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An efficient procedure for recovering spectral reflectance using an object’s tristimulus values under multi-illuminants is proposed
by adapting with the characteristics of the testing sample to obtain the transformation matrix of pseudoinverse. Specifically, we
propose the reference illuminants selection strategy and local sample weighted strategy to obtain the optimal transformation
matrix under multi-illuminants condition. Selecting the reference illuminants are based on the result of the spectral angle mapper
(SAM) statistics. +e number of the selected local training samples and the weighted local samples can be determined by using the
multicolor space Euclidean distance. To compare the experimental results, the proposed method significantly increases the
spectral and colorimetric accuracy for the spectral reflectance recovery process.

1. Introduction

+e object’s spectral reflectance is almost the definition of
“fingerprinting” that predicts accurately the object appear-
ance under arbitrary illuminants and observers. +e most
accurate and effective information to represent an object
color by its spectral reflectance is highly desirable, since it is
essential in common application scenarios, for example,
printing inspection, disease diagnosis, textile color match-
ing, and computer vision [1–4]. Normally, the spectral re-
flectance could be directed to acquire from the
spectrophotometers and spectral cameras. Unfortunately,
portability, complexity, and expensiveness of these devices
limit their own availability. +e most used colorimetric
values, instead, can be easily procurable by digital still
cameras, smartphone, and colorimeters.

+e colorimetric values such as RGB or CIE XYZ tri-
stimulus values, obtaining from three channels, only record
color information under fixed viewing conditions. +ere are

some cases in which this representation is not enough,
because it is heavily dependent on the illuminant. So, the
colorimetric values still vary significantly with the illumi-
nants. Although the computation of colorimetric values is
uniquely made from the object’s spectral reflectance, the
problem in the spectral reflectance recovery calculating from
the colorimetric values is usually ill-posed. Many different
mathematical methods are still widely studied to recover the
spectrum, for example, the pseudoinverse method (PI) [5],
principal component analysis (PCA) [6], matrix R method
[7], non-negative matrix transformation (NNMF) [8],
simulated annealing [9], compressive sensing [10], simplex
method [9], and so on. Of all these methods, the PI method is
an uncomplicated and straightforward solution for the ill-
posed inverse problem, which shows more clearly the
connection between colorimetric values and the corre-
sponding spectrum.

In fact, spectral recovery from a set of the corresponding
colorimetric values under a specified illuminant-observer
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condition limits only three available dimensions, which
leads to a noticeable insufficiency for spectral reflectance
recovery. +e colorimetric values under multi-illuminants
have inspired researchers to start using several different sets
of the corresponding values for the spectral recovery process.
Schettini and Zuffi [11] exploited genetic algorithms to
spectrum recovery from the CIE XYZ tristimulus values
under one or multi-illuminants on the premise that basis
functions and cardinalities were investigated. Abed et al. [12]
proposed the different color spaces of lookup tables (LUTs)
using a novel interpolation strategy for spectrum recovery
under illuminate D65 and illuminate A; they stated that the
more color coordinates reconstructed LUTs, the better the
spectrum recovery results could be obtained. Harifi et al. [13]
initially applied the nonlinear regression method to virtually
increase the number of tristmulus values and then used six
eigenvectors in the spectral recovery process. Amiri and
Amirshahi [8] increased virtually the CIE XYZ tristimulus
values under another illuminant and then recovered the
spectral reflectance using of six eigenvectors by adopting the
PCA or NNMF method, respectively. Zhang et al. [14]
initially predicted CIE XYZ tristimulus values from camera
responses values according to different illuminants and then
recovered the spectral reflectance through the PI method.
However, the aforementioned methods are available for
spectral reflectance recovery from tristimulus values under
predefined reference illuminants (such as illuminant A and
illuminant D65) and treat equally each of the training
samples to effect on the spectral recovery process under
multireference illuminants.

+is study proposes a more accurate recovering spectral
reflectance method from tristimulus values under multi-
illuminants that solves the problems mentioned above.

+e novelty of our proposed method is concerned with
the reference illuminant selection strategy and local sample
weighted strategy under the multi-illuminants condition.
+e experimental results of the proposed and traditional
methods are compared to evaluate the spectral and colori-
metric accuracy between the actual and estimated spectra.

