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Wavelength selection is a challenging job for the detection of the bruises on pears using hyperspectral imaging. Most modern
research used the feature wavelength set selected by a single selection method which is generally unable to handle the wide
variability of the hyperspectral data. A novel framework was proposed in this work to increase the performance of the bruise
detection, through combining three state-of-the-art variable selection methods and the concept of feature-level integration.
Successive projection algorithm, competitive adaptive reweighted sampling, and RELIEF were first applied to the spectra of the
Korla pear, respectively. Then, the corresponding feature wavelength subsets were integrated and an optimal feature wavelength
set was constructed. An ELM-based classifier was employed for the pear bruise identification finally. Experimental results
demonstrated that the feature wavelength integration resulted in lower detection errors. The proposed method is simple and

promising for bruise detection of Korla pears, and it can be utilized for other types of defects on fruits.

1. Introduction

Korla pear is an important fruit product in Xinjiang, China.
It contributes greatly to local economic development and
social life. Accordingly, the planting area and yields con-
tinued to increase during the past decade. In 2017, the
planting area reached 40, 000 hectares and the annual output
was 800,000 tons. However, the presence of bruises that
occurs during harvest operations and postharvest handling
lowers the pear quality and consequently causes significant
economic losses. From the orchard to the market, pears
undergo a series of operations such as picking, sorting,
packing, transportation, refrigeration, grading, and pack-
aging. In these links, pears inevitably suffer from bruise
damage. After storage for a short time, the damaged tissue
can easily induce the growth of rot fungi, which accelerates
the spread of pear rot to the surrounding undamaged pear.
Thus, there is a strong need to investigate new ways to detect
bruises on pears rapidly and accurately.

However, the bruises on pears are arduous to detect. The
color change of the pears after the slight damage is not
obvious. In addition, the detection is easily afflicted by many
factors, including the type of bruise, the severity of bruising,
and the fruit conditions [1]. Nowadays, many technologies
have been introduced into this field, such as light reflection,
light transmission, fluorescence, ultrasound, dielectric
properties, X-ray, gamma-ray, and magnetic resonance. [2].
Near-infrared (NIR) spectroscopy and hyperspectral im-
aging analysis techniques have the advantages of low cost,
rapid, and nondestructive and have been widely used in fruit
bruise detection in recent years. Zhang reported a detection
accuracy of 94.75% for rapid and nondestructive testing on
the bruises on apples using the hyperspectral images in the
400-1000 nm region [3]. Li et al. applied the short-wave NIR
hyperspectral imaging technique to peaches and segmented
the raw hyperspectral images into the bruised region and the
intact region with high accuracy [4]. Similar applications of
NIR spectroscopy and hyperspectral imaging analysis
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techniques were also investigated to detect bruises on other
fruits, such as blueberry [5], Kiwi fruit [6], and Lycium
barbarum L [7]. More extensive reviews on the applications
were provided by Liu et al. [8] and Wang et al. [9].

Those studies demonstrated that NIR spectroscopy and
hyperspectral imaging analysis is a promising technique for
detecting bruise damage on fruits. However, compared with
other fruits, only a few work was conducted on the pears
until now and further exploration is still needed, although
there have been many studies on the bruise susceptibility
and storage time of pears [10, 11]. Dang et al. combined
hyperspectral imaging with supervised classification tech-
niques (K-nearest neighbor and support vector machine) to
detect the scar area of pears [12]. Lee et al. introduced the F-
Value method to find the optimal band ratio of the pear
hyperspectral images and then compared the band ratio of
each pixel of the images with a predetermined threshold to
segment the image of the damaged area [13]. The effects of
illumination inhomogeneity on the bruise detection of pear
using hyperspectral imaging were studied by Zhao. Four
methods were introduced to address this problem, including
maximum likelihood classification (MLC), Euclidean dis-
tance classification (EDC), Mahalano distance classification
(MDC), and spectral angle mapper (SAM). The experimental
results demonstrated that MDC and SAM achieved better
detection performance. The detection accuracies were 93.8%
and 95.0%, respectively [14].

