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�is study investigates the ability of field spectra measurements to discriminate between soils from non-sites (natural soils) and
from archaeological sites, such as middens (rubbish-dumping areas) and animal byres. First, we tested whether there is a
difference in the concentration of elements between different soil types using analysis of variance while random forest (RF) and
forward variable selection (FVS) methods were used to select important soil elements for the classification of the archaeological
sites. In the second approach, we evaluated the ability of field spectroscopy reflectance measurements to discriminate among
nonsites, middens, vitrified dung, and nonvitrified dung byres. �e guided regularised random forest (GRRF) was used to identify
important wavelengths for the discrimination of abovementioned archaeological and nonarchaeological soils. �ereafter, the
selected soil elements and wavelengths were used as input variables in the RF classification algorithm to classify the nonsites,
middens, vitrified dung, and nonvitrified dung. �e findings reveal that there is a significant difference in the composition of
chemical elements and spectral signatures of nonsites, middens, vitrified dung, and nonvitrified dung. In summary, high
classification accuracies achieved when using field spectroscopy data prove that remote sensing techniques can be used to exploit
the spectral differences among the abovementioned soil types in mapping archaeological feature characteristics of farming
communities’ settlements.

1. Introduction

�e presence of archaeological materials in the soil has a
localised impact on the composition of physical and
chemical properties, thus making it different from sur-
roundings [1, 2]. Anthropological activities such as animal
penning and rubbish damping change soil structure and
colour. For example, refuse middens containing ash are
normally characterised by loose fine greyish particles [3],
whilst animal penning areas appear grey because of the
deposition of high organic animal secretions [4]. Chemi-
cally, human activities have an impact on soil organic
content, affecting the amount of phosphates [5] and po-
tassium [6]. Middleton and Price [7] found out that there is a

high concentration of K, P, and Mg in the hearth area.
Huffman et al. [6] studied the formation and difference in
chemical composition of nonvitrified dung and vitrified
dung deposits in archaeological sites. �is alteration of soil
physical and chemical properties occurs through weathering
and incorporation by depositing matter into an area and
tipping the balance in the pedogenesis process [1, 8, 9].
Approaches for identifying different past human activity
areas through geochemical analysis are routinely used at the
intrasite level [1, 2, 10, 11]. Material remains and changes in
soil physical properties such as texture and colour are also of
interest at a landscape level for the purpose of the archae-
ological survey and site identification [4, 12]. Fieldwalking
survey is the main method for identifying archaeological
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features visible on the Earth’s surface [4, 6, 13]. However, in
areas where archaeological features are not clearly visible or
structural information about the use of space within a site is
inconclusive, the concentration of elements in the soil has
been analysed in order to identify archaeological sites [14] or
different activity areas within the site [11, 15]. �e afore-
mentioned traditional archaeological survey methods,
geochemical analysis, and field walking are time-consuming
and expensive to carry out.

�e advent of very high-resolution multispectral sensors
in the late 1990s did not only offer the possibility of
exploiting higher spectral resolutions but also offered an
opportunity for effective data processing methods in ar-
chaeological prospection [16–18]. Most published research
has tested the use of vegetation indices calculated from
multispectral remote sensing data to identify archaeological
anomalies [19–22]. However, the complex nature and small
size of most archaeological features limits the wide use of
multispectral sensors, which are prone to information loss
and confusion due to low spatial and spectral resolution
[23, 24]. Moreover, some archaeological features may have
subtle chemical and physical differences with their envi-
ronment, which might be masked by multispectral sensors.

Spectroscopy data which are commonly captured using
airborne, handheld, and spaceborne sensors offer hundreds
of narrow spectral wavebands. �ese narrow wavebands
allow for an exhaustive discovery of detailed archaeological
data that are otherwise missed by the generic wavebands
captured by multispectral sensors [25, 26]. However, using
spaceborne and airborne data comes with challenges related
to the spectral mixture of features and radiometric and
wavelength calibration uncertainties which as a result affect
the quality of captured data [23, 27–29]. Spaceborne and
airborne sensors also lack spatial and spectral resolution
similar to that of the handheld spectrometer [23, 27, 28, 30].
In consequence, the aforementioned challenges have
resulted in the limited use of both airborne and spaceborne
hyperspectral data in soil analysis [23].

In recent years, laboratory visible-near-infrared (VIS-
NIR)/short-wave infrared (SWIR) spectroscopy data have
been viewed as a potential cost-effective option to the field-
based survey and traditional laboratory approach for soil
analysis [29, 31–35]. �is has led to the development of
spectral libraries documenting the spectral signatures of
different soils and their properties. Researchers have used
field spectroscopy data to assess soil properties such as
organic content, minerals, texture, andmoisture [34, 36–40].
�erefore, field spectroscopy data might be useful for dis-
criminating archaeological sites with specific soil properties.

�e documentation of the reference data for the spectral
reflectance of different archaeological features in a library is
lacking. In recent past, only handful research studies have
used field spectroscopy/hyperspectral data to document the
spectral signatures of vegetation overlaying archaeological
materials and investigating the potential of detecting and
mapping the vegetation health as a proxy indicator of buried
archaeological materials [41–44]. Consequently, the role of
field spectroscopy in archaeology applications is still poorly
explored. For instance, and to the best of our knowledge,

there is no study to date examining the use of field spec-
troscopy in discriminating archaeological surface features
using soil characteristics as indicators.

One of the most notable challenges in the use of field
spectroscopy is the large data redundancy due to the strong
correlation between the spectral features [45]. �is high
dimensionality requires sufficient training sample and
computational process which might be time-consuming and
prohibitive in cost [46, 47]. In most archaeology studies, the
size of training samples is restricted by the magnitude of
archaeological sites or by issues of accessibility. �is may
result in some problems such as the Hughes phenomenon or
“curse of dimensionality,” whereby the accuracy of classi-
fication algorithms decreases when working with a limited
number of training samples [48, 49].�is is because the ideal
number of classification features is restricted by the size of
the training sample [48, 50, 51]. As a result, there is a need
for the reduction of dimensionality when processing field
spectroscopy data in order to avoid the aforementioned
challenges. Dimensionality reduction methods improve the
discriminative ability of the dataset by decreasing the
number of spectral bands without dropping vital in-
formation [52–54]. Numerous variable selection methods
have been used to decrease the high dimensionality in
hyperspectral data by selecting the most important bands for
data classification. �e most commonly used feature se-
lection methods are genetic algorithms [55–57] and random
forest (RF) [30, 58]. Genetic algorithms (GAs) are based on
the process of natural selection, influenced by the principle
of survival of the fittest. GA is usually embedded in classifiers
such as SVM as a band selection algorithm [55, 57, 59], in
order to improve classification accuracy. However, genetic
algorithms are vulnerable to random correlations of the
features [60] and have high computational demands [55, 61].

