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,e chemical composition of rape stalk is the physiological basis for its lodging resistance. By taking the advantage of NIRS, we
developed a rapid method to determine the content of six key composition without crushing the stalk. Rapeseed stalks in the
mature stage of growth were collected from three cultivation modes over the course of 2 years. First, we used the near-infrared
spectroscope to scan seven positions on the stalk samples and took their average to form the spectral data. ,e stalks were then
crushed and sieved; then the ratio of carbon and nitrogen, ratio of acid-insoluble lignin and lignin, and the content of soluble
sugar and cellulose were determined using the combustion method, weighing method, and colorimetric method, respectively.
,e partial least squares regression (PLSR) method was used to establish a prediction model between the spectral data and the
chemical measurements, and all models were evaluated by an internal interaction verification and an external independent test
set sample. To improve the accuracy of the model and reduce the computing time, some optimization methods have been
applied. Some outliers were removed, and then the data were preprocessed to determine the best spectral information band
and the optimal principal component number. ,e results showed that elimination of outliers effectively improved the
precision of the prediction model and that no spectral pretreatment method exhibited the highest prediction accuracy. In
summary, the NIRS-based prediction model could facilitate the rapid nondestructive detection in the key components of
rapeseed stalk.

1. Introduction

Rapeseed is one of the most widely cultivated oilseeds crops
worldwide, and it is the main source of vegetable oil and
protein. In the field, stalk lodging is the key limiting factor
for the further improvement of rapeseed yield. Similar to
other crops, the content of lignin and cellulose in the
rapeseed stalk is closely related to its lodging resistance [1].
In addition, rapeseed stalk is an important renewable re-
source; the rapid quantification of its major components
effectively improves the utilization rate of the stalk [2].
Determination of the main components of stalk lodging
resistance in regard to massive rapeseed breeding practice
can accelerate the breeding of rapeseed with lodging re-
sistance. However, the commonly used chemical testing

methods are time- and labor-consuming with low efficiency.
On this basis, a rapid method to evaluate the key compo-
nents of lodging resistance is desired. Such an advance could
provide technical support for the study of lodging resistance
in rapeseed.

,e near-infrared reflectance spectroscopy (NIRS)
technology is rapid and highly efficient and has been applied
in the agriculture and many other crops, such as in rice [3],
citrus [4], and rapeseed [5]. With the NIRS and multiple
linear regression methods, Ding et al. established a quan-
titative analytical model of glucose and fructose to evaluate
their content in honey [6]. Bagherpour et al. researched an
optical method based on near-infrared spectroscopy (900–
1600 nm) to determine the content of soluble solid and
sucrose in sugar beet [7]. Rungpichayapichet et al. developed
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calibration models for firmness, total soluble solids (TSS),
titratable acidity (TA), and ripening index (RPI) using PLSR
analysis. ,e results indicated that NIRS can be used as a
reliable nondestructive technique for mango quality as-
sessment [8]. Mathison et al. adopted NIRS for the pre-
diction of the nutritive value of straw with 195 samples of
barley straw.,ey showed that NIRS was a useful method for
predicting chemical composition of straw and estimating its
ruminal degradability characteristics [9]. Kaur et al. de-
veloped a calibration equation for oil content using NIRS in
Brassica juncea and Brassica napus. ,e reference values of
oil content were generated by nuclear magnetic resonance
(NMR). ,e predicted model was validated in the case of B.
juncea with an r2 value 0.85. ,e results indicated that NIRS
could be used satisfactorily for rapid determination of oil
content in B. juncea [10]. Teye et al. assessed the feasibility of
measuring total fat content in cocoa beans by using Fourier
transform near-infrared (FT-NIR) spectroscopy based on a
systematic study of spectral variable selection via multi-
variate regression. Experimental results showed that the
model based on the novel Si-SVMR algorithm was superior
to the others [11]. Shetty and Gislum presented a method of
NIRS combined with chemometrics which was used to
quantify fructan concentration in samples from seven grass
species. ,e PLSR approach was used on the full spectra to
model NIR spectroscopy data [12]. NIRS predictive equa-
tions were used to provide accurate high-throughput phe-
notyping of seed content, opening new perspectives in gene
identification following QTL mapping and genome-wide
association studies [13].