2. Mathematic Background and Method

+e CIE XYZ tristimulus values under multi-illuminants are
simply computed by the following equations:

Xi � K 􏽚 r(λ)Ii(λ)x(λ)dλ,

Yi � K 􏽚 r(λ)Ii(λ)y(λ)dλ,

Zi � K 􏽚 r(λ)Ii(λ)z(λ)dλ,

(1)

with

K �
100

􏽚 Ii(λ)ydλ
,

(2)

where r(λ) denotes the object’s reflectance spectrum; K

represents the factor of standardization; x(λ), y(λ), and

z(λ) denote the color matching functions of the CIE
standard colorimetric observer; Ii(λ) denotes the reference
illuminants of index i(i � 1, . . . , m); ti � [Xi, Yi, Zi]

T de-
notes the object color tristimulus values under a given
reference illuminant Ii(λ); and the superscript T denotes the
matrix transpose. Equation (1) can then be represented in
matrix notation as follows:

t � A
T
r, (3)

where t � [t1, . . . , tn]T is the combining matrix of tri-
stimulus values under multi-illuminants and AT is the co-
efficient matrix involving the reference illuminants and the
CIE color matching functions. For arbitrary color of the
combining matrix 􏽢t from tristimulus values under multi-
illuminants, the recovered spectra 􏽢r can be calculated to
obtain from the inverse matrix AT directly. So, this spectral
recovery process immediately implements transformation
from tristimulus value space to spectral reflectance space
called the direct spectral recovery method [15]. Since AT is
an underdetermined matrix, the recovered spectra are ob-
tained from the pseudoinverse matrix (AT)+, which in-
evitably causes large calculation error on ill-posed inverse
problems. +e recovery of spectral reflectance 􏽢r using the PI
method is simply calculated by the following equation:

􏽢r � A
T

􏼐 􏼑
+
􏽢t, (4)

where the superscript “+” is the matrix pseudoinverse.
Equation (4) creates a linear conversion between tri-

stimulus values under multi-illuminants and the spectral
reflectance, so it is assumed to be a straightforward and
resultful solution. When the transformation matrix (AT)+

is calculated, the recovery process directly yields a single
linear relation. It must be accepted that for the spectral
recovery process by the implementation of the PI method,
each of the training samples has made an equal difference in
the formation of (AT)+, so it leads to optimization for the
samples fully, but not for each individual sample. Hence,
the standard pseudoinverse method leads to large calcu-
lation error between the actual and estimated spectra and
generates an imprecise result. Obviously, the more similar
the spectral reflectance between the testing samples and the
training samples is, the more accurate the results can be
generated due to the more linearly relation [16, 17]. +e-
oretically speaking, if the matrix (AT)+ can be formed by
the testing sample’s own characteristics, the performance of
the recovered spectra would be calculated optimally. In this
work, to obtain the matrix (AT)+ adapting with the
characteristics of the testing sample, the local sample
weighted strategy is proposed for calculating the spectral
reflectance recovery. +e local sample weighted strategy
involves selection of the optimal training samples and
weighting of the local selected samples. +e local optimal
training samples based on the testing sample’s own
characteristics are selected, which use the multicolor space
Euclidean distance between the testing sample and the
training samples. Specifically, the multicolor space Eu-
clidean distance between each testing sample and the
training samples can be calculated as follows:
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Xi,test − Xi,j􏼐 􏼑

2
+ Yi,test − Yi,j􏼐 􏼑

2
+ Zi,test − Zi,j􏼐 􏼑

2
􏼔 􏼕

􏽶
􏽴

,

j � 1, 2, . . . , n,

(5)

where Xi,test, Yi,test, and Zi,test denote the tristimulus values of
the testing sample under the ith reference illuminant; n

demonstrates the number of the training samples; Xi,j, Yi,j,
and Zi,j denote the jth training sample’s tristimulus values
under the ith reference illuminant; and dj refers to the
multicolor space Euclidean distance between the testing
sample and the jth training samples under the multi-illu-
minants condition. After that the training samples arrange
in the increasing order based on the dj values. +e local
optimal training samples have been obtain to select the
p (1≤p≤ n) neighboring samples from the whole training
samples. Meanwhile, different local training samples should
choose different weighting efficients since the larger the
weighting efficient a certain training sample chooses, the
stronger the influence the matrix (AT)+ determinates. So,
the weight coefficient, depending on the inverse multicolor
space Euclidean distance, can be calculated as

wk �
1

dk + ε
, k � 1, 2, . . . , p, (6)

where the subscript k denotes the kth local optimal training
samples; dk denotes the multicolor space Euclidean distance
between the testing sample and the kth sample of the local
optimal training samples; and ε � 0.001 is used in this study.
Clearly, more neighboring training samples to the testing
sample would generate the larger wk value. +is mathe-
matical symbol wk is shown in the galley proof. +e
weighting matrix W is a diagonal matrix defined as