RF classifier, which has been described as the best
machine learning algorithm for handling high-dimensional
data [62], measures the importance of each variable in
classification. However, it is prone to producing redundant
features because of its biases towards the correlated pre-
dictors [63, 64]. In RF, samples for bagging are most
commonly dominated by less important features, therefore,
degrading the classification accuracy [65]. RF also ranks
features without selecting a subset of optimal features [30].

Recently, Deng and Runger [66] developed a guided
regularised random forest (GRRF) algorithm aiming at
curbing the limitations of the traditional RF algorithm.
GRRF eliminates feature redundancy by not selecting fea-
tures carrying similar information with the already selected
ones in a subset at each node [66]. �e GRRF algorithm
guides the feature selection process in the regularised RF
using importance scores from the normal RF [66]. To date,
only two studies have used GRRF for the reduction of high
dimensionality in hyperspectral data for vegetation studies
[67, 68].

�is study investigated whether field spectra measure-
ment can discriminate archaeological sites using soil
properties as indicators. More precisely, the objectives of the
study were to (i) investigate if there is any significant dif-
ference in concentration of soil elements across different
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archaeological sites, namely, middens, vitrified dung byres,
and nonvitrified dung byres, (ii) use in situ hyperspectral
measurements to discriminate among nonsites (natural
soils), middens, vitrified dung, and nonvitrified dung, and
(iii) identify important wavelengths for discriminating
among the aforementioned features using the guided reg-
ularised random forest algorithm.

2. Materials and Methods

2.1. Study Area. �e study was conducted in the
Mapungubwe cultural landscape, located at the conflu-
ence of the Shashi and Limpopo rivers, in the province of
Limpopo, South Africa, shown in Figure 1. �e Shashi-
Limpopo confluence area (SLCA) forms the boundary of
three countries: Botswana towards west, South Africa
towards south, and Zimbabwe towards north. Geo-
logically, the SLCA lies within the Limpopo mobile belt
which joins the Zimbabwe and Kaapvaal cratons [69]. �is
area is characterised by igneous and sedimentary rocks of
the Karoo supergroup [70]. Erosion is rampant, in par-
ticular in areas closer to the river channels, therefore,
forming sandstone ridges and outcrops which cover most
parts of the SLCA with a sparse distribution of volcanic
intrusions [71, 72]. Generally, soils in the Limpopo mobile
belt include clays and sands originating from the Karoo
system [73].

Archaeologically, the study area has been continuously
occupied by different groups of farming communities since
900 AD [74–77]. �ese societies practised the central cattle
pattern (CCP) settlement system [78]. �is is a settlement
system whereby animal byres are located at the centre of the
settlement, close to the male gathering area [79] (Figure 2).
Social changes in the SLCA occurred during the twelfth
century AD, with the occupation of Mapungubwe hill, when
leaders and commoners became physically separated
[76, 81]. Animals were only kept at commoner settlements
where the CCP continued to be practised, whilst rulers
would reside in stone-walled elevated areas, secluded from
the commoners [76]. �e archaeological features charac-
terising these sites are vitrified dung byres, nonvitrified dung
byres, middens, grain bin stands, and pottery scatters. �e
great majority of archaeological sites occupied by late
farming communities in the SLCA appears as open spaces
within woodland vegetation especially those characterised
by vitrified and nonvitrified dung. �e aforementioned
differences in vegetation cover might possibly be influenced
by the chemical composition of vitrified and nonvitrified
dung sites which was found to be different from that of their
surroundings [6, 82].

Middens are areas where the general waste of a
household, including remains of unused materials such
as broken potsherds, animal bones, beads, and other
utensils and ashes from fireplaces, were discarded
[83, 84]. Middens differ in size depending on the du-
ration and density of site occupation [75]. Some of the
middens in areas classified as capitals, such as K2,
reached a diameter of 182.88 meters and a depth of
6 meters [79, 85, 86]. Vitrified dung and nonvitrified

dung are two types of dung deposits in the study area,
which indicates areas where animals were kept in the
settlement. Vitrified dung is formed by the burning of
dung deposits which is at least more than a meter in
thickness, at very high temperatures (in the region of
1100°C) [87, 88]. Vitrified dung contains high quantities
of nitrates and phosphates which makes it impossible for
some grasses to grow on them [87]. Nonvitrified dung is
characterised by unburned dung deposits. �e byres for
both livestock and cattle have an average diameter of
3 meters and 18meters, respectively (T. N. Huffman
personal communication, September, 2018).

2.2. Soil Sample Collection and Analysis. Soil samples for
three archaeological features (middens, vitrified, and non-
vitrified dung areas) and bare soil (nonarchaeological site)
from the surrounding natural landscape were collected in
February 2017 for lab spectral measurement and chemical
analysis. A purposive sampling technique was used during
the fieldwork data collection by visiting sites which appear in
the literature and are affirmed to have dung deposits and
middens [4, 89]. In order to avoid contamination with the
archaeological features due to wind and water erosion, bare
soil samples were collected from areas far away from the
archaeological sites. A total of 356 samples were collected
across the study area at 0–20 cm depths which corresponded
to the surface horizon at each location. Only top soil was
sampled because optical sensors cannot penetrate the surface
to map subsurface soil properties; therefore, it will be
fruitless to sample horizons beneath the top soil for spectral
analysis [89]. In addition, a GPS point for each sample was
taken for spatial reference. Between 60 and 117 samples were
collected from nonsites, middens, vitrified dung, and non-
vitrified dung sites in the field (Figure 3). All the collected
soil samples were packaged in zip-lock plastic bags for field
spectral measurements and chemical analysis in the
laboratory.