Especially, to the best of the authors’ knowledge, there
were barely any studies reported to investigate the wave-
length selection method for the bruised detection of pears
using that NIR spectroscopy and hyperspectral imaging
analysis. Jiang extracted the feature wavelengths of the
hyperspectral images of pears by principal component
analysis (PCA) and then identified the damage of pears using
partial least squares discriminant analysis [15]. Moreover, as
mentioned before, the detection is easily afflicted by many
factors. Finding a single method to select wavelengths of
hyperspectral images with large variety is difficult. The
specific objective of this paper was to propose a feature
wavelength selection method based on feature-level in-
tegration framework, aiming at achieving better perfor-
mance of bruise detection of Korla pear. Successive
projection algorithm (SPA), competitive adaptive reweigh-
ted sampling (CARS), and RELIEF methods were conducted
independently on the spectra ranging from 400 to 1000 nm
of all samples. Subsequently, the wavelength subsets selected
by the three methods were further optimized by an in-
tegration strategy and the output wavelength set worked as
the input variables of ELM-based classifier to identify the
bruises on pears. The main advantage of the proposed
framework is that the complementarity of the feature
wavelengths selected by different rules can improve the
robustness and accuracy of the detection of bruises on pears.

2. Related Work

The NIR spectrum of a tested sample often contains hun-
dreds of wavelengths. The huge size of the data set increases
the processing load of the NIR spectral applications.
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Therefore, it is always desirable to explore advanced algo-
rithms for selecting a minimum subset of wavelengths that
carry the most information of the tested sample. During the
past decades, a variety of wavelength selection methods can
be found in the literature, such as branch and bound [16],
uninformative variable elimination (UVE) [17], PCA [15], SPA
[18, 19], CARS [20], random frog [21], and genetic algorithms
(GAs) [22]. Numerous studies suggested that better perfor-
mance can be achieved while using the selected wavelength
subset than the full range of the wavelengths [23, 24].
Several reviews have been published in this regard
[8, 23-25]. Liu et al. divided the methods into three types,
filter, wrapper, and embedded methods. With the brief
analysis of the details and typical applications, advantages
and disadvantages of each method were discussed [8]. Yun
et al. categorized the methods based on the approaches
employed for variable initialization, modelling, evaluation,
and wavelength selection and compared the similarities and
differences of each type of method [24]. Dai et al. surveyed
the methods based on the searching strategy for generating
wavelength subsets. The fundamentals and applications of
each algorithm were also provided [25]. These reviews
provided a better understanding of the characteristics, ad-
vantages, and disadvantages of the existing wavelength se-
lection methods from different perspectives. With the
significant help from them, the readers could choose an
appropriate method and apply it correctly for their studies.
It was generally accepted that each method has its own
characteristics and limitations, and the integration of
existing methods may help to achieve better performance by
combing advantages of different kinds of methods [24, 25].
There have been many hybrid methods that combine two or
three methods. Yun et al. proposed methods of VCPA-GA
and VCPA-IRIV, in which the variables selected by mod-
ified VCPA were further optimized by GA or IRIV [26]. RF-
BP, presented by Chen et al., generated a new comprehensive
variable subset by combing random forest and back prop-
agation network [27]. They both claimed that the hybrid
algorithm was a good and promising strategy for variable
selection and could improve the performance of NIR spectral
applications. However, most of the existing hybrid methods
of wavelength selection were in cascade form. The former
method made a rough selection, and the output wavelength
subsets were refined by the latter one. If the former method
did not select the key wavelengths, it would be impossible to
exploit the advantages of the single methods [24].
Motivated by the above, an integration framework was
proposed by combining three state-of-the-art methods,
including SPA, CARS, and RELIEF. The motivation for
choosing the three algorithms came from the good per-
formance of wavelength selection as reported in [18, 20, 28].
Different from the previously mentioned hybrid methods,
the three methods were combined in parallel in this work. It
means the algorithms can select variables independently and
the negative effect of each other can be avoided. Each
method has its own evaluation metric and selection strategy.
The combination of the wavelength subsets selected by
different methods have complementary relationships and
have a better ability to relate to the properties of interest. So,
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the parallel combination would produce better results than
the serial form [29].

