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*e classification of plastic waste before recycling is of great significance to achieve effective recycling. In order to achieve rapid,
nondestructive, and on-site detection, a portable near-infrared spectrometer was used in this study to obtain the diffuse reflectance
spectrum for both standard and commercial plastics made by ABS, PC, PE, PET, PP, PS, and PVC. After applying a series of
pretreatments, the principal component analysis (PCA) was used to analyze the cluster trend. K-nearest neighbor (KNN), support
vector machine (SVM), and back propagation neural network (BPNN) classification models were developed and evaluated,
respectively. *e result showed that different plastics could be well separated in top three principal components space after
pretreatment, and the classificationmodels performed excellent classification results and high generalization capability.*is study
indicated that the portable NIR spectrometer, integrated with chemometrics, could achieve excellent performance and has great
potential in the field of commercial plastic identification.

1. Introduction

Plastics are ubiquitous in all aspects of modern life. Global
plastic production has grown from 2 million tons in 1950,
when plastic was initially conducted to large-scale pro-
duction and use, to 380 million tons in 2015, which has
increased approximately 190 times [1, 2]. *e Ellen Mac-
Arthur Foundation reported that plastic use had increased
20-fold over the past half-century and predicted that plastic
production would double again in the next 20 years and
nearly quadruple by 2050, leading to an increase in plastic-
related waste [3]. Nearly 50% of plastic produced is intended
for single-use disposable products [4], such as packaging
bags, water bottles, and disposable consumer goods. *e
widespread use of plastics brings great challenge related to
the waste flow disposal. With plastic solid waste (PSW)
growing at an annual rate of 7-8 per cent, the widely used
methods of dealing with plastic waste are landfilling,

composting, or burning, which are neither economical nor
environmentally friendly [5]. Driven by the concept of
circular economy, the efficient recycling of plastics and
polymers has become an emerging need in the past few
years.

Plastic waste can be recycled through various methods, such
as thermal depolymerization and thermal compression. How-
ever, the first and major problem in plastics recycling is the
identification and separation of different types of polymers prior
to the recycling process. Otherwise, due to high temperatures
and the effect of oxygen, the plastic will oxidatively degrade
during mechanical recycling, changing its thermal stability and
mechanical property and limiting its further use [6, 7].

Conventional analytical techniques are widely used,
among which chromatographic, thermal, and spectroscopic
techniques are prominent. Spectroscopic methods, includ-
ing infrared spectroscopy, ultraviolet-visible absorption
spectroscopy, Raman spectroscopy, mass spectrometry, are
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regularly used to provide accurate information about the
structure of the polymers and analyze the additives con-
tained qualitatively and quantitatively. However, most of
these methods require an immense amount of time and
diverse careful sample pretreatment. Besides, they are either
expensive or mostly applied in laboratory.

In recent years, China has started to popularize national
garbage classification, which means sorting and recycling are
not an activity only performed in factories. Individual plastic
identification requires portable equipment, which generally
results in decline of measurement accuracy. Hyperspectral
imaging is one of the potential solutions, but it has diffi-
culties in data storage and transmission due to the large data
volume. Moreover, the imaging equipment is also too ex-
pensive to upgrade [8]. By contrast, near-infrared (NIR)
spectroscopy is a viable option.

NIR analysis, one of the fastest growing analytical
techniques in the world, has advantage in convenient, rapid,
efficient, accurate, nondestructive, and environmentally
friendly detection [4, 9, 10], already widely used in the plastic
recycling workshops to reduce the time consumed by
manual recognition. *e wavelength of near-infrared
spectrum ranges from 780 to 2526 nm, which is consistent
with the absorption region of the combined frequency and
multiple frequency of hydrogen-containing groups (O–H,
N–H, and C–H) in organic molecules. Kaihara et al. [11]
constructed a decision tree to classify 18 plastics based on
NIR spectroscopy. Tachwali et al. [12] built a plastic bottle
classification system based on NIR reflectance spectrum and
Bayes rule. Martin De Biasio et al. [13] combined

hyperspectral technology with chemometric analysis to
identify PP and PE. Masoumi et al. [14] invented “two filter”
methods to achieve a PSW sorting system based on
hyperspectral technology.

In this study, a portable near-infrared spectrometer was
applied to collect the spectral data for standard and com-
mercial plastic samples, including ABS, PC, PE, PET, PP, PS,
and PVC. PCA was used to assess the cluster trend, and
K-nearest neighbor algorithm (KNN), support vector ma-
chine (SVM), and backpropagation neural network (BPNN)
were applied separately to perform the identification be-
tween different plastics. *e novelty of this paper is that it
developed a reliable, rapid, and nondestructive sorting
model for consumer plastic rather than standard samples,
with only handheld equipment, compensating for its gaps in
testing accuracy. Moreover, the targeted modeling method
mentioned was extensible for continuously growing data,
having the potential to be integrated with smart devices and
cloud platform, to achieve intelligence and practical appli-
cation of spectral on-site sorting.