2.3. Laboratory Spectral Data Acquisition. Soils collected in
the field were air-dried and sieved to 2mm [39] before being
flattened on a black plastic plate to create a smooth surface.
Spectral reflectance measurements were carried out in a
controlled environment using the analytical spectral device
(ASD) FieldSpec® 4 optical sensor with 350-2500 nm
spectral range [91, 92]. �e analytical spectral device (ASD)
FieldSpec® 4 optical sensor capture data insampling in-
tervals of 1.4 nm between 350-1000 nm and 2 nm between
1001-2500 nm [91]. �e spectral measurements were taken
from the surface of each soil sample at the nadir position
with 10mm field of view using the Hi-Brite contact probe
fitted with the 100W halogen reflector lamp. �e spec-
trometer was calibrated using a white spectralon reference
panel after every 10 to 15 measurements. Soil samples from
each bag were randomly divided into three samples. �ree
spectral measurements were taken per each sample by
randomly moving the probe over the soil surface. �e nine
(n= 9) spectral measurements were then averaged to rep-
resent the whole soil sample (Figure 3). All 2151 bands were
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included in the analysis because the data were collected
within a controlled environment, so there was no need to
remove spectral bands to improve the signal-to-noise ratio.
�e reference data were arbitrarily separated into training
(70%) and test (30%) datasets.

2.4. Soil Analysis. �e samples were analysed for the com-
position of 33 elements by ALS in Johannesburg.�e samples
were air-dried and dry-sieved using a 180-micron screen
(Tyler 80 mesh). �ereafter, 0.25 grams of a readied sample
was then digested with perchloric, nitric, hydro�uoric, and
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Figure 2: Schroda site as visible from (a) RGB Google Earth imagery; (b) a sketch detailing the outline of the early farming community
village as interpreted by Hanisch from excavation and survey (adapted from [80]).
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Figure 3: Continued.
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hydrochloric acids. �ereafter, a dilute hydrochloric acid was
mixed with the residue, and the resulting solution was ana-
lysed using inductively coupled plasma-atomic emission
spectrometry [93].

2.5. Statistical Methods for Soil Analysis. Descriptive sta-
tistics were performed for the individual soil classes to get
the typical values, mean, median, and standard deviation of
the concentration of elements within each class. �e var-
iation of the concentration of elements between and within
classes was measured using the coefficient of variation and
interquartile range. �e two aforementioned measures of
variation were chosen because of their ability to get rid of
the challenges associated with outliers [94, 95]. �e co-
efficient of variation also has the ability to standardise data
for comparing the variability of two or more distributions
from different or the same data with different means
[94, 96]. Levene’s test of homogeneity was used to test for
homogeneity of variances, and Welch’s analysis of variance

(ANOVA) was used whenever homogeneity was violated.
ANOVA was used to test if there are statistically significant
differences on the average composition of chemical ele-
ments between nonsites and each archaeological features:
middens, nonvitrified dung, and vitrified dung [97, 98].�e
Games–Howell post hoc test was performed to find out
which elements are significantly different across the classes
since variances were heterogeneous and sample sizes were
unequal. �e level at which differences between the means
were considered significant was set at p≤ 0.05. However,
the major limitation of ANOVA is that it is not linked to
any machine learning classifier; therefore, it does not
measure the importance of each element in the prediction
model [99].

To curb the aforementioned limitations, RF was
combined with forward variable selection (FVS) procedure
in an attempt to locate the ideal subset of elements with the
least classification error [100]. RF was used for ranking the
variables based on the importance score of the mean in
decrease accuracy determined using out-of-bag (OOB) data
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Figure 3: Images and profiles of mean and standard deviation spectra for nonsite (NS), midden (MD), nonvitrified dung (NVD), and vitrified
dung (VD) sites. Values for mean spectra are represented on the left axis, while the right axis represents those for the standard deviation.
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and evaluating the classification accuracy. �en, a stepwise
procedure was employed for FVS, whereby elements were
added into the model according to their importance be-
ginning with the most important one [101]. �e method
continued by repetitively constructing new RF models
while adding a single element in each iteration and re-
cording the OOB error. �e parameters for the number of
trees to be grown (Ntree) and the number of variables
needed to split each node (Mtry) were optimised using grid
search at each iteration. �is procedure was reiterated until
all elements were utilised; then, the smallest subgroup of
elements with the least OOB error was identified. �e
optimal elements chosen were then used as input variables
to construct two different classification models in the RF
classifier. In the first model, the subset of optimal elements
was used to classify nonsites, middens, vitrified dung, and
nonvitrified dung sites. In the second model, the subset of
optimal elements was combined with the optimal bands
chosen by GRRF and classification of nonsites, middens,
vitrified dung, and nonvitrified dung sites was done. �is
was done in order to check if there would be an im-
provement in the classification accuracy of the general
model when optimum bands and soil elements are
combined.

2.6. Using Guided Regularised Random Forest for Variable
Selection. GRRF is a feature selection algorithm which
applies some form of regularisation to different types of
decision trees models, performing a selection of feature
subsets [66, 102]. �e regularisation is guided by scores of
feature importance measured by the traditional RF using the
Gini index. Gini importance assesses the level of impurity of
each variable in relation to the importance it gained over
others, in the sampled set of variables, and selects the op-
timal split at each node [103, 104].�e Gini index at a node y
can be defined as follows:

Gini(y) � 􏽘
k

k�1
p

y

k 1 − p
y

k􏼐 􏼑, (1)

where p
y

k denotes the proportions of observations for class k
at node y. �e Gini information gain (hi, v) is then calculated
as the difference between the Gini index at node y and the
weighted mean of Gini indexes at each child node of y. Gain
information of feature hi based on impurity at node y can be
defined as follows:

Gain hi, y( 􏼁 � Gain(y) − wLGini yL( 􏼁 − wRGini yR( 􏼁,

(2)

where Gini (yL) and Gini (yR) represent the impurities, while
wL and wR are the weights for the left and right child nodes.

In GRRF, regularisation is added to the gain information
from the traditional RF and each individual feature is given a
penalty coefficient. �e regularised information gain is
defined as follows:

Gain hi, y( 􏼁 �
λi · Gain hi, y( 􏼁, hi ∉ F,

Gain hi, y( 􏼁, hi ∉ F,
􏼨 (3)

where λi ∉ (0, 1) is the coefficient of regularisation for
yi(i ∈ 1, . . . , P{ }) and F is the set of features chosen in the
preceding nodes. λi ∉ (0, 1) is computed basing on the
importance score of hi from the traditional RF as follows:

λi � (1 − c) + cImpi, (4)

where c ∈ [0, 1] is the importance coefficient and
Impi ∈ [0, 1] is the base coefficient controlling regularisa-
tion. Regularisation allows the model to reduce redundancy
associated with tree models of feature selection, by only
choosing a new feature for splitting data in a tree node if it
yields different information from the feature that was chosen
in the earlier split. Unlike other feature selection methods,
the regularised framework allows for the construction of a
single model at a time therefore reducing the time needed to
train the model [102]. GRRF also has the ability to select the
ideal subset of variables with the lowest misclassification
error. In this study, GRRF was used to select the key
wavelengths to accurately discriminate among nonsites,
middens, vitrified dung, and nonvitrified dung. �is was
done so as to reduce the high dimensionality inherent within
the hyperspectral data [101, 105, 106]. �e key wavelengths
selected by GRRF were then utilised as input variables in the
traditional RF algorithm to discriminate among the nonsites.

