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Image texture is an important visual cue in image processing and analysis. Texture feature expression is an important task of geo-
objects expression by using a high spatial resolution remote sensing image. Texture features based on gray level co-occurrence
matrix (GLCM) are widely used in image spatial analysis where the spatial scale is especially of great significance. Based on the
Fourier frequency-spectral analysis, this paper proposes an optimal scale selection method for GLCM. Different subset textures are
firstly upscaled by GLCM with different window sizes. Then the multiscale texture feature images are converted into the frequency
domain by Fourier transform. Consequently, the radial distribution and angular distribution curves changing with different
window sizes from spectrum energy can be achieved, by which the texture window size can be selected. In order to verify the
validity of this proposed texture scale selection method, this paper uses high-resolution fusion images to classify land cover based
on multiscale texture expression. The results show that the proposed method combining frequency-spectral analysis-based texture
scale selection can guarantee the quality and accuracy of the classification, which further proves the effectiveness of optimal texture
window size selection method bases on frequency spectrum analysis. Other than scale selection in spatial domain, this paper casts
a novel idea for texture scale selection in the frequency domain, which is meant for scale processing of remote sensing image.

1. Introduction

High spatial resolution remote sensing images contain rich
texture information, and accurate description of texture
features can effectively distinguish complex land-cover
category [1-3]. Traditional texture feature extraction algo-
rithms can be classified into five categories [4]: structural
model, statistic model (GLCM, local variance analysis, and
semivariance analysis), filter model (Fourier transformation,
wavelet transformation, and Gabor filters), random field
(Gaussian-Markov), and fractal model. Most recently, deep-
learning method was also applied to extract deep texture
features automatically [5, 6]. Of all the above methods, some
were employed to measure textural characteristics, such as

frequency spectrum analysis; others like GLCM texture
feature were directly applied to image classification.

A GLCM is a symmetric matrix with each value rep-
resenting the probability value of the nearest-neighbor gray
tone at a given distance and orientation [7]. It reveals the
spatial arrangement of gray levels in an image. The GLCM is
generally calculated using moving window for every pixel
across the whole image, thereof to provide valuable dis-
criminating spatial structure characteristics and to relate
variable patterns of different objects. Orientation and
moving window size, together known as scale parameters,
were the two most important factors influencing the values
of GLCM. In the past few decades, GLCM algorithm has
been widely used in image segmentation or classification
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[8-15], and the results indicated that outcomes were better
when combining GLCM-based texture features with spectral
features. However, the GLCM has its own flaws, which
mainly embodies in the difficulty and randomness of pa-
rameter selection. Many previous studies demonstrated that
the scale had a great influence on the validity of the GLCM
and the further on the classification accuracy [16-19].
Therefore, many scholars have paid great attention to de-
termine optimal GLCM scale parameters [20-26].

Empirical and enumeration methods were frequently
used in the determination of a scale parameter for GLCM
texture feature. However, an empirical method is easily
influenced by subjective mind, and an enumeration method
requires mass of redundant computation when selecting the
appropriate scale [24]. In addition, the classical local variance
method and geostatistics method [27-32] were proposed to
select the optimal scale for geo-objects identification, but they
only depend on the local statistical features that lead to the
inadequate description of complex texture features [33]. More
recently, the multiscale method was introduced into remote
sensing image analysis [34-36]. For texture extraction,
multiscale analysis can greatly improve the classification
accuracy. For example, to improve the performance of texture
feature expression and solve the uncertainty problems in land
cover classification, Lan and Liu proposed a method to
construct GLCM with multiscales inspired by domain
knowledge [37]. Huang et al. introduced a reasonable scale
texture extraction method, in which a timely changeable
cooccurrence window size according to the semivariogram
analysis was used [38]. Liu et al. and Chen et al. employed J-M
distance statistics to select the optimal scale of CLCM texture
[39, 40]. Huang proposed an improved algorithm by using
dynamic windows to extract texture features [41]. Liu et al.
used posterior probability to optimize multiscale texture
window [42]. However, it has been practically found that
multiscale texture did not absolutely lead to substantial im-
provement in accuracy. Choosing a global optimal texture
scale is still a key issue for texture feature expression and
classification.