W �

w1 0 · · · 0

0 w2 0 ⋮
⋮

0

0

· · ·

⋱ 0
0 wp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p×p

, (7)

A
T

􏼐 􏼑
+

� rW(tW)
+
. (8)

Indeed, the designing method has selectively controlled
the influence on the formation of the matrix (AT)+ based on
the characteristics of the testing sample, which varies from
one testing sample to the other one. Each of the testing
samples should have its own the transformation matrix
rather than a unique transformation matrix for the whole
testing samples, which generates a more precise estimation
result.

3. Experiment and Procedure

In this study, three different datasets were selected that
include theMunsell Chips [18], ColorChecker SG, and Vrhel
dataset [19]. +e Munsell Chips consist 1269 spectral color
chips in Munsell Matte Color Book. +e 140 chips of the

ColorChecher SG use a X-rite i1 pro spectrophotometer to
measure personally. +e Vrhel dataset contains 354 samples
of reflectance spectra. +e spectral reflectance function is
proved to sample at 10 nm intervals without impacting
greatly the mathematical precision [20]. So, the spectral
reflectance of three different dataset samples range from
400 nm to 700 nm at 10 nm intervals. +e Munsell Chips
were selected as the training samples in this study, and their
transformation matrix was used to recover three different
testing samples.

To illuminate the advantages of the proposed method,
the standard pseudoinverse method (method PI) and
principal component analysis embedded weight regression
technique suggested by Amiri and Amirshahi [8] were
compared with the results of the spectral recovery from
tristimulus values under multireference illuminants. +e
root mean square error (RMSE), goodness of fit coefficient
(GFC), and CIELAB color difference (∆Eab) were selected as
the evaluation of the spectral recovery accuracy [21], while
all the methods of the spectral reflectance recovery perform
experimental simulation by the Matlab software.

+e dominant spectral power distributions (SPDs) of the
selected reference illuminants and light sources were of
various distributions and were relatively smooth, which did
not have considerable spiky radiance. So, the CIE illuminants
(A, B, C, D50, D55, and D65) and the two actual light-
emitting diode (LED) light sources (LED1: Sylvania Concord
2048794 and LED2: Photon Star CS5) [22] were selected as the
reference illuminants so as to evaluate spectral recovery ac-
curacy in this study. All the CIE illuminants and LEDs were
sampled at a range from 400nm to 700 nm at 10 nm intervals.
To evaluate the performance of the proposed method, it is
critical to determine the type of the reference illuminants, that
is, what is the optimal type of reference illuminants to im-
prove the spectral reflectance recovery accuracy. As Zhang
et al. [14] discussed previously, a trend can be observed: the
more similar the spectral power distributions (SPDs) of two
selected reference illuminants are, the lower the spectral re-
covery accuracy is. However, this point lacks of a clear nu-
merical explanation to verify. +is study adopted the spectral
angle mapper (SAM) algorithm [23, 24] to calculate the
similarity of the reference illuminants as the reference illu-
minants selection strategy, shown as

Sα,β � accos
Iα · Iε

Iα
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · Iε
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (9)

where Iα and Iε denote the SPDs value vectors of the ref-
erence illuminant of index α(α � 1, . . . , m) and the reference
illuminant of index ε(ε � 1, . . . , m), respectively. +is
method determines the SPDs similarity to treat the two
reference illuminants as vectors with treating equally to each
dimension and calculate the angle between the two reference
illuminants, which do not adopt the vector length but rather
the vector direction [15].

4. Results and Discussion

+e proposed spectral reflectance recovery method
mainly involves two optimal parameters, namely, optimal
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parameter of the reference illuminants and optimal pa-
rameter of the local sample weighted method. +is study
first investigated two optimal parameters of the spectral
recovery process and finally evaluated the spectral re-
flectance recovery accuracy of the proposed compared
with the traditional methods.