2. Materials and Methods

2.1. Sample Preparation. In this study, two types of plastic
samples were chosen for classification. *e first type was
the standard plastic samples, including ABS, PC, PE, PET,
PP, PS, and PVC, to conduct preliminary experiment and
abandon unsuitable pretreatment. Considering the limi-
tation of the NIR spectrum, dark plastic is difficult to
identify due to its strong absorption capacity [5]. White

Table 1: Description of the standard plastic samples.

Identified in the study as Color Polymer type
ABS1 White Acrylonitrile butadiene styrene (ABS)
ABS2 Transparent Acrylonitrile butadiene styrene (ABS)
PC1 White Polycarbonate (PC)
PC2 Transparent Polycarbonate (PC)
PE White Polyethylene (PE)
PET1 White Polyethylene terephthalate (PET)
PET2 Transparent Polyethylene terephthalate (PET)
PP White Polypropylene (PP)
PS1 White Polystyrene (PS)
PS2 Transparent Polystyrene (PS)
PVC1 White Polyvinyl chloride (PVC)
PVC2 Transparent Polyvinyl chloride (PVC)

Table 2: Description of the commercially available plastic samples.

Identified in the study as Product name Color Polymer type
ABS_W Powder scoop White ABS
PC_W Pastry clip White PC
PET_W Cake stand White PET
PP_W Kitchen board White PP
PS_W Disposable knife White PS
PVC_W Glove White PVC
PC_T Food container Transparent PC
PET_T Food container Transparent PET
PS_T Food container Transparent PS
PVC_T Table mat Transparent PVC
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Figure 1: NIR spectra of transparent commercial plastic. (a) Raw, (b) MSC, (c) SNV, and (d) first-order derivative.
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Figure 2: *e CCR of MSC-PCA-KNN model with different numbers of principal components.
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and transparent samples were used for this study con-
sequently. Each type of plastic included 30 samples with
the same size, 30 mm by 30mm by 3mm. *e second type
was the consumer-grade plastic products in circulation,
which is common in our daily life, but impossible to
distinguish their raw material exteriorly. Specific sample
information and the corresponding labels in this study are
shown in Tables 1 and 2.

2.2. Spectral Acquisition. In order to achieve on-site rapid
detection, the Pynect NIR-S-G1 NIR handheld spec-
trometer was used in this study to obtain diffuse re-
flectance spectrum for two types of plastic samples. *is
spectrometer is highly integrated with the size of
82 mm ∗ 65mm ∗ 42mm with low pretreatment

requirement for acquisition. Spectral data with a wave-
length of 228 bands ranging from 900 nm to 1700 nm
were measured. *e spectrometer was fitted as closely as
possible to each sample and scanned six times to output
an average spectrum automatically. *e same white
background was used for all spectral measurements. *e
data acquisition was conducted without any
pretreatment.

For the standard samples, each sample was scanned
five times parallelly. 150 spectra were obtained for each
type of plastic and 1800 spectra in total. For commercial
products, the same operation was repeated. Limited by the
shape of products, a contact location as close as possible
for spectral scanning was selected. 200 spectra were ob-
tained for each type of samples and 2000 spectra in total.
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Figure 3: (a) PCA score plot of raw mixed dataset; PCA score plot of data preprocessed by MSC (b) mixed dataset; (c) transparent dataset;
(d) white dataset.
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Figure 1(a) shows the raw spectra of transparent com-
mercial samples.

2.3. Spectral Preprocessing Techniques. Preprocessing for
spectral data is an integral part of modeling, to remove

background information and noise from the useful char-
acteristics of the samples scanned [15, 16]. Reproducibility of
specific absorption features helps [17] to classify different
polymers, and spectral pretreatment is an effective way to
improve the repeatability of spectral features.
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Figure 4: Confusion matrix for the prediction of transparent samples with the SVMmodel: (a) SNV-PCA, (b) MSC-PCA, (c) D1-PCA, and
(d) SG-PCA (label0: PC; label1: PET; label2: PS; label3: PVC).

Table 3: Performance of classification models for transparent commercial plastic samples.