High-resolution imagery has abundant meaningful in-
formation integrating spectral features with shape and
texture, and the periodicity and direction of image texture in
the frequency domain can more easily reflect its subtle
differences than in the spatial domain [43]. There is a wide
range of applications of the Fourier transform-based spectral
analysis. Pike and Rozema used four independent aspects of
topography which were obtained based on variance spec-
trum analysis to express numerically for landform classifi-
cation and other geomorphic problems [44]. Perron et al.
quantitatively investigated the existence of characteristic
landscape scales by analyzing two-dimensional Fourier
power spectra derived from high-resolution topographic
maps of two landscapes in California [45]. Moreover,
Fourier frequency spectrum analysis has been applied to the
study of remote sensing image feature recognition or in-
formation extraction. Li et al. selected suitable data for the
study of karst peak cluster area by comparing the Fourier
frequency spectrum energy of images from SAR and TM
data [46]. Wu et al. stressed the feasibility of the object
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recognition method based on energy in the frequency do-
main, and this method could identify and extract in-
formation from high-resolution imagery based on low-
frequency and high-frequency recognition marks with
matched Gabor filters after direction and frequency selection
[47]. Chen et al. proposed a method to determine the op-
timal spatial scale for high-resolution imagery based on
texture frequency analysis and proved that the variation of
texture spectrum energy is helpful to select the optimal scale
for geo-objects identification [48]. It can be seen that the
Fourier frequency spectrum analysis is an effective method
in remote sensing image processing. However, the above
method paid attention to the scale effect in remote sensing
image classification and did not mention the scale effect in
texture feature extraction.

Since a statistical analysis of the Fourier spectrum can
reflect the scale effect of texture expression, this paper ex-
plores the optimal scale selection method for GLCM texture
feature by using the Fourier spectrum analysis. Considering
the performance and popularity of GLCM, based on the
CLCM texture feature images at different scales, contrast was
selected and used to analyze a set of frequency spectrum
energy statistical curves to determine the optimal scale
parameter for GLCM.

Firstly, four typical objects with different texture features
in high-resolution imagery are chosen, and then their CLCM
texture features with different moving window sizes are
extracted and calculated. Next, GLCM texture feature im-
ages are converted into the frequency domain and then the
multiscale change trend in spectrum energy distribution
curves are analyzed at 18 scales. Finally, according to the
change in trend, the optimal scale parameter of GLCM could
be selected. In addition, this paper uses the local variance
method to select the optimal window size and finally
compares the effectiveness of the two methods through
experimental verification.

2. Methods

2.1. Texture Frequency Spectrum Energy Acquisition and
Spectrum Characteristics Analysis. Set f (x, y) is an image
function and its size is N x N. In a two-dimensional space,
Fourier transform of an image can be expressed in the
formula:

N-1N-1
Fuw=1Y Y f(x,y)exp[_W],
x=0 y=0

k=0,1,2,...,N -1,
(1)

where u, v is, respectively, the frequency of sine wave in the
x, y direction. F(u,v) is a complex number in general,
and its Fourier energy spectrum can be expressed as
|F (u, v)|* = F(u, v)F = (u,v), where Fx is the conjugate
complex number of F(u, v) and |F (&, v)|* is a real number,
which reflects global information about the image.