Tremendous efforts have been made in the study on the
straw composition using multispectral technology. Niu et al.
used hyperspectral imaging technology to rapidly determine
the content of five elements: nitrogen, carbon, hydrogen,
sulfur, and oxygen, in the straw of maize, rice, wheat, and
rapeseed. ,eir analysis was achieved through applying the
optimal method combined with a competitive adaptive
reweighted sampling-partial least squares algorithm (CARS-
PLS). ,eir results indicated that the nitrogen and oxygen
contents in the straw could be effectively assessed via their
methodology [14]. Li et al. used NIRS combined with PLSR
to establish the optimal quantitative model for the bio-
components (nitrogen, carbon, hydrogen, sulfur, and oxy-
gen) of straw [15]. XUE investigated an online analysis
method of proximate component (moisture, ash, volatile
matter, and fixed carbon) and lignocellulose components
(cellulose, semicellulose, and lignin) of coarse crushed corn
stover using NIRS. After optimized pretreatment, all the
NIRS models were effectively developed using the PLSR
method [16]. Sheng et al. provided models of three types of
agroforestry biomass (moisture, ash, volatile, and fixed
carbon) and caloric value of pine, China fir, and cotton stalk
via spectral techniques, indicates that the traditional in-
dustrial analysis methods could be completely replaced by
visible near-infrared spectroscopy in order to achieve the
rapid determination of components and calorific value of the
agroforestry biomass [17]. Fu et al. collected and prepared
samples of various varieties of rice straw from different
locations and created a quantitative analysis model based on

the stepwise multiple linear regression (SMLR) of near-in-
frared spectroscopy, PLSR, and principal component re-
gression (PCR). Data suggested that their model was capable
of rapidly testing the content of soluble sugar in rice straw
[18]. Lohr developed a partial least squares calibration
models for glucose, fructose, sucrose, and starch in leaves of
chrysanthemum and pelargonium cuttings by using a
stepwise enzymatic-photometric method [19].

Overall, many studies have been carried out to evaluate
the content of stem and leaf components in crops using
multispectral analysis, and they can effectively overcome the
primary drawbacks of traditional chemical testing methods
(time consumption and the tedium of the procedures).
However, in most of the cases, samples were smashed before
the evaluation in these studies. It is difficult to control the
homogeneity of material when the sample is smashed, which
may increase the error of spectral scanning. In addition, the
overall process is usually complicated, and the smashed
material is not able to be used after the study is complete.
Currently, a method to determine the key components of
lodging resistance in rapeseed by spectral analysis without
smashing and sieving the rapeseed samples remains un-
available. In the present study, we propose a fast, accurate,
and nondestructive NIRS-based method to predict six
components including carbon, nitrogen, lignin, acid quality
lignin, soluble sugar, and cellulose in noncrushed rapeseed
stalk. Ourmethod provides important and fundamental data
for the selection of rapeseed with strong lodging resistance
and allows the stalk to be used after analysis for other
purposes.

2. Materials and Methods

2.1. Experimental Materials. ,e plant materials were ob-
tained from the experimental station of Huazhong Agri-
cultural University in both 2017 and 2018. Rapeseeds were
bunch planted in September and thinned at the third to fifth
leaf stages. ,e field was flat with medium fertility, and the
previous crop was rice harvested during early September.
,e plots were 10m× 2m. Brassica napus hybrids HYZ62
and FY520, common Swede-type rapeseeds HH901 and
HS5, and the DH population consisting of 150 lines (TN)
were used as plant materials. Samples were collected during
the maturity stage. Plants representing the average yield and
lodging status were selected. After removing the roots of
samples, the plants were dried and bagged separately. ,e
sample will be dried twice at 105°C and at 80°C until
achieving constant weight separately. ,e cultivation
methods in the present study were as follows:

(1) ,ree-factor split plot experiment with three repli-
cates: the four rapeseed varieties served as the main
plot, fertilizer type served as the primary split plot,
and the level of N fertilizer (0 kg/hm2, 180 kg/hm2,
and 360 kg/hm2 of pure nitrogen), P (0 kg/hm2,
120 kg/hm2, and 240 kg/hm2 of P2O5), and K (0 kg/
hm2, 150 kg/hm2, and 300 kg/hm2 of K2O) served as
the secondary split plot, so a total of 108 treatments
with different NPK ratios were carried out.
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(2) ,ree-factor split plot experiment with three repli-
cates: the four rapeseed varieties served as the main
plot, the levels of N fertilizer served as the primary
split plot (120 kg/hm2, 240 kg/hm2, and 360 kg/hm2

and urea with 46.7% nitrogen content was used as N
source), and three planting densities (15×104 plants/
hm2, 30×104 plants/hm2, and 45×104 plants/hm2)
served as the secondary split plot. Phosphorus
(calcium superphosphate with 12% P content), po-
tassium (KCl with 60% K), and borate fertilizer were
applied once as the base fertilizer with 150 kg/hm2

for P and K and 7.5 kg/hm2 of borax.
(3) Complete random block design with three replicates:

each variety was planted one row with a length of
250 cm, a row spacing of 30 cm, and a plant spacing
of 21 cm. Compound fertilizer (15 :15 :15) of 750 kg/
hm2 with 7.5 kg/hm2 of borax was used as base
fertilizer, and 75 kg/hm2 of urea was additionally
applied during the seedling stage. ,e filed man-
agement was carried out as regular practice.

A Fourier near-infrared spectroscope BRUKERFT-NIR
(VECTOR33N, Bruker Inc., Germany) was equipped with
PbS detector, quartz rotating sample cup, gold-plated in-
tegrating sphere, and OPUS analysis software with the wave
number of 12000 cm− 1–4000 cm− 1 and the resolution of
8 cm− 1. ,e near-infrared spectroscope was preheated for
20min before scanning at room temperature. ,e sample
was put into a sample cell at the same position each time
and then covered by the gold-plated integrating sphere to
avoid light leak. To ensure the accuracy and integrity of the
scanning procedure, seven positions of each sample would
be scanned for seven spectra, and then the average of the
seven spectra data was taken to build the model. Using a
blade, the sample was evenly cut into three parts, and then
the middle piece of each part was cut off. As shown in
Figure 1(a), samples demarcated as 1 and 2 were the end
faces of the stalk. 3 and 4 were the fresh cut surface to avoid
variation errors due to long time exposures in the air, and
5–7 were cross sections of the stalk. Figure 1(b) shows the
spectra of the samples. All spectral preprocessing was
performed in the OPUS software (OPUS 7.0, BRUKER
OPTICS, Germany). ,e SPASS software (IBM SPSS Sta-
tistics 24.0, IBM, USA) was adopted for data analysis and
mapping.

,e stalks were dried after scanning and then ground
using a universal high-speed smashing machine (FW100,
Tianjin TAISITE Instrument Co., LTD, China) to measure
their chemical components. Carbon and nitrogen were
determined using an elemental analyzer (Elementar vario
max cn, Germany). Oxygen was added to the samples of
250mg for 90 s, and various forms of nitrogen and carbon in
the sample were converted to stable nitrogen and carbon
dioxide by the combustion method (the combustion tube of
900°C and the reduction tube of 830°C), and then the
contents were tested by an infrared detection module. ,e
ratio of acid-insoluble lignin and lignin was determined
using the sulfuric acid method [20]. ,e cellulose ratio was
evaluated by colorimetry [21]. ,e ratio of soluble sugar was

detected by the anthrone colorimetry method [22]. ,e
results of the chemical analysis are shown in Table 1.

2.2.ConstructiveProcess of theModel. ,e accuracy of model
creation is an important step to ensure the predicted results
are close to the true chemical values in the plant matter [23].
,e mean spectra were obtained by averaging the seven
spectra scanned using OPUS software, and the model was
further established using the PLSR method and the obtained
chemical data. We conducted the following procedures.

2.2.1. Partitioning of Correction Set and Validation Set.
,e experimental data were arranged randomly. ,e di-
vision ratio of this paper is approximately 3 :1, which is very
close to the traditional division ratio of 7 : 3. Figure 2 shows
the partition of correction set and validation set of the stalk
components in rapeseed. Of these, CA and VA represented
the calibration set and validation set, respectively. ,e data
in Table 2 indicated that the samples set exhibited the desired
uniformity.