2.7. Random Forest Classifier. RF classifier was used to
discriminate between nonsites, middens, vitrified dung, and
nonvitrified dung using key elements selected by FVS and
the key wavelengths selected by GRRF. �e RF classification
algorithm has been extensively employed in the classification
of both hyperspectral and multispectral data [106–109].
Generally, RF can be described as an ensemble of classifiers
which creates binary decision trees and assigns class basing
on majority votes at each node [106]. �e decision trees are
grown independently of each other using different samples,
facilitated by bagging which randomly creates subsets of the
original datasets, with replacement, for each node [110]. �e
variables which are not included in the bootstrap sample,
which makes a third of the data, are called the out-of-bag
(OOB) sample [110, 111]. Each tree grows without being
pruned [110]. However, Ntree, the default number is 500
trees, and Mtry, the default is the square root of the total
number of variables

��
P

√
, are defined by the user [106]. �e

Mtry and Ntree have to be optimised, in order to archive
high classification accuracies [112]. �is study identified the
best combination of Mtry and Ntree parameters using a grid
search based on the OOB approximation of error [113]. �e
optimisation of Ntree was done using values ranging be-
tween 500 and 10000 at the interval of 500, while the Mtry
was optimised using a multiplicative factor of its default.

RF has inherent measures of variable importance and the
ability to estimate prediction accuracy [111]. RF estimates
prediction accuracy by cross-validating the bagging sample
with a third of the data being excluded from the sample
[104]. �e classification error from these accuracy pre-
dictions is called the OOB error. Variable importance helps
in understanding the relevance of each variable predictor in
data classification. Variable importance measures in RF
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comprise mean variable importance/mean decrease accu-
racy (MDA) and Gini importance [103]. MDA was calcu-
lated using OOB observations and was used to rank elements
used as input variables in the FVS model in this study. High
MDA values indicate important variables in the classifica-
tion, while low values represent variables which are less
important in the classification. �e Gini index was used to
assess the importance of different spectral bands in dis-
criminating different archaeological sites. High Gini im-
purity indicates heterogeneity between classes, while a lower
Gini impurity indicates homogeneity within classes.
�erefore, features with a less mean decrease in the Gini
index are of less importance in the classification because they
do not play any role in splitting the data into classes.

2.8. Accuracy Assessment. �e accuracy assessment was
done using a holdout dataset created by randomly dividing
the laboratory data into 70% training and 30% testing before
classifying it. Misclassification was assessed using the OOB
error, which is an internal process of estimating the RF error.
An error matrix was done to calculate the user’s accuracy,
producer’s accuracy, and the overall accuracy for the as-
sessment of classification accuracy of the RF classifier. Kappa
coefficient was used to evaluate the agreement between the
reference data and the classifier because of its ability to
compensate for chance agreement [114]. A perfect agree-
ment is achieved if the kappa value is one or close to one
[115].

3. Results

3.1. Statistical Analysis. �is study used statistical methods
to assess the concentration of elements within natural soils,
middens, vitrified dung, and nonvitrified dung. �e soil
analysis was done on samples taken from each of the
abovementioned classes. �e descriptive statistics for the
concentration of different elements are summarized in
Tables 1–4 for natural soils, vitrified dung, nonvitrified dung,
and middens, respectively. �e statistical analysis revealed
high variability of the concentrations of most elements
within each soil class with the coefficient of variation be-
tween 12% and 50%. �e concentrations of Zn and Cu
within the middens were very highly variable with a co-
efficient variation of 53.6% and 56.9%, respectively. �e
concentrations of most elements across different classes are
also highly variable. �e mean concentrations of P, Mn, Ca,
Mg, Zn, and Ba were very high in vitrified dung. Nonvitrified
dung and middens also had comparatively higher concen-
trations of the abovementioned elements than nonsites
(Tables 1–4).

�e results obtained using Welch’s ANOVA (p< 0.05)
demonstrate that there are significant differences between
the means of different elements across different soil classes.
Comparisons of the average concentration of individual
elements between pairs of soil classes have shown that only
the concentration of phosphorus (P) was significantly dif-
ferent across all four classes vitrified dung, nonvitrified
dung, middens, and natural soils (Games–Howell, p≤ 0.05).

P has shown significant p values, ranging from 0.004 be-
tween middens and nonvitrified dung to 0.000 between
middens and nonsites. Other elements such as Mg, Na, Be,
Fe, Mn, S, and Zn also recorded insignificant differences
between two or more soil classes. For example, Mg has
shown significant p values, ranging from 0.003 between
middens and nonsites to 0.000 between middens and vit-
rified dung. However, an insignificant p value of 0.379 for the
Mg element was recorded betweenmiddens and nonvitrified
dung.

3.2. Variable Importance and Measurement. MDA measure
inbuilt within the RF classification algorithm was used to
measure the importance of each element in discriminating
amongst nonsites, middens, vitrified dung, and nonvitrified
dung sites. Generally, Ca, P, and Sr were the top most
important elements in discriminating among the afore-
mentioned classes, as shown in Figure 4. Ga, Bi, and�were
the least important elements in discriminating amongst
nonsites, middens, vitrified dung, and nonvitrified dung
sites (Figure 4). When assessing the importance of each
element in discriminating among individual classes, Sr, Al,
and Ca were the most important elements in differentiating
sites with vitrified dung from the rest of the sites (Figure 5). P
and Mg were important in discriminating nonsites, mid-
dens, vitrified dung, and nonvitrified dung.

Basing on the measurements of variable importance
(MDA) provided by RF, the FVS procedure was used to find
the smallest set of elements that resulted in the highest
predictive accuracy in classifying nonsites, middens, vit-
rified dung, and nonvitrified dung sites using RF. �e
optimal selected predictor variables (elements) with the
lowest OOB error rate (15.38%) were P, Ca, Sr, Mg, Fe, Zn,
and Co.When using all elements, the error rate increased to
17.31% (Figure 6). �e selected elements were then used as
input variables in a RF classifier model for mapping
nonsites, middens, vitrified dung, and nonvitrified dung
sites.

