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In this paper, we present a different way to the standard methods to classify Raman spectra whose grouping process is based on a
phenomenon of clustering observed in nature at the atomic level and correctly described by the statistical physics model known as
the Potts model, which represents the interacting spins on a crystalline lattice. 1is clustering method is known as the super
paramagnetic clustering (SPC), which allows identifying hierarchical structures in data banks. In this novel method, we assigned a
Potts spin to each data point (Raman spectrum) and introduced an interaction between neighboring points whose coupling
strength is a decreasing function of the distance between the nearest neighboring sites. We found a hierarchical tree structure in
our data bank of Raman spectra allowing us to discriminate between the spectra from control and diabetes patients.1e sensitivity
and specificity of the diabetes detection technique by Raman spectroscopy were calculated directly because the SPC method
achieves an accurate determination of the members of each cluster. As a cross-check, SPC results were compared with published
results of multivariate analysis, observing excellent agreements; however, the SPC method allows determining the members of all
identified clusters explicitly.

1. Introduction

In recent years, spectroscopic techniques such as Raman
spectroscopy, Fourier-transform infrared spectroscopy,
X-ray spectroscopy, and mass spectroscopy have become
fundamental tools in the fields of chemistry, drugs, the agro-
food sector, life sciences, and environmental analysis to
study different biological systems based on the chemical and
structural composition of biological samples [1–3].

In these techniques, once spectra are captured, math-
ematical tools to classify them are required; however,
spectra corresponding to biological samples usually show a
high complexity because they contain a large number of
peaks of different intensities and forms, unlike spectra
corresponding to nonbiological samples where discrimi-
nation between a pair of samples turns out to be relatively

simple. Furthermore, the study of complex systems, where
the comparison between a large set of spectra is necessary,
has motivated the application of novel methods that allow
identifying patterns in large banks of spectra.

Among the main techniques applied in the analysis of
spectra, we have multivariate analysis (principal component
analysis and linear discriminant analysis) [4, 5] and clus-
tering analysis (K-means and spectral norm methods) [6].
Nevertheless, among these clustering methods, the ones that
acquire particular interest are those methods that allow
exploration of hierarchical structures in data banks, facili-
tating the study of diseases characterized by being classified
into either different types or showing various stages of
progress [4].

Among these hierarchical clustering methods, there is
one that has brought particular interest because its clustering
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process is based on a phenomenon of clustering observed in
nature at the atomic level, and it is correctly described by a
statistical physics model known as the Potts model, which
represents the interacting spins on a crystalline lattice. 1is
method is known as the SPCmethod, which has already been
successfully applied in the discrimination between leukemia,
breast, and cervical cancer [7]. In the same way, this method
has been applied to study gene expression [8, 9] and protein
sequences [10] and even because the temporary evolutions of
stock market returns are well described by random pro-
cesses, SPC has also been used for the stock exchange
analysis [11, 12].

In this paper, we propose the SPC method as a novel way
to classify Raman spectra hoping to observe a hierarchical
structure in the bank of spectra and identify Raman spectra
corresponding to healthy and type 2 diabetes patients. SPC
method and Raman spectroscopy could form a better method
of diabetes detection with high sensitivity and specificity.

2. SPC Method

In the ferromagnetic model, each point vi is considered to have
a Potts spin, equivalent to one of q integer values, si� 1, 2, . . ., q.
1e distance matrix, dij, represents the Euclidean distances
between neighboring sites vi and vj. Input data for the SPC
method are represented by this distance matrix containing all
the distances between the data points. 1e distance matrix is
used to construct a graphwhose vertices are the data points, and
edges correspond to connections between neighboring points.
Two points are considered to be neighbors (and thus have an
edge) if they are within the K-nearest neighbors of each other.

Pair of neighboring points vi and vj that has the same
spin (si � sj) is interacting via a coupling of short-range:

Jij � Jji �
1
􏽢K

e
− (1/2 ) dij/d( 􏼁

2

, (1)

where dij is the Euclidean distance between points vi and vj,
d is the mean distance between interacting neighbors, and 􏽢K

is the average number of interacting neighbors of a point
[13–15]. 1e strength Jij is a decreasing function of the
distance dij so that the closer the two points are to each other,
the more they like to belong to the same cluster, and the
interaction between points that are not neighbors is set to
zero.