Polar coordinates can be used to measure the Fourier
energy spectrum [49]. As shown in Figure 1(a), set F (r, 0) as
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FIGURE 1: Spectrum energy statistical schematic diagram: (a) radial spectrum energy and (b) angular spectrum energy.

the energy spectrum function, where r and 0 are the fre-
quency and direction variables in the polar coordinates,
respectively (r = Vu? + v and 0 = arc tgu/v). Sum |F (u, v)|*
on a torus centered at the origin by using the formula
Fy(ris13) = Yecp e |F (4 V)|, Then as shown in
Figure 1(b), we can obtain a series of radial spectrum energy
statistics, also sum |F (u, v)|> on a sector from the origin, by
using the formula F, (6},6,) = X carc gurveo, | F (1> )|, and
then we can obtain a series of angular spectrum energy
statistics. Furthermore, setting @, = F; and ®y = F, and
drawing its curves, we can get a global description of the
image frequency spectrum energy. @, represents the radial
distribution curve, and ®y4 represents the angular distri-
bution curve.

Frequency spectrum energy statistics have the fol-
lowing two properties [50]: (1) the peak of the angular
spectrum curve corresponds to the main direction of the
texture and (2) the position of the peak in the radial
spectrum curve corresponds to texture-period in the
frequency domain.

To be more specific, ®, and @ can, respectively, describe
the thickness and direction distribution of the texture period
[51]. @, reflects thickness and periodicity of texture, and
here, periodicity means that if the texture unit periodically
appears with spatial interval of » pixels, the spectrum energy
in the frequency domain is gathered near the ring of which
the center is the origin and the radius is 2R/n (where R
represents the height or width of the image). On the radial
distribution curve, the spectrum energy is concentrated at a
low frequency when the texture is coarse or at a high fre-
quency when the texture is fine and smooth. Furthermore,
peak at a mid and high frequency on the radial distribution
curve reflects that texture appears periodically. @4 represents
the sensitivity of the spectrum to the texture direction. For
instance, if a direction 6 on an image contains a lot of lines or
edges, the peak of angular spectrum will appear along the
0 + 7/2 direction.

Figure 2 shows four texture subset images with the size of
120 x 120 pixels, respectively covered with house, farmland,
and mixed objects. Figure 2 also shows the spectrum

characteristics corresponding to the four texture subset
images. Then the spectrum energy can be statistically cal-
culated and shown in Figure 3.

Figure 3 shows the angular and radial spectrums of the
four subset textures, from which, it can be explained as
follows.

The texture of house is coarse, which determine that
spectrum energy is concentrated in low frequency; single
house arranged repeatedly leads to more than one peak
(r=1, r=7, r=12) in radial distribution curve, which
(r=7, r=12) reflects the periodicity of the texture. The
angular spectral energy concentrates at 90° and 170° around,
which indicates that the house texture represents horizontal
and vertical distributions.

As shown in Figure 2(b), the texture feature in Farm-
land_1 is fine, smooth, and horizontally distributed, while
the peak of its angular distribution curve appears near at 90°
around and radial spectral energy concentrates at a low
frequency (r=1) and a medium frequency (r =22), which
indicates the texture is thin and periodic.

In the same way, Farmland_2 is of monotonous texture
which is vertically distributed as shown in Figure 2(c), while
the angular spectral energy peaks at 180° and the radial
spectral energy gets peak at a low frequency (r=2) and a
medium frequency (r =19), and the peak at r = 19 reflects the
periodicity of the texture.

As shown in Figure 2(d), the texture of the mixed objects
is rough and disordered, while the angular spectral energy is
concentrated in the range of 65°<60<100°, and the radial
spectral energy is mainly concentrated at a low frequency.

2.2. Optimal Texture Window Size Selection Method Based on
Frequency Spectrum Analysis. As stated above, scale pa-
rameter greatly influences GLCM-based texture feature
expression. Generally, if the moving window size is set small,
the texture feature image is clear and informative while the
edge of geo-object is obscure. As the moving window size
increases, the texture feature image becomes coarser with
sharpness reduced.
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FIGURE 2: Four subset textures and their spectrum. (a) Houses. (b) Farmland_1. (c) Farmland_2. (d) Image covered with mixed features.

(e)-(f) are the related spectrum feature images of (a)-(d).

4.5 x 10!

