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Given the extensive use of antibiotics at present, the identification of antibiotics and production quality monitoring are of high
importance. However, conventional antibiotic identification methods have a low sensitivity and a long detection time. Here, we
propose an identification method that combines terahertz (THz) spectroscopy and chemometric technology. THz time-domain
spectroscopy (THz-TDS) was performed for sixteen types of antibiotics, including β-lactam, cephalosporins, macrolides, and
tetracyclines. -e absorption spectra within the frequency range of 0.2–1.5 THz were calculated. For dimensionality reduction,
principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) were implemented, respectively.
-e data after dimensionality reduction were input into a support vector machine (SVM). -e model parameters were optimized
through grid search (GS), genetic algorithm (GA), and particle swarm optimization (PSO)methods, and the optimal identification
results were obtained after comparison across these methods. Experiments indicate a differentiation of the THz absorption spectra
among the sixteen types of antibiotics. After dimensionality reduction, the training time of the model significantly decreased. -e
use of the t-SNE-PSO-SVMmodel achieved the highest average accuracy on the prediction set, which was 99.91%.-us, our study
does not only confirm that the t-SNE-PSO-SVM model proves to be a reliable method for antibiotics identification, but also
confirms that the combination of THz-TDS and chemometric pattern recognition has great potential for drug detection.

1. Introduction

Antibiotics are a large class of antibacterial chemical sub-
stances that occur naturally or are semisynthetic or syn-
thetic. -ere are a great variety of antibiotics, which are
further divided into seven major classes, namely, tetracy-
clines, macrolide antibiotics, aminoglycosides, peptide an-
tibiotic, lincosamides, streptogramins, and β-lactam
antibiotics [1]. Nearly every bacterium has a specific anti-
biotic against it. Antibiotics are mainly used to treat various
types of bacterial infections in humans or in livestock to
promote their growth. However, the problem of antibiotic
residues has become increasingly severe due to excessive
antibiotics use. -erefore, antibiotics detection and identi-
fication is of high importance [2]. In the past few decades,

numerous efforts have been made to develop analytical
methods for qualitative or quantitative determination of
antibiotics. Conventional methods for antibiotics detection
mainly include high-performance liquid chromatography
(HPLC) [3] and gas chromatography mass spectrometry
(GC-MS) [4]. Although these chromatography-based
techniques are sensitive and reliable, they are usually time-
consuming. Capillary electrophoresis (CE) [5], immuno-
chemistry [6], and enzyme-linked immunosorbent assay
(ELISA) [7] can achieve high-accuracy detection of antibi-
otics. However, these procedures usually involve complex
sample preprocessing, which needs to be done by well-
trained professionals. -e expensive costs of surface plas-
mon resonance (SPR) sensors [8] and Raman spectroscopy
[9] have restricted their extensive application. Given the
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above, it is necessary to establish a sensitive, fast, and reliable
method for antibiotics detection [10].

-e THz band has a wave frequency ranging between 0.1
and 10 THz, which is between the infrared and microwave
frequencies. -e THz waves are transient, safe (single
photon energy, 4.1meV) and highly penetrating, and have
fingerprinting properties [11]. THz-TDS has already found
extensive applications in biological tissue identification
[12, 13], food and drug detection [14, 15], and explosive
detection [16]. -e vibration-rotation energy levels of such
macromolecules as antibiotics are located within the THz
band. As compared with other spectral detection methods,
THz spectroscopy exhibits unique advantages. THz spec-
troscopy can detect not only molecular spinning and lattice
vibration but also the inner structure and organizational
features of the drugs. Limwikrant et al. [17] obtained the
THz spectra of ofloxacin and complex of oxalic acid. Zhang
et al. [18] analyzed the molecular vibration modes of
piracetam and 3-hhydroxybenzoicacid. Zhang et al. [19]
obtained the THz fingerprinting spectra of metronidazole,
tinidazole, and ornidazole. Xie et al. [20] showed through
DFT calculation that tetracycline had definitive THz ab-
sorption spectra at certain frequencies. Many studies have
demonstrated the feasibility of applying THz spectroscopy to
antibiotics detection. Qin et al. [21–24] applied THz spec-
troscopy to the detection of tetracycline hydrochloride and
achieved good results. Massaouti et al. [25], Wang et al. [26],
and Long et al. [27] used a similar method, the quantitative
detection of antibiotics in the samples.