1e energy function of the system is given by the
Hamiltonian of an inhomogeneous ferromagnetic Potts
model:

H � 􏽘
〈i,j〉

Jij 1 − δsi,sj
􏼒 􏼓, (2)

where the notation 〈i, j〉 stands for neighboring sites vi and
vj and the summation is over interacting neighbors.
S ≡ si􏼈 􏼉

N

i�1 is the state of the system, and delta function,
δsi,sj

� 1 if si � sj and zero if si ≠ sj. 1e thermodynamic
average of a physical quantity A at a temperature T can be
calculated using 〈A〉 � 􏽐SA(s)P(s) , where P(s) is the
probability density of Boltzmann and P(s) � (1/Z )e− (H/T),
where Z is the partition function, Z � 􏽐Se− (H/T).

A Potts system may have three different phases
depending on the temperature and interactions: ferromag-
netic, paramagnetic, or superparamagnetic phase. 1e sys-
tem is ferromagnetic at low temperatures and paramagnetic
at high temperatures. By increasing the temperature from
zero, the system passes from the ferromagnetic to the
paramagnetic state either directly in a single transition or via
the intermediate superparamagnetic phase. 1is last phase is
of considerable interest in the study of disordered systems,
especially in the context of data clustering as clusters of
aligned spins automatically divide the data into their natural
classes, and a clear hierarchical structure among the classes
emerges when varying the temperature.

1e average spin-spin correlation function, gij � 〈 δsi sj
〉,

is used to decide whether or not two spins belong to the same
cluster. In contrast, with the mere interpoint distance, the
spin-spin correlation function is sensitive to the collective
behavior of the system and is, therefore, a suitable quantity
for defining clusters.

In this study, the SPC method, as Blatt et al. describe it
[14, 15], was applied. Blatt et al. used the Swendsen–Wang
Monte Carlo Simulation [16, 17] to generate a Markov chain
in the Potts model. In the procedure, an initial configuration
is generated by assigning a random value (spin) to each
point. Subsequently, frozen bonds are assigned between
nearest neighboring points vi and vj with a probability

p
f

i,j � 1 − e
− Jij/T( 􏼁

. (3)

1us, subgraphs are connected by frozen bonds. Later, a
new configuration is created, i.e., spins of each subgraph are
assigned to a new spin value randomly chosen. Spins that
belong to the same subgraph are assigned to the same value.
It is repeated a maximum number of times.

To select the temperature in which the inherent emer-
gence of clusters nested in hierarchies took place, the
magnetic susceptibility or variance of the magnetization (m),
χ � N/T(〈m2〉 − 〈m〉2), is calculated [18]. 1e peaks of χ
indicate phase transitions: the transition between the or-
dered state (magnetic) and partially ordered state (super-
paramagnetic), as well as, the partially ordered state and the
unordered state (nonmagnetic). Starting with low temper-
ature and increasing the temperature, χ increases quickly
when clusters begin to split. As the temperature is raised, the
system may break first into two clusters, each of which
breaks into more subclusters and so on. Such a hierarchical
structure of the magnetic clusters reflects a hierarchical
organization of the data into classes and subclasses.

After the clusters have been determined, the most
natural clusters (clusters without substructures) are iden-
tified. 1e natural clusters were chosen using the sequential
procedure proposed by Ott et al., which takes those clusters
that have the largest T-range (denoted by Tcl) [19]. Ott
defines a T-stability, ST, of a cluster as

sT �
Tcl

Tmax
, (4)

where Tmax is the temperature of the paramagnetic transi-
tion. 1us, ST expresses the stability of the cluster
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concerning the stability of the whole data set.1is procedure
stops in a branch if no more stable substructures can be
found, i.e., if the most stable cluster detected is less stable
than a threshold value Sϴ (ST< Sϴ). 1e natural clusters
themselves do not have any substructures since they show a
direct transition from the ferromagnetic phase to the
paramagnetic phase, so the temperature that marks the end
of the ferromagnetic phase, Tferro, is a good indicator of how
natural a cluster is. 1us, Sϴ is the main control parameter
that is set from outside.

3. Methodology

We applied the SPC method to study the hierarchical
structure of the data bank whose elements are Raman
spectra.1e data bank is made up of 182 Raman spectra with
102 spectra from control patients and 80 spectra from di-
abetes patients. Each spectrum is composed of 2330 peaks
with their respective intensities. 1e Raman spectra were
measured from blood serum samples obtained from 15
patients who were clinically diagnosed with type 2 diabetes
mellitus and 20 healthy volunteer controls. All patients were
from the western central region of Mexico and had similar
ethnic and socioeconomic backgrounds. In order to measure
the Raman spectra, we focused a laser of 830 nm of wave-
length (Jobin-Yvon LabRAM HR800 Raman apparatus) on
different points of a small serum sample. To ensure statis-
tically sound sampling, around five spectra from different
regions of each serum sample were collected. Details of the
samples used and spectra measured in the study are shown
in Table 1.