L |

4.0 x 10!
3.5 x 101

LT

3.0 x 101

= 25x 101

2.0 x 101

1.5 x 10!

1.0 x 10! Hii
50 x 101 L%

0.0

0

—— House e Farmland_2
——— Farmland_1 —-—- Mixed objects

()

8.0 x 101 |

6.0 x 101 |

D (0)

4.0 x 10!

2.0 x 10!

0.0

0 20 40 60 80 100 120 140 160 180

—— House e Farmland_2
——— Farmland_1 —-—- Mixed objects

()

FIGURE 3: (a) Radial spectrum curve and (b) angular spectrum curve of four different subset textures.

Actually, what changes along with the window size is the
direction and period of the texture; that is to say, the ori-
entation and periodicity of the texture feature corre-
spondingly change with the varying window size. As
analyzed in Section 2.1, it is clear that the frequency spec-
trum energy curve of an image can effectively reflect the
periodic pattern and direction of texture. Therefore, the
frequency spectrum analysis method can be effectively ap-
plied to study texture feature images at different scales.
Theoretically, if the range of salient regions in a textural
image is close to the actual object size at a certain scale, it

means the scale can effectively maintain the direction and
periodicity of the original texture feature without redundant
details; thus, this textural window size can be regarded as the
optimal textural analysis scale.

To improve the performance of texture features to
distinguish geo-objects categories based on GLCM, this
paper combines frequency spectrum knowledge into cal-
culating multiscale texture features based on the Fourier
transformation and proposes an optimal textural window
size selection method by analyzing the relationship between
texture data in spatial and frequency domains. The idea of
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this paper is based on theoretical framework of frequency
statistics and aims at deducing the spatial geometry features
of objects.

Steps for selecting the optimal texture window size are as
follows:

(1) Extraction of the multiscale texture images based on
GLCM

(2) Plotting the frequency spectrum energy curves of
various subset textures on multiscale images

(3) Analysis of radial and angular energy curves of
different textures with the change of scale

(4) Selection of the optimal texture scale (or the optimal
window size)

3. Experiments

3.1. Experimental Image Data. The experimental image used
in this paper is downloaded from Google Maps in the year of
2018. The study area is located in Liujiabao Township,
Taiyuan City, Shanxi Province. The size of the study area is
688 x 737 pixels (Figure 4). The spatial resolution of the
experimental image is 0.6 m, and the image data contain
three bands (red, green, and blue). The mainland cover types
in the study area are house, farmland, road, street trees, bare
land, and waterbody, of which house and farmland present
clear textural features. As shown in Figure 4 (also as
magnified in Figure 2), house, farmland_1, farmland_2, and
mixed objects, respectively, marked as (a), (b), (c), and (d),
are selected as sample areas for texture frequency spectrum
analysis.

Haralick proposed 14 kinds of statistical texture features
for GLCM. The eight frequently used statistics are the an-
gular second moment, contrast, correlation, mean, entropy,
homogeneity, variance, and dissimilarity. Among them,
contrast is the moment of inertia near the principal diagonal
line of the GLCM which measures the distribution of matrix
values and local variations in image and reflects the clarity of
the image and the depth of the texture grooves. After trial
and comparison, the contrast feature was chosen for ana-
lyzing the optimal texture scale.

The first step of the experiment was to calculate contrast
feature with window size ranged from 3 x3 to 35x 35 and
then contrast feature images with different window sizes are
shown as Figure 5. Secondly, cutting sample areas are
marked as Figures 4(a)-4(d) from the contrast images, and
then the Fourier energy spectrum of these four sample areas
were converted by the Fourier Transform. Finally energy
spectrum was calculated, and we could get a series of radial
and angular distribution curves for analysis.