PCA (n)
Calibration Prediction

ACC (%) ACC (%)
Precision (%) Sensitivity (%) F1-score (∗100)

Micro Macro Micro Macro Micro Macro

SVM

MSC 3 100 84.37 84.37 85.90 84.37 84.37 84.37 83.80
SNV 2 100 100 100 100 100 100 100 100
D1 3 100 100 100 100 100 100 100 100
SG 5 99.70 98.75 98.75 98.80 98.75 98.75 98.75 98.74

KNN

MSC 3 100 84.37 84.37 85.90 84.37 84.37 84.37 83.80
SNV 2 100 100 100 100 100 100 100 100
D1 3 100 100 100 100 100 100 100 100
SG 5 99.48 98.73 98.73 98.79 98.73 98.73 98.73 98.73

BPNN

MSC 2 100 86.25 86.25 89.10 86.25 86.25 86.25 85.51
SNV 2 100 100 100 100 100 100 100 100
D1 2 100 100 100 100 100 100 100 100
SG 2 98.50 100 100 100 100 100 100 100
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Considering the performance of the classification for
standard samples, preprocessing methods used in this study
included multiplicative scatter correction (MSC), standard
normal variate transformation (SNV), first-order derivative,
and Savitzky–Golay (SG) smoothing. MSC and SNV are
commonly used to remove unwanted scattering effect from
the spectral data matrix [15, 18]. Derivative and SG
smoothing can eliminate interference caused by baseline
drift, resolve overlapping peaks, and improve resolution and
sensitivity, but also introduce some errors.

Figures 1(b)–1(d) show the spectra of transparent
commercial samples preprocessed by MSC, SNV, and first-
order derivative methods. Considering the practical appli-
cation scenario, the model was built with as little processing
of the prediction data as possible, e.g., the MSC pre-
processing was only performed for the calibration set.

2.4. Principle Component Analysis. Principle component
analysis (PCA) is an unsupervised pattern recognition
method that clusters samples in the absence of a priori
knowledge, extracting information from correlation matrix
and visualizing data trends in dimensional scatterplots [19].
Transforming high-dimensional spectral data into an array
of related variables containing overlapping information
makes extracting useful information from high-dimensional
data possible [20]. In addition, PCA is one of the manifold
learning algorithms to reduce the dimensionality of spectral
data [21].

In this study, PCA was applied to evaluate the cluster
trend of spectral data and was also combined with other
pretreatment methods to reduce the dimensionality. Fig-
ure 2 shows the performance of the MSC-PCA-KNN model
with different numbers of principal components. *e ac-
curacy tended to stabilize with no significant improvement
after the PC number exceeding 10, which was selected for the
subsequent comparison of model performance. *e same
selection method was also applied to other pretreatment
methods.

2.5.MultivariateAnalysisMethods. KNN is a nonparametric
[22], instance-based, lazy learning method. It works on a
distance function, which classifies different features by
measuring the distance between them. KNN has advantages
of mathematical simpleness, not requiring statistical as-
sumptions, and independence on the spatial distribution of
the classes. When the training dataset is large, KNN requires
a lot of storage space and time to calculate distance re-
peatedly [23].

SVM is a representative supervised statistical learning
theory suitable for classification and regression problems,
which can prevent underfitting and overfitting very well
[24]. *e algorithm has good classification performance on
high-dimensional data though the number of training
samples is limited [25]. If classes are separated by nonlinear
boundaries, SVM uses kernel functions to enable linear
separation of classes [18]. Radial basis function (RBF) was
used in this study, for its computational simplicity and speed
[23].

BPNN is one of the most commonly used algorithms for
training feedforward neural networks [26]. BPNN has the
characteristic of forward signal propagation and error
backward propagation, which can automatically adjust the
weights and biases in the architecture [27]. In this study,
after multiple repeated experiments, BPNN had three hid-
den layers, with 128, 64, and 32 neurons, and the rectified
linear unit (ReLU) function was used as the activation
function. *e output layer used softmax to output a prob-
ability matrix. *e Adam optimization algorithm was used
to calculate the gradient of the loss function in each epoch
and update the parameters to minimize the loss function.

2.6. Data Partition and Model Evaluation. *e complete
dataset was divided into calibration set (80%) and pre-
diction set (20%). *e calibration set, further divided into
training and validation sets, was applied to train and
evaluate the models with the same pretreatments, and the
prediction set was applied to evaluate the generalization
capability of the models. *e prediction set was not in-
volved in the modeling process to avoid data leakage.

Table 4: Performance of classification models for white commercial plastic samples.

PCA (n)
Calibration Prediction

ACC (%) ACC (%)
Precision (%) Sensitivity (%) F1-score (∗100)

Micro Macro Micro Macro Micro Macro

SVM

MSC 3 100 99.58 99.58 99.59 99.58 99.58 99.58 99.58
SNV 2 100 93.44 93.44 95.31 93.44 93.44 93.44 93.16
D1 3 99.89 100 100 100 100 100 100 100
SG 3 99.28 99.58 99.58 99.59 99.58 99.58 99.58 99.58

KNN

MSC 3 100 99.58 99.58 99.59 99.58 99.58 99.58 99.58
SNV 2 100 99.95 99.95 99.96 99.95 99.95 99.95 99.95
D1 3 100 99.58 99.58 99.59 99.58 99.58 99.58 99.58
SG 3 100 99.58 99.58 99.59 99.58 99.58 99.58 99.58

BPNN

MSC 2 100 98.80 98.80 98.89 98.80 98.80 98.80 98.80
SNV 2 91.52 97.12 97.12 97.60 97.12 97.12 97.122 97.15
D1 2 99.83 99.94 99.94 99.94 99.94 99.94 99.94 99.94
SG 2 99.77 99.17 99.17 99.22 99.17 99.17 99.17 99.17
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Cross-validation is one of the simplest and most com-
monly reproduced methods for estimating prediction
accuracy [28]. To avoid the impact of random data par-
tition, 10-fold cross-validation method was used for the
calibration set, which was repeated 10 times to obtain
average metrics.