3. Materials and Methods

3.1. Pears and Bruising. Korla pears were purchased from a
local market in Lin’an District, Hangzhou City. To ensure
the reliability of the research, a total of 80 pears were
manually selected from the same batch product. They had
similar shape and size and had no obvious surface defects.
Their surface color was distributed uniformly. The samples
were randomly divided into two groups of 40 each.

A hollow cylinder with a height of 60 cm and a diameter
of about 7 cm was made by hand using cardboards. The pears
were dropped one by one from the top of the cylinder to
make artificial damage to the equator position of the pear.
The intact and damaged pear categories were assigned 1 and
2, respectively.

3.2. Hyperspectral Imaging System and Image Acquisition.
Figure 1 depicts the experimental setup. The hyperspectral
imaging system consisted of an industrial camera (SOC710-
VP, Surface Optics Corp., USA), two fiber optic halogen
lamps (150 W EKE, 3250 K, Techniquip, USA), and a stage.
The whole system was fixed in a dark chamber aiming to
reduce the effects of ambient light. The working range of the
camera was from 400 nm to 1000 nm. The spectral resolution
was 4.68 nm, and the band number was 128.

The pears were placed on the stage directly below the
camera and scanned perpendicularly to the bruised region.
The scanning speed was 30 lines per second, and the time for
taking a hyperspectral image was 46.4s.

3.3. Hyperspectral Image Calibration and Preprocessing.
To remove the influence of uneven illumination and the dark
current noise, image calibration was conducted on the raw
hyperspectral image in each experiment. The operation can
be expressed using the following equation:

R- I, -1 . "

where I denotes the original hyperspectral image, I, rep-
resents the image of the white reference which has a re-
flectance of 99%, and I, corresponds to the camera’s dark
current which was measured with the camera lens covered.

Consequently, the Savitzky-Golay smoothing method
was applied the calibrated hyperspectral images [30] to
remove random noise and promote the quality of the
hyperspectral data. The length of the sliding window was
seven, and the polynomial order was two.

3.4. Feature Wavelength Selection. As previously mentioned,
wavelength selection becomes an essential step for the NIR
spectral applications. A novel framework was proposed in
this work to increase the accuracy of the bruise detection,
through combining three state-of-the-art variable selection
methods and the concept of feature-level integration.

Spectrograph +——

Lens

Halogen _*
fammp o _——

Sample ——@ T

Computer
-
+«——— Dark chamber

FIGURE 1: Schematic diagram of the experimental setup.

Stage

3.4.1. SPA Method. SPA is a forward variable selection
algorithm that can minimize the collinearity between
the spectral variables and extract valid feature from the
redundant spectral data. Simple projection operations
in a vector space are first performed. Then, among all the
remained variables, the new variable which has the
maximum projection value on the orthogonal subspace of
the previous selection variable is selected [19, 31].

3.4.2. CARS Method. The CARS method selects variables by
simulating the basic principle of “survival of the fittest” in
Darwin’s theory of evolution. Each wavelength variable is
taken as a unique individual. By an adaptive reweighted
sampling technique, those individuals with larger co-
efficients of the partial least squares regression model are
selected, whereas those with small weights are eliminated.
By this means, a collection of wavelength variable subsets
is achieved. Finally, all the wavelength variable subsets are
modeled by cross-validation, and according to the root-
mean-square error of cross-validation minimum princi-
ple, the optimal wavelength variable subset is selected
[20, 32].

3.4.3. RELIEF Method. RELIEF is also an individual eval-
uation filtering feature selection method proposed by Kira
and Rendell in 1992 [33, 34]. It calculates a proxy statistic for
each variable that can be used to estimate the difference
between homogeneous neighbor samples and heterogeneous
neighbor samples. Then, a relevance threshold is defined
such that any variables with a relevance value larger than the
threshold are selected.

3.44. Wavelength Selection Based on Feature-Level
Integration. In the past studies, the wavelength was almost
selected by a single principle, which results in the low robust
of the bruise identification. Generally, it has been accepted
that the feature wavelengths selected by different methods
have complementary relationships and have a better ability
to describe the attributes of the target. With regards to this, a
feature-level integration based wavelength selection
framework was proposed. Figure 2 illustrates the flowchart
of the proposed framework.