All the wavelengths captured using the field spectrom-
eter were input into a RF classificationmodel. Mean decrease
in the Gini index in an ordinary RF was used to assess the
importance of variables in differentiating between vitrified
dung, natural soils, middens, and nonvitrified dung sites. In
general, the highest mean decrease in the Gini index oc-
curred in the wavelengths within the visible spectrum
(350–576 nm), with 513 nm being the most important
wavelength of them all. However, important variables cover
a wide range of electromagnetic (EM) waves from visible
wavelengths to the near-infrared wavelengths with notable
peaks, between 350 and 576 nm, 1292 nm–1380 nm, 1575
and 1748 nm, and 1801 and 1808 nm (Figure 7).

�e GRRF was used to select the best wavelengths for
classifying vitrified dung, middens, nonvitrified dung, and
natural soils.�is was done using variable importance scores
for each wavelength obtained from the normal RF to guide
the selection of features in a regularised RF.�e best-selected
wavelengths were 549 nm and 624 nm within the visible
spectrum, while within the near-infrared, 996 nm, 1026 nm,
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1665 nm, 1774 nm, 1934 nm, and 2290 nm were chosen, as
shown in Figure 8. �e selected wavelengths were then
inputted into the RF classifier to map nonsites, middens,
vitrified dung, and nonvitrified dung sites.

3.3. Accuracy Assessment. �e prediction ability of RF was
tested using optimal elements selected by the FVS procedure
and all elements. A holdout dataset, which was created by
randomly dividing data into training (70%) and testing
(30%), was used to test the accuracy of both models. RF was
optimised using the grid search with the optimum combi-
nation of Mtry and Ntree achieving the lowest OOB error of
about 15.38%.�e findings demonstrate that the sites can be
more accurately mapped using the selected seven bands than
when using all the thirty-three elements (Table 5). �e user’s
and producer’s accuracies of the two models are compared
in Table 6.

Classifications on the ordinary RF algorithm were also
done using optimal bands selected by the GRRF model. �e
optimum combination of Mtry and Ntree yielded the lowest
OOB error of about 0.11. Overall, the classification model
achieved an accuracy of 84.76% when using all wavelengths.
However, a higher overall accuracy of 87% was achieved
when using the optimal bands selected by GRRF (Table 7).

Table 8 shows a comparison between the user’s and pro-
ducer’s accuracies of the aforementioned datasets.

A combination of optimum elements and bands were
also put into the ordinary RF classifier to see if they can
improve the classification accuracy. �e results show that a
combination of optimal elements and bands produce a better
classification accuracy than predictive models for all bands,
all elements, and when only selected elements are used. �e
model achieved an overall accuracy of 85.71% (Table 9). �e
optimal Mtry and Ntree for the model produced the lowest
OOB error of about 14.29%.

4. Discussion

�e main aim of this study was to assess the possibility of
using hyperspectral data to discriminate nonsites, middens,
nonvitrified dung, and vitrified dung site characteristics of
areas previously occupied by farming communities. It also
assessed if the aforementioned classes can be distinguished
based on their chemical composition. �e findings of this
study have shown that there is a significant difference in the
composition of elements characterising archaeological fea-
tures. Most importantly, it has also shown that remote sensing
techniques can be used tomap surface archaeological features.
�is is an important development in the archaeological survey

Table 1: Summary statistics for the concentration of different chemical elements within natural soils.

Element 1st qu. Median 3rd qu. Mean Standard deviation Coefficient of variation
Ag 0.5 0.5 0.5 0.5 0.0 5.9
Al 3.7 4.2 4.5 4.1 0.5 12.5
As 5.0 5.0 5.0 5.0 0.0 0.0
Ba 375.0 400.0 500.0 430.0 65.3 15.2
Be 1.0 1.1 1.2 1.1 0.1 13.9
Bi 2.0 2.0 2.0 2.0 0.0 0.0
Ca 0.3 1.3 1.4 0.9 0.6 64.8
Cd 0.5 0.5 0.5 0.5 0.0 0.0
Co 4.0 8.0 12.0 8.0 4.1 50.9
Cr 24.5 43.0 62.0 50.5 32.4 64.0
Cu 13.5 25.0 30.5 24.7 12.0 48.3
Fe 1.0 1.8 2.5 1.9 0.9 49.3
Ga 10.0 10.0 10.0 10.0 0.0 0.0
K 1.0 1.2 1.3 1.2 0.2 15.8
La 25.0 30.0 30.0 27.3 4.7 17.1
Mg 0.3 0.6 0.7 0.5 0.2 46.0
Mn 251.5 388.0 504.0 387.9 144.0 37.1
Mo 1.0 1.0 1.0 1.0 0.0 0.0
Na 0.9 1.0 1.1 1.0 0.1 8.9
Ni 10.0 19.0 27.5 21.8 13.4 61.3
P 215.0 360.0 480.0 406.4 251.3 61.8
Pb 10.0 11.0 13.5 11.0 2.9 26.7
S 0.0 0.0 0.0 0.0 0.0 0.0
Sb 5.0 5.0 5.0 5.0 0.0 0.0
Sc 3.0 6.0 7.0 5.5 2.2 39.8
Sr 90.0 154.0 198.0 150.7 63.0 41.8
� 20.0 20.0 20.0 20.0 0.0 0.0
Ti 0.3 0.4 0.7 0.5 0.4 71.2
Tl 10.0 10.0 10.0 10.0 0.0 0.0
U 10.0 10.0 10.0 10.0 0.0 0.0
V 30.0 51.0 79.5 59.3 36.1 61.0
W 10.0 10.0 10.0 10.0 0.0 0.0
Zn 20.5 37.0 44.5 35.8 14.5 40.5
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because the use of remote sensing techniques will enable the
fast and cheaper documentation of sites over large areas.