2.2.2. Elimination of Outliers. Changes in environmental
factors are also important, such as temperature, humidity,
and air flow rate, which affect the accuracy of the spectrum
[24]. ,erefore, eliminating outliers from the sample set is
crucial. In the present study, the outliers were removed
based on the principle of predicting concentration re-
siduals [25]. Leave-one-out cross validation was per-
formed each time a sample was deleted, and the samples
that increased the correlation between the true value and
predicated value (R) while decreasing the root-mean-
square error of cross validation (RMSECV) were con-
sidered outliers. About 1/6 to 1/5 of the samples in the
prediction set were classified as outliers and eliminated
from the sample set.

2.2.3. Optimization of Spectral Preprocessing. A total of 11
methods were employed to preprocess the spectra after
eliminating the outliers, including elimination constant
offset, straight line subtraction, vector normalization, min-
max normalization, multiplication scatter correction, the
first-order derivative correction, the second-order de-
rivative correction, the first-order derivative and straight
line subtraction, first-order derivative and vector nor-
malization, first-order derivative and multiplication scat-
tering correction (MSC), and no preprocessing [26]. Using
the sample after removing the outlier, the optimal pro-
cessing method was selected by comparing R and
RMSECV.

2.2.4. Spectral Band Optimization. Choosing the right band
can improve the accuracy of the model and reduce the
running time. After determining the optimal spectral pre-
processing, the spectrum was divided into 45 bands, and the
correlation coefficient and the mean square deviation of
internal verification at different bands were observed. ,e
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optimal wave number was chosen as the one with the
smallest RMSECV.

2.2.5. Determination of the Optimal Principal Component
Number. Determining the optimal principal component
can reduce the dimension. It not only lowers the number of
input data needed to create a model but also speeds up the
operation of the model with improved prediction accu-
racy. During the model creation, 1–10 were tested,

respectively, as the principal component number, and the
value showing the maximum R and minimum RMSECV of
the PLSR model was determined as the optimal principal
component number.

2.2.6. Validation of the Calibration Model. To verify whether
the accuracy of themodelmeets the requirement of component
prediction, the spectra of the samples from the validation set
were introduced into the established model to obtain
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Figure 1: (a) Schematic of the scanning position on rapeseed stalks. (b) Spectra of the samples.

Table 1: Statistical results of six rapeseed stem components.

Content Number Maximum (%) Minimum (%) Mean (%) Standard deviation Coe�cient of variation
Carbon 340 46.37 41.13 44.18 1.05 0.024
Nitrogen 340 0.68 0.12 0.34 0.09 0.260
Lignin 240 34.96 18.64 25.27 3.41 0.135
Acid quality lignin 240 38.51 13.69 23.92 4.58 0.192
Soluble sugar 200 5.68 1.52 3.18 0.94 0.295
Cellulose 200 38.27 9.69 23.47 6.23 0.265
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Figure 2: Relationship between principal component number and R/RMSECV of the prediction model.
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predication values (predicted by the model) and true values
(from the chemical test).,ese values were used to calculate the
R and RMSECV between prediction values and standard
values.

3. Results and Analysis

3.1. Effect of EliminatingOutliers. In the modeling based on
NIRS, there were two types of outliers in the calibration
set. One type was the sample with significant difference
between the chemical determination value and the
predicted value, which may be caused by the large error
of chemical measurement, the spectral measurement
error, or the error during data entry. ,ese abnormal
samples must be eliminated before modeling. ,e other
type was high-leverage samples. Comparing with other
samples, this type sample contains extreme components
and far away from the average of the overall sample.
,ese abnormal samples were obviously not useful for
global modeling because of destroying the uniformity of
the sample distribution. But those were useful for
enriching the calibration set and improving the accuracy
of subsequent samples. ,e presented method in this
paper adopted the eliminating outlier method as shown
in the literature [24]. In the literature, the proportion of
eliminating outliers reached 36.7%. Considering the
balance performance between global modeling and local
modeling, the eliminating rate was set at approximately
20%. ,e eliminating rate of carbon, nitrogen, soluble
sugar, and cellulose was 20%. ,e eliminating rate of
lignin and acid quality Lignin was 16.7%. ,e remaining
samples were then used to create the model using the
PLSR method. Compared to the results obtained without
eliminating outliers, using the principal component
number of nine for the carbon calibration set, R between
standard value and predicted value was increased from
0.960 to 0.973, and RMSECV was decreased from 0.286%
to 0.240% with a reduction of predictive residual to
0.600%. ,e principal component number of nitrogen
calibration set remained at nine, R increased from 0.929
to 0.96, RMSECV was reduced from 0.030% to 0.024%,
and the predictive residual lowered to 0.6%. ,e prin-
cipal component number of lignin calibration set