SPA, CARS, and RELIEF were applied to the original
hyperspectral ~data, respectively. Three subsets of
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FIGURE 2: The feature-level integration-based wavelength selection method.

wavelengths were obtained. Subsequently, the selected
variables by the three methods were integrated by combining
the three subsets and removing the duplicate wavelengths.
The output was considered as the optimal feature wavelength
set.

3.5. Extreme Learning Machine. Extreme learning machine
(ELM) is a rapid learning algorithm based on the single
hidden layer feedforward neural networks (SLFNs). It has
been widely used for supervised learning or unsupervised
learning [35]. As illustrated in Figure 3, ELM consists of an
input layer, a hidden layer, and an output layer.

Given a training set A = {(x,,y;)|x; € RV,y; e R, i =
1, 2,..., N} which contains N samples, activation function
g(x), and neuron number of the hidden layer N, the training
step of ELM can be described as follows:

(1) Assign the weights a; and bias b; randomly, where

i=12,...,N
(2) Calculate the output matrix of the output layer

glayx, +by) -+ glayx, +by)

glayxg +by) -+ glayxg +by) |5

(3) Obtain the output weights according to the formula

B=(HHT'HT

Compared with the traditional SLFN, ELM does not
need to adjust the input weight and bias during the
training process. The output weights B, with which an
optimal global solution of ELM can be easily calculated,
are obtained according to the corresponding algorithm
rather than iterative learning. Therefore, the parameter
optimization is easier and the training speed is signifi-
cantly improved. Moreover, it does not fall into local
optimum. All these indicate that ELM-based method can
provide a real-time, accurate, and reliable way for bruise
detection of pears.

3.6. Performance Evaluation of the Bruise Detection. To
evaluate the performance of the pear bruise detection
quantitatively, the confusion matrix was introduced to this
work, as shown in Table 1 [36].

According to the confusion matrix, the accuracy A,
precision P, and the recall rate R can be expressed as follows:

Input layer
sig (a;x + by)
‘ || sig (a,x + b,) \

W NY
=2y

0

Hidden layer Output layer

X1

Ok

X2

XN

/
sig (ayx + by)

FiGure 3: Structure of ELM network.

TaBLE 1: The four types of results of pear bruise detection.

. . Actual condition
Confusion matrix

Intact Bruised
Detection result
Intact TP FP
Bruised FN TN

TP denotes the number of intact samples that were detected as intact, FN
indicates the number of intact samples detected as bruised, FP is the number
of intact samples detected as damage, and TN is the number of the damaged
samples detected as damage.

3 TP+ TN
~ TP +TN +FP + FN’
TP
P=——— (2)
TP + FP
ko TP
- TP+FN
4. Results and Analysis

4.1. Reflectance Spectra of Pears. The region of interest (ROI)
was manually selected from the gray image at 994.36 nm of
each sample. The size was 20 x 20 pixels. For the purpose of
reducing the influence of the uneven illumination, ROIs of
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the intact pears were selected to be close to the damaged area
of the bruised samples. According to the principle of the
hyperspectral imaging, each pixel in the ROI has a complete
reflectance curve taking wavelengths as variables. The av-
erage reflectance curve of all the pixels in each sample ROI
was calculated. Figure 4(a) shows the mean reflectance
spectra of 20 intact surface areas and 20 damaged surface
areas. The mean and variance of the reflectance spectra are
shown in Figure 4(b).

It can be observed that the average reflectance of the
intact samples and bruised samples followed the same trend,
but the reflectance ratio had a little difference, especially in
the bands of 400~450 nm, 600~700 nm, and 780~1000 nm. It
was feasible to identify the bruised sample by analyzing the
reflectance spectra. However, from Figure 4(a), it can be seen
that the reflectance curves of the intact sample and bruised
sample overlapped with each other. Therefore, it was nec-
essary to select the discriminating feature wavelengths and
reduce the noise which was weakly correlated to the bruise
information and confused the classifier.