Overall, the results for statistical analysis indicate that
there is a significant difference in the concentration of el-
ements in nonsites, middens, vitrified dung, and nonvitrified
dung sites. �is is because different anthropogenic activities
have different effects on the composition of soil elements
[15, 116]. �e concentration of P was significantly different
across the nonsites, middens, vitrified dung, and nonvitrified
dung byre. On average, vitrified dung had high concen-
trations of P followed by nonvitrified dung, middens, and
nonsites. �is is unsurprising since phosphorus is widely
used in archaeological research as an indicator of different
human activities [117, 118]. Phosphorous is incorporated
into the soil by a number of human activities, which include
food preparation, garbage disposal, and animal dung de-
posits; therefore, there is a need to analyse its concentration
in combination with that of other elements in order to
identify different activity areas [10, 116]. In this study,
phosphorus was incorporated into the soil by deposits of
animal dung in byres and ash and organic deposits in
middens. Other elements such as Ca and Mg were signifi-
cantly different among vitrified dung and the nonsites but
were not significantly different between middens and

nonvitrified dung. Generally, Mg and Ca were highly con-
centrated in activity areas with vitrified dung, nonvitrified
dung, and middens than in nonactivity areas characterised
by nonsites. �e concentrations of the aforementioned el-
ements within soil classes were also highly variable. �is is
also supported by the findings from Luzzadder-Beach et al.
[5] on the concentration of elements on anthropogenic
activity areas in Turkey and Mexico and Huffman et al. [6]
on the concentrations of Ca in vitrified dung deposits within
the study area. �is is influenced by the differences in the
concentration of Ca andMg in grasses consumed by animals
and wood ash, which increase their levels in the soil
[6–8, 119, 120]. �e differences in concentrations of ele-
ments within the same class can also be a result of de-
positional and postdepositional processes, which affect the
overall concentration of elements in the soil, such as human
activities, erosion, and leaching [6, 7, 121]. On the contrary,
potassium (K) is insignificantly different across all the classes
except vitrified dung. �is supports Huffman et al. [6]
findings that K2O was significantly higher in vitrified dung
than in nonvitrified dung. It is still not yet clear as to what
causes the high levels of K in the vitrified dung deposits;
however, Huffman et al. [6] attributed some of it to mopane
logs used to construct the fence around the kraal.

Table 2: Summary statistics for the concentration of different chemical elements within vitrified dung.

Elements 1st qu. Median 3rd qu. Mean Standard deviation Coefficient of variation
Ag 0.5 0.5 0.5 0.5 0.0 0.0
Al 1.9 2.3 2.5 2.2 0.4 18.3
As 5.0 5.0 5.0 5.0 0.0 0.0
Ba 490.0 605.0 672.5 609.2 120.2 19.7
Be 0.5 0.6 0.6 0.6 0.1 18.8
Bi 2.0 2.0 2.0 2.0 0.0 0.0
Ca 7.1 8.8 11.5 9.0 2.8 31.4
Cd 0.5 0.5 0.5 0.5 0.0 0.0
Co 3.0 3.0 5.0 3.8 1.6 41.4
Cr 26.5 34.0 37.5 33.9 9.3 27.4
Cu 35.0 43.5 50.5 43.5 10.7 24.7
Fe 0.8 1.1 1.3 1.1 0.4 34.1
Ga 10.0 10.0 10.0 10.0 0.0 0.0
K 1.6 1.7 2.0 1.9 0.5 29.0
La 10.0 20.0 20.0 16.7 6.5 39.1
Mg 2.4 3.1 3.4 2.8 0.8 27.1
Mn 501.0 573.0 715.0 600.0 127.2 21.2
Mo 1.0 1.0 1.0 1.0 0.0 0.0
Na 0.4 0.5 0.6 0.5 0.1 28.3
Ni 17.0 21.0 24.5 21.7 5.5 25.4
P 9535.0 10000.0 10000.0 9279.2 1380.7 14.9
Pb 6.0 7.0 8.3 7.3 2.2 29.8
S 0.0 0.0 0.1 0.0 0.0 75.8
Sb 5.0 5.0 5.0 5.0 0.0 0.0
Sc 2.8 3.0 4.0 3.1 0.8 25.7
Sr 987.0 1527.5 1867.5 1471.3 571.2 38.8
� 20.0 20.0 20.0 20.0 0.0 0.0
Ti 0.1 0.2 0.2 0.2 0.1 40.7
Tl 10.0 10.0 10.0 10.0 0.0 0.0
U 10.0 10.0 10.0 10.0 0.0 0.0
V 16.3 26.0 36.3 27.0 14.4 53.3
W 10.0 10.0 10.0 10.0 0.0 0.0
Zn 102.0 141.5 192.5 149.7 55.6 37.1
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�e FVS procedure basing on the importance score of
features calculated by ordinary RF was used to select a
subset of key elements that can accurately discriminate
among different archaeological sites. P, Ca, Sr, Mg, Fe, Zn,
and Co were chosen as the optimal elements for dis-
criminating among middens, nonsites, nonvitrified dung,
and vitrified dung sites. �is is in line with studies by
Wilson et al. [2] who found out that the composition of the
aforementioned elements is affected by the presence of
human activity areas such as middens and kraals. �e
concentration of the selected elements was also signifi-
cantly different across different classes as discussed above.
�e classification done on the RF classifier using chosen
optimal elements as input variables in the RF classifier
yielded high classification accuracy.�is demonstrated that
classification algorithms can also be used to predict the sites
using their chemical composition. �is also confirms
findings by Oonk and Spijker [14] that archaeological sites
can be predicted by using elements as input variables in
classification algorithms.

�e spectral analysis results obtained from this study has
shown that field spectroscopy data can be utilised to dis-
criminate nonsites, middens, nonvitrified dung, and vitrified
dung from each other. �e GRRF model was used to reduce

high dimensionality in the dataset [66, 68]. �is algorithm
has produced good results in vegetation mapping but has
never been tested in soil analysis [67, 68]. �e algorithm
selected eight important wavelengths across VIS/IR spec-
trum, 549 nm, 624 nm, 996 nm, 1026 nm, 1665 nm, 1774 nm,
1934 nm, and 2290 nm, for discriminating among nonsites,
middens, nonvitrified dung, and vitrified dung.�e selection
of wavelengths from the visible spectrum (549 nm and
624 nm) might be influenced by differences in soil organic
content. �is is consistent with the results of studies by
Bartholomeus et al. [122] and Nolet et al. [123] who found
that there is a correlation between the absorption of
wavelengths within the visible spectrum and the amount of
organic matter in the soil. Soil organic content is also as-
sociated with soil colour. �is is because a high concen-
tration of organic matter results in dark soils and high
wavelength absorption [124]. Wavelengths 996 nm and
1026 nm in the near-infrared region can be correlated with
the concentration of elements such as Mg and Ca or their
compounds. �is result is supported by �omasson et al.
[125] who found out that concentration Ca and Mg levels in
soil are sensitive to spectral regions between 950 and
1500 nm.�e absorptions at other four selected wavelengths
1665 nm, 1774 nm, 1934 nm, and 2290 nm can be associated

Table 3: Summary statistics for the concentration of different chemical elements within nonvitrified dung.