4.1. Optimal Parameter of the Reference Illuminants. +e
spectral reflectance recovery accuracy can be affected by the
number and type of selected reference illuminants. +eo-
retically, increasing the number of reference illuminants can
increase the spectral recovery accuracy, but obtaining extra
tristimulus values by the colorimetric device would be not
easily procurable. Meanwhile, according to the conclusion
made by Schettini and Zuffi [11], the result of the spectral
recovery under the three reference illuminants is less to
improve the computing accuracy than under the two illu-
minants. In this study, the number of reference illuminants
determined to two illuminants. +e type of reference illu-
minants selected optimally are the relatively smooth illu-
minants rather than the considerable spiky illuminants; this
is because spectral recovery accuracy was low when one or
two spiky illuminants were adopted as reference illuminants
[14]. First, all the samples of the Munsell Chips, Color-
Checker SG, and Vrhel dataset were calculated numerically
to obtain the CIE 1964 XYZ tristimulus values under the CIE
illuminants (A, B, C, D50, D55, and D65) and the two actual
light-emitting diode (LED) light sources (LED1: Sylvania
Concord 2048794, LED2: Photon Star CS5), which illustrated
to select optimally the type of reference illuminants. In this
study, we considered the Munsell Chips as the training
samples to estimate the spectral reflectance of the Munsell
Chips, ColorChecker SG, and Vrhel dataset under two
different illuminants with the corresponding CIE 1964 XYZ
tristimulus values. Table 1 shows the mean root-mean-
square error (RMSE) between the actual and reconstructed
spectra for the Munsell Chips, ColorChecker SG, and Vrhel
dataset under two illuminant combinations. First, it is noted
that the CIE 1964XYZ tristimulus values under two different
illuminants have a very significant influence on the spectrally
recovered result. Second, Table 1 illustrates the spectral
reflectance accuracy for the Munsell Chips presented better
than for the ColorChecker SG and Vrhel dataset. As Babaei
et al. [5] proposed in a previous study, the best optimum
condition would be obtained when the testing sample is a
number of the training samples. +ird, the similarity of the
two reference illuminants also affects spectral estimation
accuracy. Table 2 shows the spectral angle mapper (SAM)
statistics for two reference illuminants. As the spectral curve
shape of the two reference illuminants is more dissimilar
between each other, the spectral recovery accuracy will be
better, as shown in Tables 1 and 2. Combining all the ex-
perimental results of Tables 1 and 2, this study selects finally
the two illuminants D65 and A as the reference illuminants.

4.2.Optimal Parameter of the Local SampleWeightedMethod.
+e number of the selected local training samples and the
weighted local samples can also influence the accuracy of the

spectral reflectance recovery. To analyse these issues, the
spectral reflectance of the Munsell Chips, ColorChecker SG,
and Vrhel dataset was recovered by using the multicolor
space Euclidean distance dj and the weighting matrix W

under the reference illuminants A and D65 with different
numbers of the local Munsell Chips as the training samples.
+e mean RMSE between the actual and recovered spectra
under different numbers of the local Munsell Chips was
computed. It is noted that in selecting, dynamically, the
suitable local samples, we always adopt the strategy that if
the testing sample itself is included in the Munsell Chips,
then this reflectance is removed from the training samples.
+e relationship between the mean RMSE of the Munsell
Chips, ColorChecker SG, and Vrhel dataset and the number
of local training samples is shown in Figure 1. It is found that
the mean RMSE initially decreases with the increase in the
number of the local training samples and trends basically
stable in the end. To achieve the better spectral reflectance
accuracy, sufficient training samples can be selected. So, we
selected adaptively 100 local training samples from the
Munsell Chips for the spectral recovery process.

4.3.AccuracyEvaluationof theProposedMethod. To evaluate
the colorimetric and spectral performance of the proposed
method, the proposed method was implemented to compare
with the pseudoinverse method (method PI) and the
Morteza Maali Amiri’s method (method WRPCA) [8]. +e
statistic comparison results among PI, WRPCA, and the
proposed method are summarized in Table 3. First, it is easy
find that the proposed method obviously outperforms the PI
andWRPCA for the three testing datasets. Second, results in
Table 3 suggest that all the methods for Munsell Chips
implemented better than for the ColorChecker SG and Vrhel
dataset. +is finding shows that the training sample has the
better performance to recover itself than other testing
samples. Second, Table 3 indicates that the proposed method
presents the spectral reflectance with the highest accuracy
compared with the other methods.