4.2. Results of Wavelength Selection. The aforementioned
three methods were applied to the original spectra. For the
SPA method, the maximum number of the feature wave-
lengths was set to be 5-30. The F-test was used to remove
those wavelengths which weakly correlated with the bruises.
The significance level of the F-test a was assigned a value of
0.25. According to the output of CARS, the minimum
RMSECV can be obtained with 25 iterations. Then, the
wavelength set of the 25™ iteration was selected as the
optimal feature wavelength subset. The threshold of RELIEF
was 0.15. The wavelengths with weights less than the
threshold were removed and 18 wavelengths were remained
as the output of the RELIEF method. The wavelength se-
lection process based on the three methods is shown in
Figure 5, respectively.

The output subsets of the three methods were combined,
followed by removing the duplicate wavelengths. The final
results of the wavelength selection are listed in Table 2.

It can be seen from Table 2 that the wavelengths selected
by the three methods overlapped each other in some regions.
Especially, all the three methods selected wavelengths dis-
tributed in the bands of 400nm~460nm and
960 nm~1000 nm. It can be observed from Figure 4 that the
spectra of the intact pears and the bruised samples in these
two regions had distinctly different reflection ratios. It meant
all the three methods were effective, and they all can found
the wavelengths that were highly correlated with the bruise.
It can also be seen from Table 2 that the distribution of the
wavelengths selected by the three methods was slightly
different. For example, only CARS select wavelength in the
bands of 500 nm~700 nm. It can be inferred that the three
methods would extract different features from different
perspectives. The bruises can be identified with high ro-
bustness by integrating the selected wavelengths.

4.3. Results of the Bruise Detection. An ELM-based classifier
was established for the detection of the bruise on pears with

Reflectance

0 2
400 500 600 700 800 900 1000
Wavelength (nm)

—— Intact
- -~ Bruised

(a)
0.8

0.7

Reflectance

0
400 500 600 700 800 900 1000

Wavelength (nm)

—— Intact
—— Bruised

()

FIGURE 4: Average reflectance spectra of the bruised and intact
Korla pear surfaces. (a) The original reflectance spectra. (b) The
mean and variance of the spectra.

the integrated wavelengths. Through a lot of experiments,
the Sigmoid function was selected as the activation function,
and the number of optimal hidden layer neurons was set to
20. Both the training set and the test set contained 20 intact
samples and 20 damaged samples. Table 3 lists the detection
results of the ELM-based classifier. For comparison, the
results of bruise detections using wavelength subsets of the
three methods are also provided in Table 3. The parameters
of the ELM-based classifier were the same as those of the
aforementioned experiments.

The accuracy, precision, and recall rate, obtained
according to equation (2), are also listed in Table 3. Using all
the wavelength subsets, the ELM-based classifier can identify
the bruised with high accuracy. Accuracy, precision, and
recall rate were all larger than 85%. From Table 3, it can be
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FIGURE 5: The wavelength selection process of the three methods. (a) SPA. (b) CARS. (c) RELIEF.

TaBLE 2: The results of the wavelength selection.

Method Number Wavelength (nm)
418.72, 423.40, 428.08, 432.76, 437.44, 442.12, 446.80,
SPA 17 451.48, 456.16, 460.84, 470.20, 474.88, 484.24, 718.24,

751.00, 853.96, 999.04
409.36, 414.04, 428.08, 446.80, 456.16, 465.52, 479.56,
CARS 17 507.64, 549.76, 587.20, 601.24, 652.72, 741.64, 919.48,
952.24, 985.00, 999.04
400.00, 404.68, 409.36, 414.04, 418.72, 423.40, 428.08,
RELIEF 18 432.76, 437.44, 442.12, 446.80, 970.96, 975.64, 980.32,
985.00, 989.68, 994.36, 999.04
400.00, 404.68, 409.36, 414.04, 418.72, 423.40, 428.08,
432.76, 437.44, 442.12, 446.80, 451.48, 456.16, 460.84,
465.52,470.20, 474.88, 479.56, 484.24, 507.64, 549.76,
587.20, 601.24, 652.72, 718.24, 741.64, 751.00, 853.96,
919.48, 952.24, 970.96, 975.64, 980.32, 985.00, 989.68,
994.36, 999.04

Integration method 37
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TaBLE 3: The detection results of the ELM algorithm.

