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Chronic renal failure (CRF) is a clinically serious kidney disease. If the patient is not treated in a timely manner, CRF will develop
into uremia. However, current diagnostic methods, such as routine blood examinations andmedical imaging, have low sensitivity.
/erefore, it is important to explore new and effective diagnostic methods for CRF, such as serum spectroscopy. /is study
proposes a cost-effective and reliable method for detecting CRF based on Fourier transform infrared (FT-IR) spectroscopy and a
support vector machine (SVM) algorithm. We measured and analyzed the FT-IR spectra of serum from 44 patients with CRF and
54 individuals with normal renal function. /e partial least squares (PLS) algorithm was applied to reduce the dimensionality of
the high-dimensional spectral data. /e samples were input into the SVM after division by the Kennard–Stone (KS) algorithm.
Compared with other models, the SVM optimized by a grid search (GS) algorithm performed the best. /e sensitivity of our
diagnostic model was 93.75%, the specificity was 100%, and the accuracy was 96.97%. /e results demonstrate that FT-IR
spectroscopy combined with a pattern recognition algorithm has great potential in screening patients with CRF.

1. Introduction

Chronic renal failure (CRF) refers to chronic and persistent
renal impairment with various causes, resulting in renal
sclerosis and nephron loss, and it is accompanied by many
complications, such as cardiovascular disease [1–4]. If the
patient is not treated promptly, CRF may develop into
uremia, and the patient will not be able to maintain basic
functions, leading to severe systemic involvement [5, 6].
Current routine examinations for the diagnosis of CRF
include examination of blood, urine, and glomerular fil-
tration function. Glomerular filtration function refers to the
function of the kidneys whereby metabolites, poisons, and
excessive water in the body are removed. /e main methods
for examining glomerular filtration function include

detection of serum creatinine (Scr) concentration and cre-
atinine clearance (Ccr), as well as radionuclide measurement
of the glomerular filtration rate (GFR) [7, 8]. However, the
Scr and Ccr values may be significantly different for different
people, which may make it difficult for clinicians to make a
correct diagnosis. According to a research by Sanchez, the
sensitivity of Scr is only 46% by using a GFR of 90mL/min as
a cutoff value [9]. In addition, CRF can be diagnosed by
medical imaging such as ultrasonography, but this process
relies mainly on the doctor’s expertise and subjective ex-
perience. /erefore, it is important to find a rapid, objective,
and accurate method for diagnosing CRF.

In recent years, infrared spectroscopy, combined with
pattern recognition algorithms, has provided a new method
for the early screening of many diseases [10]. Fourier
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transform infrared (FT-IR) spectroscopy is a cost-effective
and noninvasive technique for measuring transitions in
vibrational and rotational levels of infrared absorption
[11–13]. FT-IR spectroscopy can measure the differences
between components in serum, such as glucose, protein, and
cholesterol [14, 15]. For the past few years, FT-IR spec-
troscopy has been found to be of great value in clinical
applications. It only requires a small amount of sample
preparation [16]. /e measurement process is largely au-
tomated, and the operators do not need much professional
training. FT-IR spectroscopy has been used to diagnose
many diseases, for example, oral cancer [17], dengue fever
[18], leukemia [19], and human immunodeficiency virus
[20]. However, there has been no relevant study of the di-
agnosis of CRF patients by FT-IR spectroscopy thus far.

Since the support vector machine (SVM) algorithm was
introduced, due to its complete theory and the good results it
has achieved in practical applications, and it has attracted
widespread attention in the field of machine learning [21,
22]. /rough the kernel function, an SVM can solve the
high-dimensional space problem by using a solution ob-
tained under the linearly separable condition, thereby
avoiding the complexity of high-dimensional space [23].