Elements 1st qu. Median 3rd qu. Mean Standard deviation Coefficient of variation
Ag 0.5 0.5 0.5 0.5 0.0 0.0
Al 2.9 3.0 3.7 3.6 1.0 28.6
As 5.0 5.0 5.0 5.0 0.0 0.0
Ba 450.0 490.0 560.0 517.1 79.4 15.4
Be 0.6 0.8 1.0 0.8 0.2 24.1
Bi 2.0 2.0 2.0 2.0 0.0 0.0
Ca 3.0 3.8 4.6 4.1 1.3 32.0
Cd 0.5 0.5 0.5 0.5 0.0 0.0
Co 5.0 7.0 10.0 7.7 3.3 43.2
Cr 57.0 78.0 83.0 75.2 25.7 34.2
Cu 30.0 35.0 40.0 37.6 13.0 34.6
Fe 1.4 1.7 2.5 1.9 0.6 32.0
Ga 10.0 10.0 10.0 11.2 3.3 29.7
K 1.1 1.3 1.4 1.3 0.3 19.1
La 20.0 20.0 20.0 22.4 4.4 19.6
Mg 1.1 1.6 1.9 1.6 0.5 33.4
Mn 477.0 504.0 587.0 533.4 97.0 18.2
Mo 1.0 1.0 1.0 1.0 0.0 0.0
Na 0.5 0.6 0.7 0.7 0.2 30.0
Ni 30.0 35.0 41.0 36.1 10.4 28.7
P 3260.0 5930.0 8580.0 5803.5 3099.1 53.4
Pb 8.0 10.0 12.0 10.2 2.9 28.3
S 0.0 0.0 0.0 0.0 0.0 41.6
Sb 5.0 5.0 5.0 5.0 0.0 0.0
Sc 4.0 5.0 6.0 5.5 1.8 32.0
Sr 431.0 552.0 675.0 573.4 194.6 33.9
� 20.0 20.0 20.0 20.0 0.0 0.0
Ti 0.2 0.2 0.3 0.3 0.2 68.8
Tl 10.0 10.0 10.0 10.0 0.0 0.0
U 10.0 10.0 10.0 10.0 0.0 0.0
V 35.0 40.0 78.0 54.2 24.9 46.0
W 10.0 10.0 10.0 10.0 0.0 0.0
Zn 89.0 113.0 122.0 103.2 34.5 33.5
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with the concentration of phosphorus in the samples. �e
increased levels of phosphorous highly correlate with the
absorption of wavelengths between 1500 nm and 2500 nm
[126]. Concentrations of calcium phosphate and magnesium
phosphates in the soil also show high correlation with re-
flectance spectra in the aforementioned wavelength regions
[127]. However, it has to be noted that different wavelengths
within the same spectral region from those chosen by other
models in other researches might have been chosen because
the model was trained to remove correlation within the
bands.

In general, high classification accuracies were achieved
when using optimal bands selected by GRRF than when
using all the 2151 bands. Low classification accuracy
achieved when using all the 2151 bands is caused by high
autocorrelation inherent within the field spectroscopy data,
which affects the performance of the prediction models
[101, 128, 129]. �e results of this study demonstrate that
removing correlated variables improves classifiers pre-
diction accuracy. Most importantly, high classification ac-
curacies achieved using a subset of optimal wavelengths
selected by the GRRF affirms its ability to select important
wavelengths that improve the prediction accuracies of RF in
classifying archaeological sites [67, 68]. �e combination of

key elements (n� 7) and key wavelengths (n� 8) has yielded
lower classification accuracy compared to the use of key
elements (n� 7) and key wavelengths (n� 8) separately. Low
classification accuracy achieved when combining key ele-
ments with key wavelengths was caused by data redundancy
which resulted in noisy classification output [101, 128, 130].
�e redundancy comes from the fact that wavelengths
provide information about both the physical and chemical
properties of the soil [31, 126], which means that combining
the elements and spectral data in this study produced re-
dundant data. Above all, the wavelengths selected by the
GRRF model corresponds with the band placement of some
spaceborne and airborne sensors such as WorldView-2,
Landsat 8 OLI Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS), Hymap, Hyperion, Airborne Prism
Experiment (APEX), and Compact High Resolution Im-
aging Spectrometer (Chris) [131–135]. However, spec-
trometer captures data in finer details with less noise and
narrow spectral bands as compared to broad bands captured
by common airborne and spaceborne sensors. �is is be-
cause the sensor abilities, such as spatial sampling and
signal-to-noise ratio, decline with increasing altitude
[29, 136–138]. �e aforementioned tradeoff in spectral and
spatial resolution may hinder the use of airborne and

Table 4: Summary statistics for the concentration of different chemical elements within midden deposits.

Elements 1st qu. Median 3rd qu. Mean Standard deviation Coefficient of variation
Ag 0.5 0.5 0.5 0.5 0.0 0.0
Al 4.0 5.2 5.6 4.8 0.9 19.7
As 5.0 5.0 5.0 5.0 0.0 0.0
Ba 490.0 620.0 645.0 570.0 87.9 15.4
Be 0.9 1.1 1.2 1.1 0.2 14.7
Bi 2.0 2.0 2.0 2.0 0.0 0.0
Ca 2.8 3.3 3.6 3.2 1.1 34.7
Cd 0.5 0.5 0.5 0.5 0.0 0.0
Co 13.5 15.0 15.0 13.6 2.9 21.1
Cr 37.0 115.0 120.0 87.5 41.8 47.8
Cu 38.5 43.0 80.5 60.5 34.4 56.9
Fe 2.9 3.2 3.2 3.1 0.5 15.0
Ga 10.0 10.0 10.0 11.8 4.0 34.2
K 1.2 1.7 1.7 1.5 0.3 23.1
La 20.0 30.0 30.0 26.4 5.0 19.1
Mg 1.0 1.0 1.5 1.3 0.5 39.3
Mn 510.0 526.0 733.0 620.2 194.3 31.3
Mo 1.0 1.0 1.0 1.0 0.0 0.0
Na 0.7 1.0 1.1 0.9 0.2 19.0
Ni 31.5 46.0 61.0 46.1 15.0 32.6
P 1865.0 2020.0 3210.0 2552.7 1091.3 42.7
Pb 10.5 15.0 16.5 13.7 4.9 35.4
S 0.0 0.0 0.0 0.0 0.0 37.0
Sb 5.0 5.0 5.0 5.0 0.0 0.0
Sc 8.0 9.0 9.0 8.4 1.0 12.3
Sr 325.0 410.0 496.0 425.9 182.6 42.9
� 20.0 20.0 20.0 20.0 0.0 0.0
Ti 0.4 0.7 0.7 0.6 0.2 28.1
Tl 10.0 10.0 10.0 10.0 0.0 0.0
U 10.0 10.0 10.0 10.0 0.0 0.0
V 86.5 93.0 97.5 92.1 17.8 19.4
W 10.0 10.0 10.0 10.0 0.0 0.0
Zn 57.5 62.0 115.5 88.3 47.3 53.6
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Figure 4: Variable importance computed by the RF algorithm. �e highest MDA indicates the most important elements.
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spaceborne sensors in mapping most of archaeological
features because of their subtle spectral differences and small
nature compared to the pixel size [139]. Hence, the need to
carry out a test study identifying a suitable airborne or
spaceborne sensor for mapping archaeological features in
the study area.