Intact samples
Wavelength selected method P

Bruised samples

Accuracy (%) Precision (%) Recall rate (%)

Right number False number Right number False number

Original spectra 19 1
SPA 17 3
CARS 17 3
RELIEF 18 2
Integration method 20 0

18
17
19
19
19

2 92.5 90.5 95.0
3 85.0 85.0 85.0
1 90.0 94.4 85.0
1 92.5 94.7 90.0
1 97.5 95.2 100.0

seen that the proposed framework always performed better
than that using only a single wavelength selection method.
This exhibited the power of our proposed method.

5. Conclusion

In this work, a wavelength selection method based on
feature-level integration was investigated. SPA, CARS, and
RELIEF were applied to the spectra of pears, followed by a
feature-level integration framework which can make full use
of the complementarity of wavelengths selected by different
methods. Combined with ELM-based classifier, high de-
tection performance of bruise on pears was achieved. The
detection rate was 97.5%, the accuracy was 95.2%, and the
recall rate was 100.0%, which was superior to the results of
the three single selection methods. In conclusion, this
method is feasible and might provide a reference for future
research on the bruise detection on Korla pears. However,
the capacity of the method was only verified by experimental
results. Further efforts are desired from the view of the
mathematical basis, aiming at interpreting the framework
theoretically and finding an effective way to improve the
performance. Moreover, much more pears with different
size and shape should be tested to ascertain properly the
identification capability of this method in the future.
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study are available from the corresponding author upon
request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural
Science Foundation of China (Grant no. 51565052) and the
Open Research Foundation of Key Laboratory of Modern
Agricultural Engineering, Tarim University, China (Grant
no. TDNG20170301). It was also partially supported by a
grant from the Postdoctoral Science Foundation of Zhejiang
Province, China (Grant no. ZJ20180156).

References

[1] Y. Zhou, J. Mao, D. Wu et al., “Nondestructive early detection
of bruising in pear fruit using optical coherence tomography,”

Horticultural Science and Technology, vol. 37, no. 1,
pp. 140-150, 2019.
U. L. Opara and P. B. Pathare, “Bruise damage measurement
and analysis of fresh horticultural produce—a review,”
Postharvest Biology and Technology, vol. 91, pp. 9-24, 2014.
M. Zhang and G. Li, “Visual detection of apple bruises using
AdaBoost algorithm and hyperspectral imaging,” In-
ternational Journal of Food Properties, vol. 21, no. 1,
pp. 1598-1607, 2018.
[4] J. Li, L. Chen, and W. Huang, “Detection of early bruises on
peaches (Amygdalus persica L.) using hyperspectral imaging
coupled with improved watershed segmentation algorithm,”
Postharvest Biology and Technology, vol. 135, pp. 104-113,
2018.
S. Fan, C. Li, W. Huang, and L. Chen, “Data fusion of two
hyperspectral imaging systems with complementary spectral
sensing ranges for blueberry bruising detection,” Sensors,
vol. 18, no. 12, p. 4463, 2018.
Q. Li and M. Tang, “Detection of hidden bruise on kiwi fruit
using hyperspectral imaging and parallelepiped classifica-
tion,” Procedia Environmental Sciences, vol. 12, pp. 1172-
1179, 2012.
J. Zhao, A. Sugirbay, Y. Chen et al., “FEM explicit dynamics
simulation and NIR hyperspectral reflectance imaging for
determination of impact bruises of Lycium barbarum L.,
Postharvest Biology and Technology, vol. 155, pp. 102-110,
2019.
D. Liu, D.-W. Sun, and X.-A. Zeng, “Recent advances in
wavelength selection techniques for hyperspectral image
processing in the food industry,” Food and Bioprocess Tech-
nology, vol. 7, no. 2, pp. 307-323, 2014.
H. Wang, J. Peng, C. Xie, Y. Bao, and Y. He, “Fruit quality
evaluation using spectroscopy technology: a review,” Sensors,
vol. 15, no. 5, pp. 11889-11927, 2015.
M. Azadbakht, M. Vahedi Torshizi, and M. J. Mahmoodi,
“The relation of pear volume and it’s bruised volume by CT
scan imaging,” Journal of Food Measurement and Charac-
terization, vol. 13, no. 2, pp. 1089-1099, 2019.
T. Lipa, I. Szot, B. Dobrzanski, M. Kaptan, and P. Baryla,
“Susceptibility of pear to bruising after harvest and storage,”
Acta Agrophysica, vol. 25, no. 4, pp. 485-499, 2019.
H. Dang, I. Kim, B. Cho et al., “Detection of bruise damage of
pear using hyperspectral imagery,” in Proceedings of 12th
International Conference on Control, Automation and Sys-
tems, pp. 1258-1260, October 2012, https://ieeexplore.ieee.
org/abstract/document/6393325.
W.-H. Lee, M. S. Kim, H. Lee et al., “Hyperspectral near-
infrared imaging for the detection of physical damages of
pear,” Journal of Food Engineering, vol. 130, pp. 1-7, 2014.
[14] J. Zhao, Q. Ouyang, Q. Chen, and J. Wang, “Detection of
bruise on pear by hyperspectral imaging sensor with different
classification algorithms,” Sensor Letters, vol. 8, no. 4,
pp. 570-576, 2010.