remained as three, R elevated from 0.860 to 0.923,
RMSECV reduced from 1.610% to 1.250%, and predictive
residual lowered to 0.6%. ,e principal component
number of acid-insoluble lignin calibration set remained
as one, R was increased from 0.893 to 0.928, and
RMSECV was reduced from 1.850% to 1.480%, and in
this satuation the predictive residual was 4.000%. ,e
principal component number of soluble sugar calibration
set changed from one to nine, exhibiting an increase of R
from 0.910 to 0.939, the reduction of RMSECV from
0.900% to 0.310%, and the decrease of predictive residual
to 3.000%. ,e principal component number of cellu-
loses in the calibration set was unchanged to 6 with the
increase of R from 0.917 to 0.945, the decrease of
RMSECV from 2.310% to 1.880%, and the predictive
residual lowered to 5.000%. In conclusion, the accuracy
of the prediction model was improved slightly after
eliminating outliers in calibration set. ,e increase rate
of R is between 1.3% and 6.3%, and the decrease rate of
RMSECV is between 0.026% and 0.59%. ,e prediction
model may also have the capability to modeling accuracy
without eliminating outliers.

3.2. Optimization of the Spectral Preprocessing. When using
the full band spectrum to build the model, the spectral
information content is large, resulting in enormous com-
putation and processing time. Occasionally, there are other
factors such as collinearity in spectral information, which
leads to the incapability to extract relevant information from
the models with full optical spectrum. Such concerns can be
avoided after optimizing the spectral band. ,e comparison
of 11 spectral pretreatments for the prediction models of
carbon content is shown in Table 3. ,e R and RMSECV
indicated that the best approach was without spectral pre-
processing, and their values were 0.973 and 0.240%, re-
spectively. ,e suboptimal choice was a first-order
derivative, and R and RMSECV were 0.942 and 0.356%,
respectively. R and RMSECV of the first-order derivative
were decreased by 0.031 and 0.116%, respectively. ,e least
desirable processing was vector normalization, in which R
was the minimum and RMSECVwas themaximum. Overall,
the best way to build the model for carbon content was with

Table 2: Division of the calibration set and validation set.

Index Set type Quantity of samples Maximum value (%) Minimum value (%) Mean value (%) Standard deviation

Carbon CA 250 46.37 41.13 44.17 1.03
VA 90 46.37 41.23 44.21 1.12

Nitrogen CA 250 0.68 0.12 0.34 0.08
VA 90 0.68 0.13 0.33 0.10

Lignin CA 180 34.96 18.64 25.27 3.16
VA 60 34.95 19.64 25.25 4.08

Acid quality lignin CA 180 34.80 14.83 23.65 4.12
VA 60 38.51 13.70 24.72 5.71

Soluble sugar CA 150 5.68 1.52 3.17 0.88
VA 50 5.55 1.53 3.21 1.12

Cellulose CA 150 38.27 9.69 23.42 5.80
VA 50 38.27 11.36 23.63 7.43
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no spectral preprocessing and/or first-order derivative
processing. ,e same approach was applied to another five
elements, and no preprocessing was optimal for all in each
case.

Generally, samples must be ground and placed in a
sample cell for the determination of components in
straw. For example, when evaluating the nutrients in
corn stalk, the best spectral preprocessing of soluble
sugar and acid detergent fiber is the first-order derivative
and MSC [2]. However, in the present study, no spectral
pretreatment was the optimal preprocessing for all
spectra, and only the optimal number of principal
component number and spectral range differed, in-
dicating that the original spectrogram obtained by
scanning was the best way to build a model. ,is may be
due to (1) in the present study, the scanning object is an
intact rapeseed stalk without treatments, such as
crushing and sieving, which reduced operation processes
and possible errors, and (2) the gold-plated integrating
ball on top of the sample cell fills the gap between
rapeseed stalk and the cell, allowing stalks with various
diameters to hold good positioning in the machine,
which improved the homogeneity of samples and pre-
vents the interference of natural light.