To further accurately evaluate the performance of the
proposed method, the average spectral residuals between
recovered and measured spectra for the three datasets are
shown in Figures 2–4. In each figure, PI, WRPCA, and the
proposed methods are contrasted for the three different
datasets: the Munsell Chips (Figure 2), the ColorChecker SG
(Figure 3), and the Vrhel dataset (Figure 4). By the analysis
of Figures 2–4, it is easy to note that the average spectral
residuals are more accurate to the middle of the wavelengths
than both ends. +e phenomenon is consistent with the
conclusion made byWu et al. and is attributed mainly to the
human visual system that obtains the XYZ tristimulus values
for three methods being calculated by the CIE 1964 standard
observer [15].

In order to illustrate the performance of the proposed
method, the recovered results of the spectral reflectance for
two randomly selected samples from the Munsell Chips are
shown in Figures 5(a) and 5(b), ColorChecker SG are shown
in Figures 5(c) and 5(d), and Vrhel dataset are shown in
Figures 5(e) and 5(f). Compared with the PI and WRPCA
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Table 1: Mean RMSE of the Munsell chips, ColorChecker SG, and Vrhel dataset under two illuminant combinations.

A B C D50 D55 D65 LED1 LED2

Munsell chips

A 0.0218 0.0112 0.0113 0.0097 0.0096 0.0095 0.0140 0.0123
B 0.0112 0.0227 0.0115 0.0126 0.0134 0.0113 0.0123 0.0129
C 0.0113 0.0115 0.0232 0.0128 0.0136 0.0149 0.0121 0.0125

D50 0.0097 0.0126 0.0128 0.0228 0.0102 0.0102 0.0119 0.0128
D55 0.0096 0.0134 0.0136 0.0102 0.0230 0.0101 0.0116 0.0112
D65 0.0095 0.0113 0.0149 0.0102 0.0101 0.0233 0.0113 0.0117
LED1 0.0140 0.0123 0.0121 0.0119 0.0116 0.0113 0.0221 0.0107
LED2 0.0123 0.0129 0.0125 0.0128 0.0112 0.0117 0.0107 0.0221

ColorChecker SG

A 0.0348 0.0188 0.0191 0.0175 0.0171 0.0165 0.0250 0.0178
B 0.0188 0.0369 0.0194 0.0213 0.0241 0.0228 0.0197 0.0211
C 0.0191 0.0194 0.0380 0.0228 0.0250 0.0267 0.0195 0.0206

D50 0.0175 0.0213 0.0228 0.0370 0.0160 0.0159 0.0181 0.0208
D55 0.0171 0.0241 0.0250 0.0160 0.0374 0.0158 0.0177 0.0195
D65 0.0165 0.0228 0.0267 0.0159 0.0158 0.0380 0.0172 0.0182
LED1 0.0250 0.0197 0.0195 0.0181 0.0177 0.0172 0.0355 0.0176
LED2 0.0178 0.0211 0.0206 0.0208 0.0195 0.0182 0.0176 0.0356

Vrhel dataset

A 0.0398 0.0201 0.0207 0.0186 0.0179 0.0170 0.0293 0.0195
B 0.0201 0.0425 0.0215 0.0251 0.0264 0.0237 0.0251 0.0277
C 0.0207 0.0215 0.0439 0.0266 0.0287 0.0273 0.0244 0.0265

D50 0.0186 0.0251 0.0266 0.0427 0.0175 0.0173 0.0235 0.0277
D55 0.0179 0.0264 0.0287 0.0175 0.0432 0.0173 0.0226 0.0256
D65 0.0170 0.0237 0.0273 0.0173 0.0173 0.0440 0.0217 0.0234
LED1 0.0293 0.0251 0.0244 0.0235 0.0226 0.0217 0.0404 0.0196
LED2 0.0195 0.0277 0.0265 0.0277 0.0256 0.0234 0.0196 0.0405

Table 2: Spectral angle mapper (SAM) statistics for two reference illuminants.

A B C D50 D55 D65 LED1 LED2

SAM

A 0.0000 0.4276 0.6339 0.4552 0.5280 0.6406 0.3053 0.3185
B 0.4276 0.0000 0.2141 0.0620 0.1137 0.2249 0.3891 0.3558
C 0.6339 0.2141 0.0000 0.2087 0.1417 0.0831 0.5748 0.5392

D50 0.4552 0.0620 0.2087 0.0000 0.0774 0.1986 0.3990 0.3659
D55 0.5280 0.1137 0.1417 0.0774 0.0000 0.1215 0.4653 0.4313
D65 0.6406 0.2249 0.0831 0.1986 0.1215 0.0000 0.5751 0.5410
LED1 0.3053 0.3891 0.5748 0.3990 0.4653 0.5751 0.0000 0.0619
LED2 0.3185 0.3558 0.5392 0.3659 0.4313 0.5410 0.0619 0.0000

0
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0 200 400 600 800 1000 1200 1400
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Figure 1: Relationship between the number of local training samples and mean RMSE of the Munsell chips, ColorChecker SG, and Vrhel
dataset.
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Table 3: Statistics of the comparison results among PI, WRPCA, and the proposed method.