-e THz technology offers extensive applications in the
research fields of pesticide and antibiotic identification and
residual pesticide detection [28]. Many studies have shown
that THz spectroscopy is a feasible detection technique for
antibiotics. Most of the studies focus on quantitative de-
tection of antibiotics, though the use of THz spectroscopy
to identify antibiotics has been rarely reported. Yan et al.
[29] applied three-layer BP neural networks to identify
absorption spectra of nine illicit drugs and six antibiotics,
but the average identification rate was low. In this study,
THz-TDS was applied to the detection of sixteen types of
antibiotics, including penicillins, cephalosporins, macro-
lides, and tetracyclines. -en, the THz absorption spectra
of these antibiotics were calculated. Dimensionality re-
duction was performed using principal component analysis
(PCA) and t-distributed stochastic neighbor embedding (t-
SNE). Next, pattern recognition was performed using the
GS-SVM, GA-SVM, and PSO-SVM models, and the best
identification model was found by comparison. -us, a
novel method for fast and reliable antibiotics identification
was established.

2. Materials and Methods

2.1. Terahertz Spectroscopy System. A Z-3 Time-Domain
Spectrometer (Zomega, USA) was used for the experiments.
-e system was located within a closed hood during the
measurement process to reduce the influence of water vapor.
-e ambient temperature was controlled at 23°C, and hu-
midity was below 2%. -e THz-TDS parameters were set as

follows: wavelength of the femtosecond laser system 800 nm,
frequency 80MHz, pump light intensity 100mW, probe
light intensity 20mW, scan stroke 50 ps, useful spectral
range 0.2–2 THz, and dynamic range above 70 db. All the
experiment process was shown in Figure 1.

2.2. Sample Preparation. Sixteen types of antibiotics, in-
cluding β-lactam, tetracyclines, macrolides, and cephalo-
sporins, were used. -e name, class, and main ingredient of
these antibiotics are shown in Table 1. First, the drug samples
were ground in an agate mortar to avoid scattering of the
THz waves caused by particle heterogeneity and also to
increase the signal-to-noise ratio. -en a certain amount of
the sample was weighed and placed on the automatic tablet
press, with the pressure set to 2 tons and pressure main-
tenance time of 1min. A digital caliper (precision 0.02mm)
was used to measure the thickness of the sample tablets.
-us, 40 samples were prepared for each of the 16 types of
antibiotics and used to detect THz absorption spectra. Fi-
nally, the 640 samples were randomly divided into a training
set (16∗ 30 samples) and a test set (16∗ 10 samples).

2.3. Data Processing. -e THz time-domain spectral in-
formation of the samples was obtained. -e reflection peaks
were removed by empirical mode decomposition [30].
Denoising was done by Savitzky–Golay filtering, followed by
Fourier transform to convert the time-domain information
to the frequency-domain information. -e model was
extracted based on the optical parameters proposed by
Dorney et al. [31] and Duvillaret et al. [32], and the ab-
sorption coefficient of the sample α(ω) was calculated.

ρ(ω) �
As

Ar

, (1)

φ(ω) � φs − φr, (2)

where ρ(ω) is the amplitude ratio; As is the signal amplitude
of the sample; Ar is the signal amplitude of the reference;
φ(ω) is the phase difference; φs is the phase of the sample;
and φr is the phase of the reference.

-e index of refraction and absorption coefficients are
calculated using the formulae below:

n(ω) � φ(ω)
c

ωd
+ 1, (3)

α(ω) �
2
d
In

4n(ω)

ρ(ω)[n(ω) + 1]
2􏼨 􏼩, (4)

where n(ω) is the index of refraction; α(ω) is the absorption
coefficient; c is the speed of light in a vacuum; ω is the
angular frequency; and d is the sample thickness.

3. Results and Discussion

3.1. Spectral Analysis. THz-TDS was performed for the
sixteen types of antibiotics shown in Table 1. -e THz time-
domain spectra thus obtained are shown in Figure 2(a), and

2 Journal of Spectroscopy



on this basis, the frequency-domain spectra and absorption
spectra were calculated. -e spectra corresponding to the
frequency from 0.2 to 1.5 THz are shown in Figures 2(b) and
2(c). -e sixteen types of antibiotics were barely differen-
tiated by the time-domain and frequency-domain spectra.
Some of the antibiotics shared the same absorption peaks,
and the antibiotics could not be differentiated by the spectral
features alone. To solve this problem, we introduced che-
mometric pattern recognition and established identification
models.