Based on the above considerations, this study selected 44
patients with CRF and 54 individuals with normal renal
function and then measured the FT-IR spectra of their se-
rum./e partial least squares (PLS) algorithm was applied to
reduce the dimensions of the FT-IR spectra. /e PLS al-
gorithm projects the spectral data in the maximum co-
variance direction and decomposes the original infrared
spectrum into multiple principal component spectra. /e
principal components of different infrared spectra represent
the contributions of different components and factors to the
spectrum. /rough reasonable selection, the components
representing interference are removed, and useful main
components are selected [24]. /en, we use the Kennard–
Stone (KS) algorithm to divide the 98 samples into a training
set and a test set. /e KS algorithm considers all samples as
candidate samples of the training set and then selects certain
ones to put into the training set. First, the two vector pairs
with the longest Euclidean distance are selected to go into
the training set. In the next iteration process, the candidate
samples with the largest minimum distance are selected, and
so on, until the number of samples required by the training
set number is reached. /is method can ensure that the
samples in the training set are evenly distributed according
to their spatial distances [25]. Next, an SVMwas selected as a
classifier to build the diagnostic model, and it was optimized
by the particle swarm optimization (PSO) algorithm and the
grid search (GS) algorithm. PSO is an optimization algo-
rithm based on swarm intelligence in the field of compu-
tational intelligence. Its basic premise is derived from the
simulation of the processes involved in the migration and
aggregation of foraging birds, and its purpose is achieved
through collective cooperation and competition between
birds [26, 27]. /e GS algorithm searches a spatial grid
composed of parameters to be solved according to a certain
step size and traverses all points in the grid to find the
optimal parameters [28]. Additionally, we compared the

accuracy of the SVM with those of discriminant analysis
(DA) [29], the extreme learning machine (ELM) algorithm
[30], and the learning vector quantization (LVQ) algorithm
[31] to assess the performance of the SVM. To the best of our
knowledge, this is the first study to explore the feasibility of
detecting CRF by FT-IR spectra of serum.

2. Materials and Methods

2.1. Materials. /e fresh blood samples used in the ex-
periment were provided by a hospital in Xinjiang. When
collecting samples, we used a GFR of 90mL/min as the
cutoff value. We used this as a criterion to include the
research subjects. In addition, we excluded some preg-
nant or lactating women and patients with nephritis due
to systemic autoimmune diseases. We selected a total of
98 fresh blood samples, including 44 patients with CRF
and 54 individuals with normal renal function. We ob-
tained the patient’s right to informed consent and did not
involve any privacy of the patient in the study. First, 5 ml
of fresh blood was collected from each sample. /e blood
was then centrifuged at 4°C with a relative centrifugal
force of 4000, and the uppermost transparent liquid was
processed into serum. Finally, we put it into a centrifuge
tube and stored it in a freezer at −70°C.

2.2. Measurement of FT-IR Spectra. /e serum samples
were first removed from the freezer, and 5 μl of each
serum sample was plated on zinc selenide crystals after
liquefaction at room temperature. After drying at room
temperature for approximately 15 minutes, the plated
sample was measured by a VERTEX 70 FT-IR spec-
trometer (Bruker Corporation). /e air background data
were measured with OPUS 65 software before each
measurement of the FT-IR spectrum. /e selected res-
olution was 8 cm−1, the number of scans was 32, and the
scanning range was 700–4000 cm−1. CO2 compensation
was selected as the atmospheric compensation parameter.
Each sample was scanned 5 times and then averaged for
further analysis. /e way to collect the spectrum of the
sample is shown in Figure S1 in Supplementary Files.

2.3. Data Processing. To reduce the intensity variation be-
tween spectra, FT-IR spectral data were normalized to [0, 1].
/e operation of normalization was applied for each spec-
trum. After normalization, the spectral data contained 855
sets of intensity variables ranging from 700 to 4000 cm−1. /e
PLS algorithm was used for dimensionality reduction. /en,
the 98 samples were divided into a training set and a test set by
the KS algorithm. We used an SVM to complete the classi-
fication of CRF patients and individuals with normal renal
function. /e radial basis function (RBF) was selected as the
kernel function of the SVM, and the SVM was optimized by
PSO and the GS algorithm to find the best parameter. Finally,
we compared the accuracy of PSO-SVM, GS-SVM, DA, ELM,
and LVQ. /e experimental environment used in the study
was MATLAB 2016a.

2 Journal of Spectroscopy



2.4. Model Evaluation. Sensitivity, specificity, and accuracy
were used to assess the classifier model [32]. /ese pa-
rameters are defined as follows:

sensitivity �
TP

TP + FN
× 100%, (1)

specificity �
TN

TN + FP
× 100%, (2)

accuracy �
TP + TN

TP + FN + TN + FP
× 100%, (3)

where TP, FP, FN, and TN represent the number of true-
positive, false-positive, false-negative, and true-negative
samples, respectively; positive indicates CRF patients, and
negative indicates individuals with normal renal function.