3.3.Optimizationof SpectralBand. Using the approach of no
spectral preprocessing and PLSR to build the model, the full
spectrum was divided into 45 bands. ,e relationship of
wave number and RMSECV in the prediction model of N
from our measurements is shown in Table 4. In these models
for nitrogen, the wave number of 7501.7 cm− 1–5449.8 cm− 1

and 4601.3 cm− 1–4246.5 cm− 1 exhibited the minimal
RMSECV of 0.024%. ,e worst/highest RMSECV value of
0.081% was obtained at 11998.9 cm− 1–7497.9 cm− 1. Our data
suggested that selecting the appropriate waveband can ef-
fectively improve the accuracy of the model. ,e same
method was applied for the other 5 elements, and the op-
timal wave number was 7501.7 cm− 1–4246.5 cm− 1,
7501.7 cm− 1–6097.8 cm− 1, and 4601.3 cm− 1–4423.9 cm− 1;
11998.9 cm− 1–7497.9 cm− 1 and 5453.7 cm− 1–4246.5 cm− 1;
11998.9 cm− 1–5449.8 cm− 1; 7501.7 cm− 1–5449.8 cm− 1; and

4601.3 cm− 1–4246.5 cm− 1 for carbon, lignin, acid-insoluble
lignin, soluble sugar, and cellulose, respectively.

3.4. Determination of the Principal Component Number.
Without spectral preprocessing, at the best wave number,
the principal compoment numer will be determined with
the maximum R and minimum RMSECV. ,e prediction
model of carbon content at the waveband of
7501.7 cm− 1–4246.5 cm− 1 with no preprocessing is shown
in Figure 2(a), where the x-axis P-C represents principal
component number. Within the number of principal
components of 1–8, R was elevated as the increase in the
number, and RMSECV was gradually decreased, in-
dicating that the extracted spectral information was
gradually completed during the establishment of the
model. When the number of principal component number
reached 10, R was lower and RMSECV was higher than
those with the number of 9, suggesting the existence of
over fitting when excessive information was extracted. ,e
optimal number of principal component number was 9
with the highest R between true value and predicted value
of 0.973 and the RMSECV of 0.240%. ,erefore, the best
number of principal components was determined as 9.,e
same approach was applied to the other five contents as
shown in Figures 2(b)∼2(f ), and the optimal numbers of
principal component number were 9, 9, 3, 1, 1, and 6,
respectively. In generally, the R/RMSECV is decreased or
increased gradually and continuously. ,e relationship
between the number and R/RMSECV changes regularly,
except for the model of acid quality lignin. However,
Figure 2(d) shows that when the principal component
number was 5 or 7, R/RMSECV is fluctuating drastically
and deviated from the regular law. ,erefore, 7 was
regarded as an outlier and then 1 was considered as the
best principal component number.

3.5. Validation of the Corrected Model. ,e predication re-
sults of all six components are shown in Table 5. ,e models
were evaluated based on the previous method [27] in which
the correlation coefficient of the calibration set R served as the

Table 3: ,e result of carbon spectrum using eleven spectral preprocessing methods.

Number Pretreatment method Wave number (cm− 1) Principal component number R RMSECV (%)
1 No spectral pretreatment 7501.7–4246.5 9 0.973 0.240
2 First-order derivative 7501.7–4246.5 10 0.942 0.356
3 Straight line subtraction 7501.7–4597.5 10 0.928 0.394
4 Constant offset elimination 7501.7–4597.5 10 0.923 0.407
5 First-order derivative + straight line subtraction 7501.7–4246.5 9 0.922 0.411
6 First-order derivative +MSC 7501.7–4246.5 8 0.916 0.424
7 First-order derivative + vector normalization 7501.7–4246.5 8 0.915 0.426
8 Second-order derivative 7501.7–4246.5 9 0.911 0.436

9 Multiplication scattering correction 7501.7–6097.8 6 0.908 0.4435453.7–4246.5

10 Min-max normalization 6799.8–6097.8 8 0.897 0.4695453.7–4246.5
11 Vector normalization 7501.7–4246.5 9 0.896 0.469
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criteria. If 0.900<R< 0.950, the correction model was con-
sidered successful, and if R> 0.950, the correction model was
considered extremely successful. In the present study, the
correction model of carbon and nitrogen content was ex-
tremely successful, while the models for lignin, acid-insoluble
lignin, soluble sugar, and cellulose were successful. RMSECV
and root-mean-square error of prediction (RMSEP) are also
factors used to evaluate themodel, both of which are generally
less than one when creating a model. Combining all three
values, the models of carbon, nitrogen, and soluble sugar were
extremely successful, while others were successful, and all
models met the requirement of prediction.