Raw spectra were processed by carrying out baseline
correction, smoothing, and normalization to remove noise,
fluorescence, and shot noise [20]. Subsequently, a data
matrix with N rows and D columns was constructed using
the processed Raman spectra.

In the data matrix, each row represents a peak of the
spectrum and each column a spectrum. 1e entries of the
matrix are intensities of Raman spectra. Because we mea-
sured 182 spectra and all our spectra were measured in the
same region of Raman shift,N� 2330 andD� 182 in the data
matrix. 1e data matrix will allow studying the correlation
between the spectra using the SPC method, that is, the
existing relationship between the control and diabetes pa-
tients based on biochemical differences of blood serum
samples.

1e SPC method was implemented as described in
Section 2. In the analysis, each processed Raman spectrum is
represented by a point vi to which a Potts spin si is assigned.
By using the Raman spectra as columns, the data matrix was
constructed.1e distance matrix dijwas calculated using this
data matrix. In the context of spectroscopy, only clusters of
spectra with similar spectral profiles could occur.

1e Swendsen–Wang Monte Carlo simulation to gen-
erate a Markov chain was implemented using the optimal
settings of the parameters for the simulation, q� 10, K� 15
and gij > 0.5 [7, 10, 11, 21, 22].

Finally, the most natural clusters were determined taking
the typical default threshold value, Sϴ� 0.5 [23].

1e calculation of dij and SPC algorithm were imple-
mented in MATLAB on the platform of Windows 10. 1e
running time on a SONY SVS13AA11U was 35 minutes.

4. Results and Discussion

We tested the ability of the SPC method to determine the
number of clusters in the bank of Raman spectra from
diabetes and control patients. In order to compare the
control and diabetes Raman spectra, the spectra were pro-
cessed as it is described in the previous section; 2330×182
data matrix was constructed where the first 102 columns
correspond to the spectra from control patients and the last
80 columns correspond to the spectra from diabetes patients
(see Table 1). 1e 182×182 distance matrix was constructed
using the data matrix.

A simple spectral comparison of the blood serum
samples from the control and diabetes patients can be
performed by analyzing the most characteristic bands of
only the mean Raman spectra from control and diabetes
patients; however, the most complete analysis that will allow
classifying the samples taking into account all the peaks
(2330) from the 180 spectra will be when SPC algorithm is
applied.

Figure 1 shows the mean processed Raman spectra of
diabetes and control samples. De Gelder et al. [24] formed a
reference database of Raman spectra of biological molecules
that allowed identifying each of the molecules corresponding
to the peaks shown in the control and diabetes spectra. In these
spectra, equally intense peaks were observed as 695 cm− 1, the
doublet of tyrosine at 828 and 853 cm− 1, phenylalanine at 1002
and 1028 cm− 1, the phospholipid shoulder at 1300–1345 cm− 1,
and proteins (amide I) at 1654 cm− 1. 1e main differences
were shown at 661 and 1404 cm− 1 (glutathione), 714 (poly-
saccharides), 605 (phenylalanine), 545 cm− 1 (tryptophan), and
the shoulder of amide III at 1230–1282 cm− 1 (this seems to
disappear in the diabetes spectrum). On the contrary, the
region 897–955 cm− 1 highlighted because the diabetes spec-
trum peaks were more intense.

1e intensities of the 2330 peaks from each measured
Raman spectra (182) were recorded in our data matrix to
calculate the distance matrix later, allowing the analysis of
the similarity between all the spectra. Subsequently, the
temperatures of superparamagnetic phases were determined
by locating peaks of the magnetic susceptibility shown in
Figure 2(a). Two superparamagnetic phases at temperatures
T� 0.073 and T� 0.115 were observed, where the first di-
visions of the leading cluster took place. Figure 2(b) shows
the distance matrix calculated for the SPC clusters in these
transition phase temperatures. Most intense colors corre-
spond to smaller distances between points. 1e diagonal and
off-diagonal elements correspond to inter- and intracluster
distances, respectively.

Table 1: Details of serum samples used in the study.