*e model evaluation applied general evaluation metrics
for multiclassification, including accuracy, precision, sen-
sitivity, and F1-score. *is study considered macroaverage
and microaverage methods to calculate evaluation metrics.
Averaged precision is defined as follows:

precisionmicro �
􏽐ntotal

TPi

􏽐ntotal
TPi + 􏽐ntotal

FPi

, (1)

precisionmacro �
􏽐nclass

TPi/TPi + FPi

nclass
, (2)

where TPi and FPi refer to true-positive and false-positive
values for single species of plastic, respectively, nclass refers to
number of categories, and ntotal refers to number of all
samples.

2.7. Software. All the spectral data processing and multi-
variate analysis algorithms were carried out using Python 3.7
and JetBrains PyCharm 2019.2.3 x64 software under Win-
dows 10.

3. Results and Discussion

3.1. Principle Component Analysis (PCA). *e principal
component score plots of the mixed dataset, transparent
dataset, and white dataset with different pretreatments are
given in Figures 3(a)–3(d). *e mixed sample datasets
showed a faint clustering compared with other two datasets.
Considering white or transparent samples separately, all the
samples clustered well among top three PCs space after the
spectral pretreatment. *e MSC method gave excellent
performance, with the cumulative variance contribution
exceeding 99%, and different categories were clearly sepa-
rated. In order to achieve better performance and expan-
sibility for future applications, targeted modeling according
to colors was adopted in the subsequent modeling process.

3.2. Model Comparison and Discussion. KNN, SVM, and
BPNN were applied for modeling. Figure 4 presents the
confusion matrix of SVM model built for the transparent
sample dataset. *e observed values of the correct and in-
correct classes of the prediction set could be visually ob-
tained and can be used to calculate corresponding metrics. It
could be seen that the misjudgment mainly occurs between
PC and PET samples.

Table 3 and 4 give the performance of the classification
models developed for transparent samples and white sam-
ples. Compared with the standard samples, the number of
PCs decreased significantly, indicating that after separating
the datasets by color, the data of the same category were
more consistent and fewer PCs could explain the difference.

For the transparent plastic samples using the MSC method,
the accuracy of the prediction set was much lower than that
of the calibration set, most likely because of the great dif-
ference between the raw prediction dataset and the pre-
processed dataset for training.

As a lazy learning method, KNN needs to store all the
training data, resulting in slower prediction process, more
memory, and expensive overhead [29, 30], which is not an
optimal solution in practical application. Accordingly, for
transparent samples, SNV-PCA-SVM and SNV/D1-PCA-
BPNN were selected as the optimal models, and for white
samples, D1-PCA-SVM was selected, both achieving 100%
accuracy. Both SVM and BPNN can achieve high accuracy,
and BPNN has the potential to outperform SVM dealing
with large volumes of spectral data.

4. Conclusions

NIR spectroscopy has been considered as an effective method
for the identification of PSW. *is study has revealed that the
handheldNIR spectrometer, rather than laboratory equipment,
coupling with appropriate pretreatment and multivariate
analysis methods, could be used to identify not only standard
plastic samples but also consumer-grade plastics for field ap-
plication. Targeted modeling of commercially available con-
sumer products by color was carried out, and each optimal
model chosen could give a 100% correct recognition rate in
both the calibration set and prediction set, entirely meeting the
requirement for field application.

*e methods of establishing, tuning, and evaluating dif-
ferent plastic classification models described in this paper are
universally valid, and it is feasible for modeling the classifi-
cation of consumer products according to different colors.
Furthermore, the targeted modeling methods is extensible and
plastic of other colors can be added easily, contributing to
expand the range of application. In the future study, themodels
can be extended by following several aspects: addition of
threshold criterion of additives in consumer products to
identify plastics qualitatively and quantitatively and targeted
modeling for roughness and transparency. Besides, considering
the advantages of BPNN in large volume data modeling,
portable spectrometer can be redeveloped to integrate with
intelligent devices and build a spectral data cloud platform.
Such platform can continuously optimize the model by col-
lecting vast data in the process of large-scale application,
contributing to achieve the miniaturization, automation, and
intelligence of the rapid on-site spectral detection.
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