3.2. Analysis of Texture Spectrum Variation at Different
Scales. Figures 6(a)-6(d) show the radial and angular dis-
tribution curves of four subareas at 18 scales (original image
and other 17 upscaling images). With changing of the scale,
the variation of their texture spectrum peaks can be analyzed
as follows:

(1) As illustrated in Figure 6(a), radial spectrum energy
of house texture concentrates in a low-frequency
range (r < 10) at 18 scales and the positions that the
peaks (r=7, r=12) located are consistent, which
shows that the change of window size has little effect
on house texture period. Angular spectrum energy
peaks (Figure 6(a)) at near =90" and 6=170° at 18
scales (due to the horizontal and vertical directions
of the house texture), but the peak value varies in
different scales. Specifically, the peak energy near
0=90° increases from the original image to 3 x 3 and
decreases from 5x5 to 17 x17. Similarly, the peak
value of 180° increases from the original scale to 9 x 9
and decreases from 11 x 11.

(2) As illustrated in Figure 6(b), radial spectrum energy
of the original farmland_1 has one main peak and
one subpeak, the subpeak indicates that farmland_1
texture is periodic. With the increase of scale, the
main peak value disappears and the subpeak value
turns left to r = 15, and furthermore, both radial and
angular spectrum energies reduce greatly starting
from 3 x 3, which is because the textural details are
largely neglected with the increase of moving win-
dow size.

(3) As shown in Figure 6(c), radial spectrum energy of
the original farmland 2 texture concentrates in
medium frequency and peak at =19 and angular
curve peak at 0=180". However, the textural peri-
odicity and orientation of farmland 2 disappear
from 3 x 3.

(4) As shown in Figure 6(d), with the increase of scale,
there is no obvious change on the radial spectrum
energy curve. The peak on the angular curve varies
differently. From the original scale to 3 x 3, the peak
value firstly reduces and then increases. However,
the tendencies of all angular curves maintain con-
sistency with a change of scale.

Further analysis also shows that (1) with the increase of
scale, change of the radial curve is sensitive and significant
which is represented in decrease in the spectrum energy or
the transfer of the peak value; (2) the change of the angular
curve is reflected in increase or decrease of peak value;
however, tendencies of the curves are relatively steady. (3)
When the texture of geo-objects is not obvious, the radial
and angular spectrum energies reduce greatly, even disap-
pear with the increase of scale.

3.3. Optimal Texture Window Size Selection Based on Fre-
quency Spectrum. According to the analysis results in Sec-
tion 3.2, the rules for optimal scale selection for GLCM can
be described as follows:

(1) Change of peak value in radial and angular curves
can show the variations of frequency spectrum en-
ergy with the increase of scale, both of which can be
used as the basis of choosing the best scale. Choosing
the radial curve for selecting the optimal scale should
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FIGURE 5: Contrast images at series scale: (a) original image, (b) 3x 3, (¢) 5x5, (d) 7x7, (e) 9x9, (f) 11 x11, (g) 13 x13, (h) 15x15,
(i) 17x17, (j) 19x19, (k) 21 x21, (1) 23 x23, (m) 25x25, (n) 27 x27, (0) 29x29, (p) 31 x31, (q) 33 x33, and (r) 35 x 35.
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FIGURE 6: Radius distribution and angular distribution curves of four subset textures at different scales. Angular and radial spectrum curves

of (a) houses, (b) farmland_1, (c) farmland_2, and (d) mixed objects.

take the subpeak as the standard because the sub-
peak can reflect the period of texture. If there are
no double or multiple peaks in the radial curve,
the angular spectrum peak can be taken as the
criterion.

(2) Compare the frequency spectrum curve on the initial
scale with a certain scale, if the peak energy changes
dramatically (the peak obviously transfer or shrinks),
it indicates that the textural information of original
geo-objects cannot be reflected at this scale. How-
ever, if the peak value on a scale is consistent with the
initial scale, it means that the scale retains the texture
information and it can be selected as the optimal
texture scale.