3. Results

3.1. FT-IR Spectral Analysis. Figure 1 shows the normalized
mean FT-IR spectra of CRF patients and the normal control
group in the range of 700 to 4000 cm−1 and the difference
between the two groups. As shown in Figure 1, the FT-IR
spectra of the two groups both have characteristic peaks at
1080, 1243, 1314, 1400, 1453, 1543, 1650, 2931, and
3289 cm−1./e FT-IR spectral intensities of CRF patients are
higher than those of individuals with normal renal function
near 1080, 1243, 1314, 1400, 1454, 1543, 1650, and 2931 cm−1

and lower near 3289 cm−1. Especially, near 1543 and
1650 cm−1, the difference between the FT-IR spectra of the
two groups is obvious. We can see the difference in FT-IR
spectra at the bottom of Figure 1, and this is the basis for
differentiating the FT-IR spectra of the CRF patients from
those of the control group. To better distinguish the two
groups of FT-IR spectra, we used different algorithms to
build diagnostic models. We have added Figure S2 in
Supplementary Files, which contains all the spectra.

3.2. Feature Extraction. It is not possible to enter all spectral
data directly into the classifier as modeling variables because
this could lead to overly complex calculations [33]. /ere-
fore, it is necessary to compress high-dimensional spectral
data. In this study, the PLS algorithm was chosen to com-
press the spectrum (multidimensional spatial data) into
lower-dimensional spatial data. We determined the optimal
number of components by means of 10-fold cross-validation
(CV). By verifying the predicted error sum of squares
(PRESS) under each principal component, the number of
principal components with a small PRESS value was selected
as optimal principal component. It can be seen from
Figure S3 that the number of optimal principal component is
6.

We draw a three-dimensional figure with principal
component 2, principal component 3, and principal com-
ponent 5 as shown in Figure 2. Figure 2 shows a certain
degree of difference between CRF patients and control
subjects. To further distinguish between the two groups, an
effective classifier is needed in subsequent analysis.

3.3. Diagnostic Model. In this study, the 98 samples were
divided into training and test sets by the KS algorithm, as
shown in Table 1. /en, the SVM, DA, ELM, and LVQ were
used to classify CRF patients and members of the control
group. In the SVM model, the choice of the kernel function
has a great impact on the classification ability of the SVM.
Common types of kernel functions of SVMs include linear,
polynomial, RBF, and sigmoid [34]. Since RBF has fewer
parameters and can classify multidimensional data, we chose
RBF as the kernel function of our model [35]. In the SVM
with RBF as the kernel function, the selection of penalty
parameter C and kernel function parameter g is very im-
portant for classification accuracy; C is used to control the
degree of penalty associated with an error, and g represents
the width of the RBF, which was used to prevent overfitting
[36].

/e PSO and GS algorithms were used to optimize the
values of C and g of the SVM.We used a 10-fold CV to solve
overfitting problems when training the SVM. In the PSO-
SVM model, the PSO algorithm parameter settings were as
follows: the local search ability was 1.5, the global search
ability was 1.7, maxgen was 200, sizepop was 20, and the
ranges of C and g were [10−2, 102] and [10−2, 103], re-
spectively. /e parameters of the GS algorithm were set as
follows: the values of C and g were both [2−4, 24], and the
sizes of the search steps were all set to 0.1. Table 2 shows the
results for the five models. /e sensitivity of GS-SVM is
93.75%, the specificity is 100%, and the accuracy is 96.97%.

To further evaluate the reliability of our model, we plotted
the receiver operating characteristic (ROC) curve, as shown in
Figure 3. Table 3 lists the integration area under the ROC
curves (AUC) of five models. Table 3 shows that the AUC of
GS-SVM reached 0.969, which indicates that our diagnostic
models have a high accuracy.

4. Discussion

In summary, we first discussed the application of FT-IR
spectroscopy in combination with pattern recognition al-
gorithms in the diagnosis of CRF. It has important appli-
cations in preventing CRF from deteriorating into uremia.
By analyzing the average FT-IR spectra of CRF patients and
individuals with normal renal function, we found that there
were specific differences between the two groups of spectra.
Based on these differences, we can use serum FT-IR spectra
combined with the SVM algorithm to diagnose CRF.