4. Conclusion

In the present study, we used 340 samples to build amodel for
carbon and nitrogen, 240 samples for lignin and acid-in-
soluble lignin, and 200 samples for cellulose and soluble sugar.
As compared to the previous similar studies, the sample size
in the present study was larger, the treatments were more
various, and the applicability was wider. ,e content of
carbon, nitrogen, acid-insoluble lignin, soluble lignin, and
cellulose obtained using chemical methods was comparable to
those from [28, 29], indicating these chemical methods were
reliable, so the data could serve as a good base line value.

Overall, the tested materials in this experiment were
highly representative, and the above models met the needs of
component determination. Compared to sample crushing,
this approach ensures the integrity of rapeseed samples by
avoiding damage to the rapeseed stalk during the grinding
process, so the tested samples can be further used for other
purposes. If the content of samples from various locations or
different years is desired, other components can be added to
modify the model to meet wider applicability requirements.

Table 4: ,e relationship between spectral wave number and
RMSECV for nitrogen.

Number Wave number (cm− 1) RMSECV (%)

1 7501.7–5449.8 0.0244601.3–4246.5
2 7501.7–4246.5 0.025

3 7501.7–5449.8 0.0304601.3–4423.9
4 6101.7–4246.5 0.030

5 6475.8–5449.8 0.0314601.3–4246.5

6 7501.7–6097.8 0.0334601.3–4246.5

7 6475.8–5449.8 0.0334601.3–4423.9

8 7501.7–6475.8 0.0364601.3–4246.5

9 7501.7–6097.8 0.0365453.7–4246.5

10 7501.7–5449.8 0.0374423.9–4246.5

11 7501.7–6475.8 0.0384423.9–4246.5
12 6101.7–4597.5 0.040

13 6101.7–5449.8 0.0414601.3–4246.5
14 7501.7–4597.5 0.041
15 5453.7–4246.5 0.042
16 7501.7–5449.8 0.042
17 7501.7–5449.8 0.042

18 6475.8–5449.8 0.0444423.9–4246.5

19 7501.7–6097.8 0.0505453.7–4597.5
20 6475.8–5449.8 0.050

21 7501.7–6475.8 0.0514601.3–4423.9
22 4601.3–4246.5 0.052
23 4601.3–4246.5 0.052
24 7501.7–6097.8 0.056
25 6101.7–5449.8 0.058
26 7501.7–6475.8 0.059

27 11998.9–7497.9 0.0606101.7–4246.5
28 11998.9–4246.5 0.061
29 5453.7–4597.5 0.061
30 4601.3–4423.9 0.063

31 11998.9–5449.8 0.0624601.3–4246.5

32 11998.9–6097.8 0.0635453.7–4246.5
33 4423.9–4246.5 0.064

34 11998.9–6097.8 0.0654601.3–4246.5

Table 4: Continued.

Number Wave number (cm− 1) RMSECV (%)

35
11998.9–7497.9

0.0656101.7–5449.8
4601.3–4246.5

36 11998.9–4597.5 0.066

37 11998.9–7497.9 0.0665453.7–4246.5

38 11998.9–7497.9 0.06576101.7–4597.5

39 11998.9–7497.9 0.0664601.3–4246.5

40 11998.9–6097.8 0.0685453.7–4597.5

41 11998.9–7497.9 0.0695453.7–4597.5
42 11998.9–5449.8 0.071

43 11998.9–7497.9 0.0726101.7–5449.8
44 11998.9–6097.8 0.072
45 11998.9–7497.9 0.081
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In addition, the problems and solutions encountered in
creating the model herein can provide reference for other
similar studies.
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