(2]

[3

(5]

[6

[7

(8]

(9]

(10]

(11]

(12]

(13]


https://ieeexplore.ieee.org/abstract/document/6393325
https://ieeexplore.ieee.org/abstract/document/6393325

(15]

[16

(17

(18]

(19]

(20]

(21

[22]

[23

[24]

(25]

(26]

(27]

(28]

(29]

(30]

H. Jiang, C. Zhang, Y. He, X. Chen, F. Liu, and Y. Liu,
“Wavelength selection for detection of slight bruises on pears
based on hyperspectral imaging,” Applied Sciences, vol. 6,
no. 12, p. 450, 2016.

S. Nakariyakul and D. P. Casasent, “Fast feature selection
algorithm for poultry skin tumor detection in hyperspectral
data,” Journal of Food Engineering, vol. 94, no. 3-4, pp. 358-
365, 2009.

W. Cai, Y. Li, and X. Shao, “A variable selection method based
on uninformative variable elimination for multivariate cali-
bration of near-infrared spectra,” Chemometrics and In-
telligent Laboratory Systems, vol. 90, no. 2, pp. 188-194, 2008.
Y. Sun, X. Gu, K. Sun et al., “Hyperspectral reflectance im-
aging combined with chemometrics and successive pro-
jections algorithm for chilling injury classification in
peaches,” LWT, vol. 75, pp. 557-564, 2017.

M. C. U. Aratjo, T. C. B. Saldanha, R. K. H. Galvio,
T. Yoneyama, H. C. Chame, and V. Visani, “The successive
projections algorithm for variable selection in spectroscopic
multicomponent analysis,” Chemometrics and Intelligent
Laboratory Systems, vol. 57, no. 2, pp. 65-73, 2001.

H. Li, Y. Liang, Q. Xu, and D. Cao, “Key wavelengths
screening using competitive adaptive reweighted sampling
method for multivariate calibration,” Analytica Chimica Acta,
vol. 648, no. 1, pp. 77-84, 20009.

M. Hu, G. Zhai, Y. Zhao, and Z. Wang, “Uses of selection
strategies in both spectral and sample spaces for classifying
hard and soft blueberry using near infrared data,” Scientific
Reports, vol. 8, no. 1, p. 6671, 2018.

K. Nagasubramanian, S. Jones, S. Sarkar, A. K. Singh,
A. Singh, and B. Ganapathysubramanian, “Hyperspectral
band selection using genetic algorithm and support vector
machines for early identification of charcoal rot disease in
soybean stems,” Plant Methods, vol. 14, no. 1, p. 86, 2018.
C. Pasquini, “Near infrared spectroscopy: a mature analytical
technique with new perspectives—a review,” Analytica Chi-
mica Acta, vol. 1026, pp. 8-36, 2018.

Y.-H. Yun, H.-D. Li, B.-C. Deng, and D.-S. Cao, “An overview
of variable selection methods in multivariate analysis of near-
infrared spectra,” TrAC Trends in Analytical Chemistry,
vol. 113, pp. 102-115, 2019.

Q. Dai, J. Cheng, D. Sun et al., “Advances in feature selection
methods for hyperspectral image processing in food industry
applications: a review,” Critical Reviews in Food Science and
Nutrition, vol. 55, no. 10, pp. 1368-1382, 2015.