Spectrum number Nature No. of cases
1–102 Control 20
103–182 Diabetes 15

Journal of Spectroscopy 3



To determine the most natural clusters into which the
leading cluster will be split, the Stoop method is applied to
the SPC result, obtaining a hierarchical tree structure.
Figure 3 demonstrates that the SPC method (K� 10) was
able to determine the presence of three natural clusters in
data correctly. In Figure 3, the two splits of clusters at
temperatures T� 0.073 and T� 0.115 are observed, following
what is shown in Figure 2.  e leading cluster exhibited the

�rst split into the clusters 1 and 2, and the cluster 2 showed
the second split into the cluster 2 1 and 2 2.

In Figure 3 and Table 2, we observed that the leading
cluster with 182 elements begins to split into cluster 1 with
95 elements and cluster 2 of size 87. ese clusters essentially
remained stable in their compositions until the super-
paramagnetic-to-paramagnetic transition temperature is
reached (expressed in a sudden decrease of χ ), and the
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cluster 2 split into the clusters, 2 1 (with size 76) and 2 2 (with
size 11), while the cluster 1 remained without substructure
(natural cluster). 1e clusters 2 1 and 2 2 remained un-
structured, so they are also natural clusters.

1us, the SPC method detected three natural clusters in
the bank of Raman spectra labeled as 1, 21, and 2 2 in the tree
diagram whose members are shown in Table 2. Each
member indicates the column number in the data matrix,
i.e., the number of the spectrum from one given patient.
Recall that columns 1–102 and 103–182 correspond to the
spectra of the samples from the control and diabetes pa-
tients, respectively. We can observe that the members of the
clusters 1 and 2 correspond to Raman spectra from our
control and diabetes patient groups, respectively. Later,
cluster 2 was divided into the groups 2 1 and 2 2.1is second
split is consistent with the second peak in the magnetic
susceptibility curve. 1e SPC method showed the results in
such a way than the sensitivity and specificity were easily
calculated, obtaining the number of true-positive, false-
negative, true-negative, and false-positive cases in a less-
biased way by merely observing the number of members of
the SPC clusters in Table 2 and the number of spectra
measured from control and diabetes samples provided by
the health centers. According to this information, the
number of true-positive (TP), false-negative (FN) (members
indicated in green, Table 1), true-negative (TN), and false-
positive (FP) (members indicated in yellow, Table 2) cases
are 78, 2, 93, and 9, respectively.

1us, we were able to detect differences between control
and diabetes spectra using SPC with 97.5% sensitivity and
91.2% specificity. 1e sensitivity and specificity of the
proposed method are also high compared with the detection
method currently used.

It is important to note that when a cross-check is
made using another classification method such as principal

component analysis and linear discriminant analysis [5], the
members 132 and 174 from clusters 1, and 88, 91, and 99
from cluster 2 1 are also misclassified, in perfect agreement
with our SPC result, although there is a disagreement with
the members 86, 92, 98, 100, 101, and 102 from cluster 2 2.
Despite this disagreement in cluster 2 2, the method SPC,
based on concepts of statistical physics and stochastic as-
pects, has high sensitivity and specificity consistent with the
number of control patients and the number of patients from
the health centers detected with high glucose concentrations.

On the other hand, due to the basic information we have
about diabetes patients, we have a nonsatisfactory expla-
nation on the split of cluster 2 into the substructures, clusters
2 1 and 2 2. Nevertheless, the presence of a healthy patient
classified by SPC method as a diabetes patient (spectra 98,
99, 100, 101, and 102 correspond to the same healthy patient)
suggests it could correspond to some very marked charac-
teristics of the group from diabetes patients, such as a patient
in a prediabetes stage (healthy patients with glucose con-
centrations close to those from a diabetic patient). Another
possible explanation for the split is a wrong diagnosis using
Raman spectroscopy and SPC method, as it happens in any
other detection method.

Figure 4(a) shows the comparison of the average Raman
spectra of the samples from healthy patients and one of the
misclassified diabetes spectra (spectrum 132), marked with
green in Table 2. 1e two spectra appear to contain the same
Raman bands, only minimal differences in the intensities
were observed, and therefore, Raman spectrum 132 was
classified in the same cluster from healthy patients. On the
other hand, Figure 4(b) shows the comparison of the average
Raman spectra of the samples from diabetes patients and one
of the misclassified control spectra (spectrum 100), marked
with yellow in Table 2.1e two spectra also appear to contain
the same Raman bands with minimal differences in the
intensities, so Raman spectrum 100 was classified in the
same cluster from diabetes patients. One possible expla-
nation for these facts is that the point of the blood serum
sample of a healthy patient (diabetes patient), where the laser
was focused, has chemical components almost identical to
those at a point in the sample of a diabetes patient (control
patient). It shows the importance of measuring as many
spectra as possible by focusing the laser at different
points throughout the sample, obtaining its complete
characterization.