Due to the metabolic abnormalities of CRF patients, the
contents of proteins, lipids, and other biomolecules in the
serum change, which may cause the shape of the FT-IR
spectra to change. Table 4 lists the main IR absorption bands
and their corresponding assignments [15–17, 37]. /e peaks
at 1080 and 1243 cm−1 correspond to the absorption of
symmetric and asymmetric stretching vibrations, respec-
tively, of P═O of nucleic acid [17]; the band at 1314 cm−1

corresponds to amide III [16]; the bands at 1400 and
1453 cm−1 are due to the stretching vibration of CH3 and
asymmetric bending vibration of CH2 in lipids, respectively
[37]; proteins contribute to the amide II peak at 1540 cm−1

(N–H bend) and the amide I peak at 1650 cm−1 (C═O
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stretch) [15]; the peak at 2931 cm−1 is due to CH2 asym-
metric stretching vibrations of lipids [17], and the peak at
3289 cm−1 corresponds to stretching vibrations of O–H of
water [17].

Compared with those of the individuals with normal
renal function, the peaks of nucleic acid (1080 and
1243 cm−1), lipids (1400, 1453, and 2931 cm−1), and proteins
(1314, 1540, and 1650 cm−1) were stronger in the FT-IR
spectroscopy of CRF patients. According to reports, lipid
metabolism disorders are common in CRF patients, and with
the deterioration of renal function, abnormal lipid metabolism
is more significant [38]. Patients with CRF have higher lipid
levels than the normal population possibly due to renal ex-
cretion disorders that cause lipids to accumulate [39]. Disor-
ders of lipid metabolism in the serum of CRF patients will
aggravate kidney disease, severely damage kidney function, and
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Figure 1: Comparison of the normalized mean FT-IR spectra between patients with CRF and individuals with normal renal function.
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Figure 2: /ree-dimensional scatter plot of the three principal components after PLS feature extraction. Red spheres represent CRF
patients, and blue spheres represent control subjects.

Table 1: Division of CRF patients and control subjects.

Total Healthy CRF
Training set 65 37 28
Test set 33 17 16
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cause harm to the cardiovascular system, increasing the inci-
dence of cardiovascular disease [40]. In addition, the FT-IR
spectral intensities of CRF patients were significantly higher
near 1543 and 1650 cm−1 than those of the individuals with
normal renal function. We can preliminarily conclude that

there is a certain difference in the amide II band and amide I
band of proteins between CRF patients and individuals with
normal renal function. In summary, this study serves as ex-
ploratory research. As a result of the complexity of serum,more
research is urgently needed to further understand the possible
changes in the serum composition of CRF patients.

5. Conclusion

In this paper, we analyzed and compared the serum FT-IR
spectra of 44 patients with CRF and 54 individuals with
normal renal function. /e PLS algorithm was used to
compress high-dimensional spectral data. /e KS algorithm
was used to divide samples, which can improve the repre-
sentation of the samples. We selected an SVM algorithm as
the classification algorithm to build the diagnostic model.
/rough analysis and comparison, GS-SVM was found to
have the best performance. /e sensitivity of the GS-SVM
diagnostic model was 93.75%, the specificity was 100%, and
the accuracy was 96.97%, which indicated that the GS-SVM
model proposed by our research group has good reliability.
Given that this was an exploratory study, the number of
samples we collected was limited. In the next step, we will
increase the sample size to verify this exploratory study and
further evaluate the effects of using FT-IR spectroscopy to
diagnose CRF, providing an efficient, low-cost, noninvasive,
and reliable diagnostic method for CRF diagnosis.

Data Availability

/e data used to support the findings of the study are
available from the corresponding author upon request.
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Table 2: Performance of PSO-SVM, GS-SVM, DA, ELM, and LVQ.

Algorithm Sensitivity (%) Specificity (%) Accuracy (%)
PSO-SVM 87.50 100 93.94
GS-SVM 93.75 100 96.97
DA 87.50 94.12 90.91
ELM 63.75 90.59 77.58
LVQ 36.25 97.65 67.88

Table 3: AUC values of the five models.

Algorithm PSO-SVM GS-SVM DA ELM LVQ
AUC 0.938 0.969 0.908 0.772 0.669

Table 4: /e main IR absorption bands and their corresponding
assignments.

Wave number (cm−1) Assignment
1080 ]s(P═O) of nucleic acid
1243 ]as(P═O) of nucleic acid
1314 Amide III band
1400 ](CH3) of lipids
1453 δas(CH2) of lipids
1543 Amide II band
1650 Amide I band
2931 ]as(CH2) of lipids
3289 ](O–H) of water
Note. ]: stretching vibrations; δ: bending vibrations; s: symmetric; as:
asymmetric.
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