Y.-H. Yun, J. Bin, D.-L. Liu et al., “A hybrid variable selection
strategy based on continuous shrinkage of variable space in
multivariate calibration,” Analytica Chimica Acta, vol. 1058,
pp. 58-69, 2019.

H. Chen, X. Liu, Z. Jia, Z. Liu, K. Shi, and K. Cai, “A com-
bination strategy of random forest and back propagation
network for variable selection in spectral calibration,” Che-
mometrics and Intelligent Laboratory Systems, vol. 182,
pp. 101-108, 2018.

M. Zhang and G. Li, “Detection method of slight bruises of
apples based on hyperspectral imaging and RELIEF-extreme
learning machine,” Journal of Zhejiang University (Agriculture
and Life Sciences), vol. 45, no. 1, pp. 126-134, 2019, in Chinese.
U. Mangai, S. Samanta, S. Das, and P. Chowdhury, “A survey
of decision fusion and feature fusion strategies for pattern
classification,” IETE Technical Review, vol. 27, no. 4,
pp. 293-307, 2010.

L. Wang, D. Liu, H. Pu, D.-W. Sun, W. Gao, and Z. Xiong,
“Use of hyperspectral imaging to discriminate the variety and

(31]

(32]

(33]

(34]

(35]

(36]

Journal of Spectroscopy

quality of rice,” Food Analytical Methods, vol. 8, no. 2,
pp. 515-523, 2015.

H. M. Paiva, S. FE. C. Soares, R. K. H. Galvao, and
M. C. U. Aratjo, “A graphical user interface for variable
selection employing the successive projections algorithm,”
Chemometrics and Intelligent Laboratory Systems, vol. 118,
pp. 260-266, 2012.

H. Li, Q. Xu, and Y. Liang, “An integrated library for partial
least squares regression and linear discriminant analysis,”
Chemometrics and Intelligent Laboratory Systems, vol. 176,
pp. 34-43, 2018.

R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and
J. H. Moore, “Relief-based feature selection: introduction and
review,” Journal of Biomedical Informatics, vol. 85, pp. 189-
203, 2018.

K. Kira and L. Rendell, “The feature selection problem: tra-
ditional methods and a new algorithm,” in Proceedings of the
10th National Conference on Artificial Intelligence, pp. 129-
134, San Jose, CA, USA, July 1992.

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: theory and applications,” Neurocomputing, vol. 70,
no. 1-3, pp. 489-501, 2006.

C. Sammut and G. Webb, Encyclopedia of Machine Learning,
Springer, New York, NY, USA, 2010.



lournul of

s

Journal of 7 o
A;alyUcal Methods The Scientific
in Chemistry ‘ World Journal

Advances in

Phy5|cal Chem|stry

Hindawi

Bioinorganic Chemistry
and Applications

nces in Journal of : ) BioMed
TrIbO|Ogy Chemistry Research International

International Journal of Journal of

Journal of
Analytical Chemistry  Nolsai(e}eelo) Nanotechnology

Submit your manuscripts at
www.hindawi.com

Journal of

Applied Chemistry

International Journal of

I\/led|cma| Chem|stry

Journal of

Materials

Enzyme Biochemistry
Research Research International


https://www.hindawi.com/journals/at/
https://www.hindawi.com/journals/ijp/
https://www.hindawi.com/journals/jchem/
https://www.hindawi.com/journals/apc/
https://www.hindawi.com/journals/jamc/
https://www.hindawi.com/journals/bca/
https://www.hindawi.com/journals/ijs/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ijmc/
https://www.hindawi.com/journals/jnt/
https://www.hindawi.com/journals/jac/
https://www.hindawi.com/journals/bri/
https://www.hindawi.com/journals/er/
https://www.hindawi.com/journals/jspec/
https://www.hindawi.com/journals/ijac/
https://www.hindawi.com/journals/jma/
https://www.hindawi.com/journals/bmri/
https://www.hindawi.com/journals/ijelc/
https://www.hindawi.com/journals/jnm/
https://www.hindawi.com/
https://www.hindawi.com/