3.2. Visualization of the Sample Classification. PCA can
reduce a large number of intercorrelated indicators into a
group of fewer and nonintercorrelated synthetic indicators.
PCA usually consists of the following steps [33]. First,
calculate the covariance matrix of the sample data, and then
calculate the eigenvalues of the covariance matrix and the
corresponding orthogonal unit eigenvectors. Sort the ei-
genvalues, and choose the maximum eigenvalues and the
corresponding eigenvectors. Convert the data to the new
space constructed by these eigenvectors. PCA can effectively
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Figure 1: Experimental layout of terahertz spectroscopy system.

Table 1: Information for the sixteen types of antibiotics.

Drug name Class Main ingredient Abbreviation Molecular formula of the main ingredient
Minocycline hydrochloride capsule Tetracyclines Minocycline MNO C23H27N3O7
Oxytetracycline tablets Tetracyclines Oxytetracycline OXY C22H24N2O9
Ofloxacin tablets Other Ofloxacin OFX C18H20FN3O4
Ornidazole capsule Other Ornidazole ORN C7H10CIN3O3
Fosfomycin calcium and trimethoprim
capsule Other Fosfomycin POS C3H7O4P

Metronidazole Tablets Other Metronidazole MID C6H9N3O3
Azithromycin enteric-coated capsule Macrolides Azithromycin AZM C38H72N2O12
Dirithromycin enteric-coated tablet Macrolides Dirithromycin DIR C42H78N2O14
Clarithromycin sustained-release tablet Macrolides Clarithromycin CLR C38H69NO13
Cefadroxil and trimethoprim capsule Cephalosporins Cefadroxil CFR C16H17N3O5S
Cefetamet pivoxil hydrochloride tablet Cephalosporins Cefetamet CAT C20H25N5O7S2
Cefdinir dispersible tablet Cephalosporins Cefdinir CDR C14H13N5O5S2
Cefixime dispersible tablet Cephalosporins Cefixime CEC C16H15N5O7S2
Cefuroxime axetil tablet Cephalosporins Cefuroxime CXM C16H16N4O8S
Potassium clavulanate β-lactam Clavulanic acid AMC C8H9NO5
Amoxicillin capsule β-lactam Amoxicillin AMX C16H19N3O5S
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restore the original data and solve the problems of infor-
mation overlap and multicollinearity while reducing the
dimensionality of data.

t-SNE is a method that introduces a t-distribution to
optimize the crowding problem suffered by the original SNE
algorithm [34]. -e core principle of t-SNE is to perform
similarity modeling of the data points by using a normalized
Gaussian kernel in the high-dimensional space and by using
a t-distribution in the low-dimensional space. Following this
principle, there will be a higher probability of similar points
being selected and a lower probability of nonsimilar points
being selected.

-is algorithm consists of the following steps [35]:
First, represent the similarity between the two data

points by conditional probability.

pj|i �
exp − xi − xj

�����

�����
2
/2σ2i􏼒 􏼓

􏽐k≠iexp − xi − xk

����
����
2/2σ2i􏼒 􏼓

. (5)

-en, represent the joint probability distribution of the
low-dimensional data by a t-distribution with a degree of
freedom of 1.

qj|i �
1 + yi − yj

�����

�����
2

􏼒 􏼓
− 1

􏽘
k≠i

1 + yi − yk

����
����
2

􏼒 􏼓
−1. (6)

Finally, obtain the optimal simulation points by gradient
descent that minimizes the KL divergence of all points. -us,
samples in the low-dimensional subspace are obtained. Make
sure that the probability distribution qj|i of data mapped into
the low-dimensional space can effectively simulate the
probability distribution in the high-dimensional space pj|i.

C � 􏽘
i

KL Pi Qi

����􏼐 􏼑 � 􏽘
i

􏽘
j

pj|ilog
pj|i

qj|i

. (7)
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Figure 2: THz spectra of different types of antibiotics. (a) THz time-domain spectra. (b) THz frequency spectra. (c) THz absorbance spectra.
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For the selected frequency band, the number of di-
mensions of data from the absorption spectra was as high as
143. In order to reduce the training time of the model and to
increase the accuracy of the identification models, dimen-
sionality reduction was performed using PCA and t-SNE,
which was followed by pattern recognition using different
models. -en, different methods were compared to find the
optimal dimensionality reduction method for antibiotics
identification. PCA was applied to the absorption spectra of
640 samples (16∗ 40). Figure 3(a) shows the 3D distribution
of the principal components of the absorption spectra for
different antibiotics.-ree principal components (PC1, PC2,
and PC3) were identified, and their contribution rates were
86.62%, 10.23%, and 1.13%, respectively. -e sum of the
contribution rates of the three principal components was
97.98%. -erefore, these three principal components could
sufficiently represent the original absorption spectra.
Figure 3(b) shows the 3D distribution of the different an-
tibiotics visualized by t-SNE. It is clear to see that the di-
vergence of the samples in Figure 3(b) is far higher than that
in Figure 3(a).-e samples were well clustered together, with
few overlaps between different classes.