(3) For a texture with single and fine characteristics, the
larger the window size is, the more texture in-
formation is lost, which is because texture feature
values calculated by one pixel are closer to its ad-
jacent ones, and they cannot maintain the original
neighborhood state of the feature pixel with a large
window size. In this case, optimal scale selection can
rely on the result of the mixed ground objects.

As shown in Figure 7, the optimal scale of different
subset textures in this paper are depicted, respectively, as
follows.

For houses, both of the radial and angular spectrum
curves can be used as the basis of choosing the best scale. As
shown in Figure 7(a), the subpeak value on the radial curve
of the original image is located at r = 7; in view of the overall
trend, the subpeak value increases first and then decreases.
The peak at the size 13 x 13 is consistent with the original
image. As shown in Figure 7(b), the peak values on the
angular curve are located at 0=90° and 0= 170°". With the
increase of scale, the peak value shows the same trend as the
radial curve. The peak at the size 19 x19 is consistent with
the original image when 6=90°. Similarly, for 6=170°, the
energy is consistent with original image on the size of

21 x 21. Thus, the optimal moving window size was 13 x13,
19 %19, or 21 x 21.

For farmland_1 and farmland 2, as shown in
Figures 7(c)-7(f), texture frequency spectrum energy greatly
reduced, even basically disappeared from scale 2. In this case,
the scale can be selected according to the optimal scale of
mixed ground objects.

For mixed objects, there is no subpeak on the radial
curve, so the changes of the angular curve peak (0=67",
0=90") are used to determine the optical scale. Compared
with the original scale, the peak value of the frequency
spectrum increases first and then decreases. As shown in
Figure 7(g), the peak value on the size 15 x 15 is consistent
with the original image when 6=67". For =90, the peak
value on the size 13 x 13 is consistent with the original image.
Therefore, the optimal texture window size is 13x13 or
15x15.

According to the analysis presented above, the best
classification results can be obtained by using a window size
of 13x13, 15x15, 19 x 19, or 21 x 21.

3.4. Experimental Verification. Theoretically, the land cover
classification result should have higher accuracy with the
optimal texture scale selected by the method presented in
this paper. To verify the validity of the method, this paper
carried out a series of land cover classification experiments
based on GLCM features with different moving window
sizes from 3 x 3 pixels to 35 x 35 pixels. Since SVM (support
vector machine) is an effective machine-learning algorithm
for high-dimensional data and it could achieve high accu-
racy even with a small sample amount [52], it is employed to
classify the experimental image shown as in Figure 4.

Table 1 shows training sample amounts for each type of
geo-object. The training samples were selected by referring
Google Maps. For the accuracy evaluation, 1600 test sample
points were selected using the stratified sampling method to
assess the classification accuracy.
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Figure 7: Continued.
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FIGURE 7: The peak value change of curves of four subset textures: (a) house radial curve, (b) house angular curve, (c) farmland_1 radial
curve, (d) farmland_1 angular curve, (e) farmland_2 radial curve, (f) farmland_2 angular curve, and (g) mixed ground objects angular curve.

TaBLE 1: Number of samples for different geo-objects.

Geo-objects Training samples Test samples

Farmland_1 6230 775
Farmland 2 1097 168
House 1284 386
Road 592 63
Bare land 1832 150
Tree 152 28
Waterbody 173 30
Total 11360 1600

Classification experiment consists of 18 groups: the first
is to directly classify the original image only based on
spectral features; other 17 groups involve texture features
into the classification in which the feature vector is com-
posed of 24 features (HOM, CON, DIS, ENT, VAR, ASM,
COR, and MEAN of the three original bands) calculated by
using different moving window sizes. The classification
results are shown in Figure 8.

As can be seen from Figure 8, the classification result
based only on spectral features is fragmented, especially it is
difficult to distinguish house, bare land, and road objects.
Besides, as illustrated in Figure 8(a), there are unclassified
pixels for tree and road and misclassification between
farmland_1 and farmland_2. Comparing the classification
results as shown in Figures 8(b)~8(r), textural details were
ignored with increasing moving window size (e.g., house,
tree, and bare land), the differences between different objects
become larger and the boundaries between them become
more distinct.