Method
Testing samples

Munsell chips ColorChecker SG Vrhel dataset
PI WRPCA Proposed PI WRPCA Proposed PI WRPCA Proposed

Mean RMSE 0.0095 0.0112 0.0034 0.0165 0.0296 0.0120 0.0170 0.0365 0.0152
Max RMSE 0.0714 0.0637 0.0370 0.0536 0.1361 0.0373 0.1278 0.1690 0.1454
Min GFC 0.9239 0.9088 0.9850 0.9708 0.7997 0.9803 0.9246 0.6299 0.9061
Mean GFC 0.9989 0.9983 0.9998 0.9980 0.9731 0.9988 0.9955 0.9831 0.9959
Max GFC 1.0000 1.0000 1.0000 0.9999 0.9998 1.0000 0.9999 0.9999 1.0000
CIELAB color difference under testing illuminant F2
Mean ∆Eab 0.2520 0.3719 0.0892 0.4135 1.2824 0.2648 0.5012 1.4597 0.3547
Var.a 0.0723 0.2046 0.0054 0.1962 1.2150 0.0403 0.2096 1.4668 0.0817
Max ∆Eab 2.8043 4.9694 0.6701 2.7253 5.8017 1.2775 3.0989 5.3056 1.8061
%∆Eab> 3b 0.0000 0.6304 0.0000 0.0000 9.2857 0.0000 0.5650 13.2768 0.0000
CIELAB color difference under testing illuminant F11
Mean ∆Eab 0.8966 1.2880 0.3095 1.3238 2.7523 0.7869 1.4677 2.7012 1.2836
Var. 0.9990 3.2857 0.0836 3.1423 4.9938 0.5667 1.9217 5.3176 1.4947
Max ∆Eab 11.5112 28.5594 2.4955 12.7500 9.7594 3.7572 15.8069 13.1744 6.7993
%∆Eab> 3 3.9401 8.7470 0.0000 14.2857 42.1429 1.4286 10.4520 33.6158 9.0395
a“Var.” means the variance of the the CIELAB color difference. b“%∆Eab> 3” means the percentage of testing samples with a color difference greater than 3
CIELAB units.
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Figure 2: Average spectral residuals between recovered and measured spectra on the Munsell chips.
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Figure 3: Average spectral residuals between recovered and measured spectra on the ColorChecker SG.
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Figure 4: Average spectral residuals between recovered and measured spectra on the Vrhel dataset.
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Figure 5: Continued.
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methods, the performance of the proposed method is more
accurately illustrated in Figure 5.

5. Conclusions

A method for the spectral reflectance recovery from tri-
stimulus values under multi-illuminants was presented by
adapting with the characteristics of the testing sample to
obtain the transformation matrix of pseudoinverse. To
obtain the optimal transformation matrix, the proposed
method for spectral reflectance recovery mainly involves two
optimal parameters: optimal parameter of the reference il-
luminants and optimal parameter of the local sample
weighted method. Selecting the two illuminants A and D65
as the reference illuminants are based on the result of the
spectral angle mapper (SAM) statistics for two reference
illuminants. +e number of the selected local training
samples and the weighted local samples can be also de-
termined for the spectral reflectance recovery.

+e reflectance of the testing samples from the Munsell
Chips, ColorChecker SG, and Vrhel dataset were used to
evaluate the spectral reflectance accuracy for different methods
in this study. +e Munsell Chips were selected as the training
samples. Meanwhile, the performance of three different
methods, namely, PI, WRPCA, and the proposed method was
assessed by the root-mean-square (RMSE), the goodness of fit
coefficient (GFC), and CIE LAB color differences under illu-
minants F2 and F11. +e spectral and colorimetrical recovery
accuracy of the proposedmethod were compared with those of
PI and WRPCA, and the results showed the proposed method
is an effective spectral reflectance recovery method.
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