3.3. Identification Analysis. After dimensionality reduction
by either PCA or t-SNE, the new data matrix (640
samples× 3 dimensions) was used to replace the original
spectral data matrix (640 samples× 143 dimensions). -e
640 samples were randomly divided into a training set
(16∗ 30� 480 samples) and a test set (16∗ 10�160 samples).
-e parameters of the SVM model were trained using the
training set. -en, SVM was, respectively, combined with
GS, GA, and PSO to optimize the model parameters [36, 37].
Finally, the prediction accuracy of the model was evaluated
using the test set. -e optimal combination of dimension-
ality reduction method and model parameter optimization
was determined by comparison. -us, the optimal identi-
fication model for the THz spectra of the antibiotics was
established.

Here, the identification model was built based on an
SVM. An SVM is a supervised machine learning algorithm.
In SVMs, the optimal decision hyperplane is found that
maximizes the distance from the two sides of the hyperplane
to the two classes of samples nearest to the hyperplane. In
this way, good generalization is achieved for identification.
-e performance of an SVM mainly depends on the penalty
factor c and kernel parameter g of the model. -e model
should be trained to achieve the optimal identification result,
and the optimal model parameters should be chosen. To do
this, parameters c and g were first optimized by grid search
(GS). -en, GS was combined with different dimensionality
reduction methods to establish the No-GS-SVM, PCA-GS-
SVM, and t-SNE-GS-SVM models. -e optimal cross-val-
idation accuracy (CVAccuracy) of each model was deter-
mined using 5-fold cross-validation, along with the
prediction accuracy of this model on the training set and test
set. -e results are shown in Table 2. Figure 4 shows the
results of parameter optimization by GS-SVM. Figure 4(a)
shows the 3D results of parameter selection by No-GS-SVM,

with the CVAccuracy being 99.5833%. Figure 4(b) shows the
3D results of parameter selection by PCA-GS-SVM, with the
CVAccuracy being 99.7917%. Figure 4(c) shows the 3D
results of parameter selection by t-SNE-GS-SVM, with a
CVAccuracy of 100%. It is clear to see that the recognition
accuracy was the highest after dimensionality reduction with
t-SNE.

A genetic algorithm (GA) and particle swarm optimi-
zation (PSO) were introduced to find the optimal combi-
nation of parameters c and g to further improve the
prediction accuracy.-e initial population size was set to 20,
and the number of iterations was 50. -e CVAccuracy,
training set accuracy, and prediction set accuracy of No-GA-
SVM, PCA-GA-SVM, and t-SNE-GA-SVM under 5-fold
cross-validation are shown in Table 2. -e fitness curves of
the three models are presented in Figure 5. Figure 5(a) shows
the fitness curve of No-GA-SVM, with a CVAccuracy of
99.7917%; Figure 5(b) shows the fitness curve of PCA-GA-
SVM, with a CVAccuracy of 100%; Figure 5(c) shows the
fitness curve of t-SNE-GA-SVM, with a CVAccuracy also of
100%. As compared to the GA, PSO does not include
crossover and mutation operations, and the global optimum
is searched by tracking the current optimal value. For this
reason, the accuracy of PSO is higher. -e initial population
size was set to 20, and the number of iterations was 50. -e
CVAccuracy, training set accuracy, and prediction set ac-
curacy of No-PSO-SVM, PCA-PSO-SVM, and t-SNE-PSO-
SVM under 5-fold cross-validation are shown in Table 2.-e
fitness curves of the three models are shown in Figure 6.
Figure 6(a) is the fitness curve of No-PSO-SVM, with a
CVAccuracy of 100%; Figure 6(b) is the fitness curve of
PCA-PSO-SVM, with a CVAccuracy of 100%; Figure 6(c) is
the fitness curve of tSNE-PSO-SVM, with a CVAccuracy
also of 100%. -e optimal recognition accuracy was reached
after PSO.

As shown in Table 2, under 5-fold cross-validation, the
CVAccuracy of the same SVM model combined with t-SNE
was higher than that of the SVMmodel combined with PCA
or the SVMmodel without dimensionality reduction. When
the same dimensionality reduction method was used, PSO-
SVM exhibited the best identification performance com-
pared to GA-SVM and GS-SVM.