Based on the fact of the existence of these spectral
differences, it could be interesting to study the transpose
matrix of the data matrix by allowing the analysis of the
correlation between the different Raman peaks, instead of
the relationship between spectra. In this case, we would have
clusters of peaks, where each cluster could identify specific
molecules present in the samples, and several clusters of
peaks inside a larger cluster would indicate that all those
groups of molecules would maintain some chemical re-
lationship according to the biochemical information re-
flected in Raman spectra of the samples from control and
diabetes patients. Molecules in the same cluster with a
known functional role may be used to infer the functional
role of molecules that are in the same cluster and whose role

2
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Figure 3: 1e tree diagram of the data bank conformed by the
control and diabetes Raman spectra. 1e tree diagram provides the
natural clusters (blue boxes) obtained in the superparamagnetic
phase.
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was initially unknown. Consequently, the hierarchy of
clusters obtained using the SPC method could contribute to
the understanding of cellular biochemical behavior that
gives rise to diabetes.

In addition, whether or not we added Raman spectra of
serum samples from type 1 diabetes patients to our bank of
Raman spectra from type 2 diabetes and control patients,
SPC may have a more significant role in the diagnosis of
diabetes types, i.e., discriminating directly between the type

1 and type 2 diabetes, hoping to observe again a hierarchical
structure of clusters. We would observe that the leading
cluster would split into two clusters, one corresponding to
control patients and the other to diabetes patients. Fur-
thermore, the cluster corresponding to diabetes patients
would split into two clusters, one corresponding to type 1
diabetes patients and the other corresponding to type 2
diabetes patients.1is SPC result could be of great interest in
the biomedical field.

Table 2: Clusters obtained by applying the SPC method to the bank of Raman spectra.

Cluster Size Tferro Tcl sT Members
0 182 0.0272727 0.00909091

1 95 0.0613636 0.818182

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
79, 80, 81, 82, 83, 84, 85, 87, 89, 90, 93, 94, 95, 96, 97,

132, 174
2 87 0.0159091 0.0159091

2 1 76 0.025 0.846154

88, 91, 99, 103, 104, 105, 106, 109, 110, 111, 112, 113,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 127,
128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 142, 143, 144, 145, 146, 147, 148, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170,
171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 182

2 2 11 0.0022727 86, 92, 98, 100, 101, 102, 107, 108, 114, 115, 126
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Figure 4: (a) Comparison of the average Raman spectra of the samples from healthy patients and one of the misclassified diabetes spectra
(spectrum 132). (b) Comparison of the average Raman spectra of the samples from diabetes patients and one of the misclassified control
spectra (spectrum 100).

6 Journal of Spectroscopy



5. Conclusions

In this paper, we proposed the superparamagnetic clustering
method as a different way to the standard methods for
identifying patterns in large banks of spectra based on the
spectra bands similarity.1is method that uses the Potts spin
model from statistical physics allowed to successfully dis-
criminate diabetes spectra from control spectra with high
sensitivity and specificity through a hierarchical structure of
clusters. Nevertheless, although a split of the diabetes cluster
into smaller clusters was nonsatisfactorily explained due the
scarce biomedical information from the diabetes patient, a
possible explanation could be associated with the fact of
either the existence of a control patient with high glucose
concentrations (prediabetes patient) or merely a wrong
diagnosis using Raman spectroscopy and SPC method.

SPC method showed the results in such a way that the
sensitivity and specificity were easily calculated, obtaining
the number of true-positive, false-negative, true-negative,
and false-positive cases in a less-biased way by merely ob-
serving the number of members of the SPC clusters and the
number of spectra measured from diabetes and control
samples provided by the health centers. As a cross-checking,
SPC results were compared with published results of mul-
tivariate analysis, observing excellent agreements, but the
SPC method explicitly determines the members of all
identified clusters.

SPC could play an interesting role in the diagnosis of
diabetes types, i.e., discriminating directly between the type
1 and type 2 diabetes, by observing a hierarchical structure of
clusters from diabetes patients, that is, the leading cluster
would split into two clusters, one corresponding to control
patients and the other to diabetes patients, and the cluster
corresponding to diabetes patients would split into two
clusters, one corresponding to type 1 diabetes patients and
the other corresponding to type 2 diabetes patients. 1ese
SPC results could be of enormous interest in the biomedical
field.
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