absorbed because the predominant interaction process is
the photoelectric effect. In the intermediate photon energy
region, the EBF and EABF values are highest because the
predominant interaction process is the Compton scattering.
In the high-energy region, the photons have been absorbed
again because the predominant interaction process is the
pair production. The EBF and EABF results of GAGCO
and CMO observe sharp peaks at 20 and 60 keV which
may be attributed to K-absorption edges of Mo and Gd,
respectively. Due to the occurrence of multiple scatterings
at high penetration depths, the highest values of EBF and
EABF were observed at a penetration depth of 40mfp
while the lowest values were observed at 1mfp. Figures 8
and 9 show the variation of buildup factors (EBF and
EABF) with incident photon energy for GAGCO and
CMO at different penetration depths (1, 10, 20, and
40mfp). It is clear that at the selected penetration depths,
the GAGCO in general has the lowest EBF and EABF
values which emphasize that the GAGCO compound is
superior as a gamma ray sensor material.

3.5. Fast Neutron Removal Cross Section ∑R . The removal
cross section for fast neutron of GAGCO and CMO scintilla-
tor materials is listed in Table 6. The values of ∑R are 0.121
and 0.048 cm−1 for GAGCO and CMO, respectively. The
height value of ∑R was found for GAGCO—this may be
attributed to the fact that the elements that have a high Z
number are greatly accountable to the removal of fast neu-
trons as the elements that have a low Z number do [23].

4. Conclusions

The gamma ray mass attenuation coefficient, half-value
layer, mean free path, effective atomic number, and effec-
tive electron densities have been calculated using the
WinXCom program in the energy range 1 keV–100GeV
of GAGCO and CMO scintillator materials. The EBF
and EABF values in the energy range 0.015–15MeV and
penetration depth of up to 40mfp have been computed
using the G-P fitting parameter method for GAGCO and
CMO scintillator materials. In addition, the values of
removal cross section for fast neutrons have been calcu-
lated. The calculated values present that the GAGCO
showed excellent γ-rays and neutrons sensing a response
in the broad energy range due to higher values for mass
attenuation coefficient and effective atomic number and
lower values for the half-value layer, mean free path, and
buildup factors.
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