To assess the accuracies of classification results, this
paper employs a confusion matrix [53] to calculate overall
accuracies, kappa coefficients (as shown in Figure 9), and
producer accuracies of different objects on different scales.

Figure 9 shows that classification accuracy gradually in-
creases with the increase in moving window size. However,

when the window size exceeded 17 x 17, the accuracy de-
creases slowly. The window size corresponding to the highest
accuracy is 15x15, meanwhile the classification accuracy
around this window size is better than those of others.

Figure 10 plots the producer accuracies (Prod. Acc.) of
different categories in different window sizes. From Fig-
ure 10, the following can be observed:

(1) Since the texture of farmland_1 is not obvious, the
change of the moving window size has little effect on
farmland_1, which results in the accuracy being
maintained at a relatively high level.

(2) With the increase in the moving window size, the
texture details inside farmland_2 are ignored. The
larger the window size used, the lesser the texture
detail. Therefore, classification accuracy is mainly
determined by spectral features and thus gets higher
because crop is sensitive to spectrum. When the
window size approaches to 17 x 17, the accuracy is
maintained at a high level.

(3) The Prod. Acc. curves of bare land, road, and tree
have the same change tendency (increasing first and
then decreasing). It can be deduced that it is effective
to improve classification accuracy by setting large
moving window size for these kinds of categories.
However, it is not true that “the bigger the scale, the
higher the accuracy” because when large scale is
used, more information will be ignored, which re-
sults in misclassification or unclassification.

(4) From the analysis of Section 3.3, the optimal scale of
the house based on the radial curve is determined as
13 x 13, based on the angular curve are 19x19 and
21 x 21, and the accuracy at the three scales are 90.75,
90.03, and 92.21, respectively (as shown in Fig-
ure 10). The experimental result verifies that the
house does get a high classification accuracy at the
size 21 x 21.
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FIGURE 9: Overall accuracy and kappa coefficient on different
scales.

However, the overall accuracy is affected by the six kinds
of geo-objects, and high precision of the house does not
represent global accuracy. In contrast, the optimal scale of
mixed objects are 13x13 and 15x15, and the highest

accuracy is achieved on scale 15 x 15 in experimental result,
and the higher accuracies are achieved on scale 13 x13 and
17 x17.

Generally, these three sizes are consistent with the de-
termined optimal window sizes by using the proposed
method. The experimental results show that the optimal
scale selection method based on frequency spectrum texture
analysis can effectively ensure the classification accuracy.

3.5. Comparisons between Frequency Spectrum Method and
Local Variance Method

3.5.1. Optimal Texture Window Size Selection Based on Local
Variance. Local variance is a scene texture statistic that has
been used to characterize the relationship between spatial
scale and object size in the scene. Woodcock and Strahler
originally used a 3x3 window and degraded images to
coarser levels to examine the change in local variance as pixel
size [54] to select the optimal spatial resolution. Similarly,
instead of changing pixel sizes, increasing window sizes
could be used [55]. By examining a single image, several
window sizes and orientations could be used to establish the
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FIGURE 10: Producer accuracy curves of objects in different scales.

scale and form of autocorrelation based on changes in
variance levels [56]. Based on this method, we obtain the
local variance curves of four different subset textures, as
shown in Figure 11.

Figure 11 shows that it is difficult to use local variance to
select the optimal scale because there is no obvious inflection
point on local variances. According to the slope of the curves
(for more details about the principle of using local variance
to select the optimal scale, refer to [54, 57]), it can be de-
termined that the optimal window scale of the house is
17 x 17, farmland_1 is 7 x 7, farmland_2 is 9 x 9, and mixed
objects is 13 x 13.

3.5.2. Comparison and Analysis. Table 2 shows the optimal
scale, respectively, selected by the frequency spectrum
method and the local variance method, as well as the best
scale in the experiment.