PCA and t-SNE were, respectively, combined with GS-
SVM, GA-SVM, and PSO-SVM. -e samples were ran-
domly divided into a training set and test set. Each model
was run 100 times to calculate the average training accuracy,
average prediction accuracy, and average time consumption.
-e comparison results are shown in Table 3. For the same
recognition model, both the average training accuracy and
prediction accuracy were higher with dimensionality re-
duction than without dimensionality reduction. t-SNE was
consistently superior to PCA for dimensionality reduction
for the THz spectra of antibiotics and also better than no use
of dimensionality reduction. Additionally, the training time
of the model was significantly shortened after dimension-
ality reduction. -e time of a single training run after di-
mensionality reduction with PCA was shorter than that with
t-SNE. -is comprehensive comparison indicated that of 9
recognition models, t-SNE-PSO-SVM had the highest
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Table 2: Parameters of grid search, GA and PSO.

Chemometric
method

Features
selection
method

Best c Best g Population Iteration Cross-
validation

CVAccuracy
(%)

Training set
accuracy (%)

Test set
accuracy (%)

GS-SVM
No 0.32988 1 — — 5 99.5833 99.7917 98.75
PCA 0.32988 0.32988 — — 5 99.7917 99.7917 100
t-SNE 0.18946 0.011842 — — 5 100 100 98.125

GA-SVM
No 6.8678 0.58479 20 50 5 99.7917 99.7917 99.375
PCA 13.1126 1.5594 20 50 5 100 100 99.375
t-SNE 0.92001 0.72413 20 50 5 100 100 100

PSO-SVM
No 0.1 0.1 20 50 5 100 100 99.375
PCA 10.2413 0.60183 20 50 5 100 100 99.375
t-SNE 12.591 0.1 20 50 5 100 100 100
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Figure 3: -e visualization plots of different types of antibiotics by PCA and t-SNE. (a) -ree-dimensional map of the first three PCs.
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average prediction accuracy of 99.91%. -erefore, t-SNE-
PSO-SVM was better for the recognition of THz spectra of
antibiotics and had higher practical application value.

4. Conclusions

-e present study was mainly concerned with antibiotics
identification based on THz-TDS. Antibiotics come in many
forms, and their direct differentiation may be impossible. We
found that the THz time-domain spectra and absorption
spectra only displayed minor differences between different
antibiotics, which made direct differentiation difficult. -ere-
fore, chemometric pattern recognition was introduced to build
recognition models for antibiotics. PCA and t-SNE were, re-
spectively, used for feature selection and dimensionality re-
duction. -en, these two methods were combined with GS-
SVM, GA-SVM, and PSO-SVM to build the identification
models. -e optimal model was chosen after parameter

optimization and comparative analysis. -e experiments
showed that the training time of the identification model was
significantly shortened after dimensionality reduction, and the
recognition accuracy was higher with t-SNE than with PCA.
-e comprehensive comparison indicated that t-SNE-PSO-
SVM had the highest average prediction accuracy among all
models, which was 99.91%. -erefore, t-SNE-PSO-SVM was
more suitable for antibiotics identification. Our study also
confirmed that the combination of THz-TDS and chemometric
pattern recognition has great potential for drug detection.

Data Availability

-e data used to support the findings of this study have not
been made available because the experimental data involved
in the paper are all obtained based on our own designed
experiments and need to be kept confidential, we are still
using it for further research.
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Figure 6: Fitness curve of PSO. (a) Fitness curve of No-PSO-SVM (best c� 0.1, g� 0.1, and CVAccuracy� 100%). (b) Fitness curve of PCA-
PSO-SVM (best c� 10.2413, g � 0.60183, and CVAccuracy� 100%). (c) Fitness curve of t-SNE-PSO-SVM (best c� 12.591, g � 0.1, and
CVAccuracy� 100%).

Table 3: Identification results of all chemometric methods.

Chemometric method Features selection method Mean accuracy in calibration set
(%)

Mean accuracy in prediction set
(%) Training time (s)

GS-SVM
No 99.15 98.19 96.61
PCA 99.48 99.71 19.77
t-SNE 99.85 99.79 22.76

GA-SVM
No 99.34 99.14 118.29
PCA 99.64 99.76 28.79
t-SNE 99.90 99.81 55.83

PSO-SVM
No 99.77 99.68 243.59
PCA 99.81 99.67 47.04
t-SNE 99.82 99.91 53.26
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