Generally, high classification accuracies achieved in this
study show that it is possible to directly detect archaeological
features such as middens, vitrified byres, and nonvitrified
byres using field spectroscopy data.�is, therefore, promises
a cost-effective method, which can be used to carry out
archaeological surveys over large areas within a short period
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Figure 6: Finding the best subset of classification variables for classifying nonsites, middens, vitrified dung, and nonvitrified dung sites using
the FVS method based on the OOB error. �e black arrow points to the optimal subgroup of elements with the lowest error.
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Figure 7: Variable importance measurement produced by the RF algorithm for all variables (2151 wavelengths). High mean decrease in the
Gini index reflects the most important variable.
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Figure 8:�e importance of optimum variables selected by GRRF calculated by the ordinary RF algorithm.�e highest mean decrease in the
Gini index shows the most important variable.

Table 5: Error matrices showing the overall accuracy and kappa for the classification of the four soil classes, nonvitrified dung (NVD),
midden (MD), nonsites (NS), and vitrified dung (VD), using all variables (33 elements) and the optimum variables (7 elements).

Class
�irty-three elements Seven elements

KR MD NS VD Total KR MD NS VD Total
KR 14 2 0 1 17 15 1 0 1 17
MD 1 8 2 0 11 1 8 2 0 11
NS 0 2 10 0 12 0 1 11 0 12
VD 1 0 0 11 12 2 0 0 10 12
Total 16 12 12 12 52 18 10 13 11 52
OA 82.69% 84.62%
Kappa 0.7674 0.7921

Table 6: Producer’s and user’s accuracies for the classification of the four soil classes, nonvitrified dung (NVD), midden (MD), nonsites
(NS), and vitrified dung (VD), derived using all variables (33 elements) and the most important variables (7 elements).

Class
�irty-three elements Seven elements

Producer’s accuracy (%) User’s accuracy (%) Producer’s accuracy (%) User’s accuracy (%)
KR 87.50 82.35 83.33 88.24
MD 66.67 72.73 80.00 72.73
NS 83.33 83.33 84.62 91.67
VD 91.67 91.67 90.91 83.33

Table 7: Error matrices showing the overall accuracy and kappa for the classification of the four soil classes, nonvitrified dung (NVD),
midden (MD), nonsites (NS), and vitrified dung (VD), using all variables (2151 bands) and the optimum variables (8 bands).

Class
Using 2151 bands Using 8 bands

NVD MD NS VD Total NVD MD NS VD Total
NVD 30 4 0 0 34 30 6 0 0 36
MD 4 18 0 4 26 4 17 0 0 21
NS 1 2 27 0 30 1 2 27 0 30
VD 0 1 0 14 15 0 0 0 18 18
Total 35 25 27 18 105 35 25 27 18 105
OA 84.76% 87.62%
Kappa 0.7927 0.8316
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when compared to the use of element data and field walking
surveys. Surveying using remote sensing techniques will also
make documentation and monitoring of archaeological sites
located in inaccessible areas such as war zones and places
with dangerous wild animals easy.

5. Conclusion

�e focus of this study was to investigate whether field
spectra measurement can discriminate amongst archaeo-
logical sites using soil properties as indicators and identify
the important bands for doing so. Statistical methods were
used to assess if there is a significant difference in the
concentration of elements between archaeological features
and natural soils. Based on the outcomes of this study, the
following inferences can be made:

(1) �ere is a significant difference in the concentration of
elements between nonsites, middens, nonvitrified
dung, and vitrified dung sites. �is difference in the
composition of elements within the aforementioned
features can be used to discriminate among them
when input into a classification algorithm. P, Ca, Sr,
Mg, Fe, Zn, and Co were identified as the important
elements for discriminating among nonsites, mid-
dens, nonvitrified dung, and vitrified dung sites when
used as input variables in a classification model.

(2) Field spectroscopy data have the ability to dis-
criminate between nonsites, middens, nonvitrified
dung, and vitrified dung sites. �is means that
nonvitrified dung, vitrified dung, middens, and
nonsites have different spectral signatures.

(3) Wavelengths within visible-near-infrared spectrum
can be used to discriminate among natural soils,

middens, vitrified dung, and nonvitrified dung byres.
A subset of eight important bands that gave the
highest classification accuracy when discriminating
among the aforementioned classes was identified
across the visible-near-infrared spectrum using
GRRF. �ese were 549 nm and 624 nm within the
visible spectrum while within the near-infrared
wavelengths 996 nm, 1026 nm, 1665 nm, 1774 nm,
1934 nm, and 2290 nm were chosen.

In summary, the results of this study have shown that
there is chemical contrast between archaeological features
such as middens, vitrified dung byres, and nonvitrified dung
byres and natural soils which make it possible for field
spectroscopy to discriminate among them. As such, the
potential of remote sensing in detecting and mapping ar-
chaeological features with distinct soil physical and chemical
characteristics such as the ones used in this study is present.
Although the potential is present, further studies are needed
to upscale field spectral measurements to different sensor
spectral resolutions to ascertain which satellite sensor has
the optimum wavelengths for detecting the archaeological
sites characterised by middens, vitrified dung, and non-
vitrified dung.
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[108] Ö. Akar and O. Güngör, “Classification of multispectral
Images using random forest algorithm,” Journal of Geodesy
and Geoinformation, vol. 1, no. 2, pp. 105–112, 2013.

[109] V. F. Rodriguez-Galiano, M. Chica-Olmo, F. Abarca-Her-
nandez, P. M. Atkinson, and C. Jeganathan, “Random forest
classification of mediterranean land cover using multi-sea-
sonal imagery andmulti-seasonal texture,” Remote Sensing of
Environment, vol. 121, pp. 93–107, 2012.

[110] R. Genuer, J. M. Poggi, and C. Tuleau-Malot, “Variable
selection using random forests,” Pattern Recognition Letters,
vol. 31, no. 14, pp. 2225–2236, 2010.
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