Firstly, the frequency spectrum method is more accurate
than the local variance method for subset textures with
significant texture, such as house and mixed-objects. Sec-
ondly, when choosing the global optimal texture scale, the
frequency spectrum method performs better than the local
variance method. According to the spectrum analysis of
house and mixed-objects, it can be quickly determined that
the global optimal texture scale is 13, 15, or 17; however, it is
somewhat difficult to use the local variance method to de-
termine an appropriate global optimal window size because
the optimal scale span of the four objects is relatively large; if
the local variance results of the house and mixed objects are
used to select the optimal scale, 13 and 17 would be the
selected scales, but the two scales did not result the best
classification accuracies.

On the other hand, the frequency spectrum method
performs better than the local variance in determining the
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TaBLE 2: Optimal scale selected by different methods.

Subset Frequency L(?cal Best_ scale
textures spectrum method variance m
method  experiment
13x13, 19x19,
House 21 %21 17x17 21 %21
Farmland_1 None 7x7 None
Farmland_2 None 9%x9 17 x17
Mixed-objects 13x13, 15x15 13x13 15x15
Global optimal 15 13 15415 1515

scale

optimal scale of different subset textures. Comparing
Figure 7 with Figure 11, it can be seen that the spectrum
curve of geo-objects has a peak value, and the change of
peak value is obvious with the change of scale, so it is easy to
find the optimal window size; while the change of local
variance curve is relatively flat and there is no obvious
inflection point, so it is practically difficult to use the local
variance method to determine the optimal scale.

4. Conclusions

Scale selection for textural feature expression is always
troublesome in information extraction from remote sensing
images. Based on the texture frequency spectrum analysis of
four subset textures and peak variation with different
window sizes, this paper presents a method based on texture
spectrum statistics to determine optimal GLCM scale pa-
rameter for high spatial resolution image analysis.
According to experimental results, the conclusions are as
follows:

(1) It is a feasible way to use the frequency spectrum
energy curve of GLCM contrast feature image to
effectively reflect the periodic pattern and direction
of texture. It casts a novel approach for scale se-
lection of remote sensing image analysis from the
frequency domain, which is the main contribution of
this work.
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(2) The change of the GLCM scale parameter leads to the
change of the spectrum energy peak of the subset
textures, and the change of peak values can be used as
the basis for the optimal scale selection. In practice,
the texture of the remote sensing image is complex
and aperiodic, but the direction of texture generally
exists, so it is easier to obtain the angular peak value
than the radial peak value. Therefore, angular peak
variation can be preferentially considered in appli-
cation. The optimal scale of feature extraction needs
to be determined by subset textures on remote
sensing imagery. In comparison with single subset
textures, peak variation on the spectrum curve of
mixed objects performs better in determining the
global optimal scale.

(3) The combination of texture features based on GLCM
can be directly used in a high-resolution remote
sensing image classification. Also, the proposed
method is the image feature statistics in the fre-
quency domain. Theoretically, it can be used in the
selection of segmentation scale parameters. Al-
though how to assess accuracies in object-based
image classifications is still an open question, some
currently used quantitative segmentation evaluation
indexes [58] can be used to evaluate performances of
scale quantification.

(4) The scale factor is dependent on the correspondence
between spatial scale and object features itself, so it
is less realistic to obtain an absolutely optimal scale
suitable for all features on the image; however, itis a
compromise to get a relatively optimal scale by
using the proposed frequency spectrum statistics
method.

(5) When the images are mosaics of different classes or
features because of the scale dependence of geo-
object, stratified scale processing [3, 59] is necessary.
As is known, the same kind of objects often have the
similar spatial scale and often cluster in a local area,
so the image can be roughly divided into some local
regions within which the same objects gather and
then the proposed texture scale selection method can
be used within each local regions. Region partition-
based texture scale selection and parallel computing
is a viable way to high-performance remote sensing
applications.
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