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Discrimination and identification of melanoma (a kind of skin cancer) by using laser-induced breakdown spectroscopy (LIBS)
combined with chemometrics methods are reported. -e human melanoma and normal tissues are used in the form of formalin-
fixed paraffin-embedded (FFPE) blocks as samples. -e results demonstrated higher LIBS signal intensities of phosphorus (P),
potassium (K), sodium (Na), magnesium (Mg), and calcium (Ca) in melanoma FFPE samples while lower signal intensities in
normal FFPE tissue samples. Chemometric methods, artificial neural network (ANN), linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), and partial least square discriminant analysis (PLS-DA) are used to build the classification
models. Different preprocessing methods, standard normal variate (SNV), mean-centering, normalization by total area, and
autoscaling, were compared. A good performance of the model (sensitivity, specificity, and accuracy) for melanoma and normal
FFPE tissues has been achieved by the ANN and PLS-DA models (all were 100%). -e results revealed that LIBS combined with
chemometric methods for detection and discrimination of human malignancies is a reliable, accurate, and precise technique.

1. Introduction

Cancer is an increasing concern worldwide and has become
a major threat to human health. -e leading causes of death
are still due to various types of cancers. Skin cancer is one of
the most frequently diagnosed types of cancer worldwide.
For the identification and diagnosis of melanoma skin
cancer analytical methods such as synchrotron radiation
microanalysis (SXRF) [1–3], or transmission electron mi-
croscopy combined with energy dispersive X-ray analysis
(TEM-EDX) [4, 5], laser ablation inductively coupled plasma
spectrometry, mass spectrometry (LA-ICP-MS) [5–8], and
Raman Spectroscopy are already used [9]. In terms of LIBS
sensitivity and spatial resolution with other techniques such
as LA-ICP-MS, TEM, Nano-SIM (nanosecondary ion mass
spectrometry), EPMA (electron probe micro-analysis),
TEM, and SEM (scanning electron microscope), as indicated
in [1], which illustrated that LIBS achieves micrometer scale
resolution with part-per-million range sensitivities. -e

LIBS detection range is muchmore than other techniques. In
brief, comparison of LIBS feature that LIBS is better than
XRF is as follows: for example, elemental detection range,
isotope detection, spectral line interference, lateral spatial
resolution, spatial resolution of depth, surface contamina-
tion sensitivity, rapidity of analysis, and safety during use
[3]. Micro-SXRF is ideal for elemental mapping and
chemical speciation with a spatial resolution down to less
than 100 nm and a detection limit in the order of less than
parts per million because of its high brightness and linear
polarized existence [5].-e sensitivity and resolution given
by SXFR or microXRF is very high and is primarily used for
Cu, Fe, and Zn imaging. Quantification with SXRF, however,
remains difficult and appropriate calibration requirements
should be achieved in an appropriate matrix [6, 7]. LIBS has
been the only all-optical technique that is entirely consistent
with optical microscopy, providing part-per-million-range
sensitivity (accessible for most metals) andmicrometer-scale
resolution [8]. -e acquisition rate can be very high in LIBS
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since it is constrained only by the speed of the detector and
the frequency rate of the laser. A pace of acquisition up to
kilohertz has already been seen [9]. Although these analytical
approaches showed high performance in terms of spatial
resolution and sensitivity, their relatively slow analysis and
the complexity of the required equipment make their use
rather restrictive and difficult for routine medical diagnosis.
-erefore, it is important to develop a precise and accurate
method to identify and differentiate the melanoma samples
from the normal.

In recent years, laser-induced breakdown spectroscopy
(LIBS) has become a well-recognized and valuable analytical
spectroscopic technique for the identification and analyses
of different tissues with the ability to detect all the elements
on the periodic table, including low- and high-Z elements
[10–12]. Some additional advantages of LIBS are acknowl-
edged such as its ability to work at room temperature and
atmospheric pressure, ease of use, simplicity in apparatus,
full compatibility with optical microscopy, and the prospect
of standoff and on-site operations, and there is no sample
size or shape restrictions. In LIBS, the laser pulse is focused
on the sample surface. Plasma can be formed if the irra-
diance at the focal spot overreach a specific threshold valued.
Excitation and deexcitation of ions and atoms in the plasma
of the ablated sample will give out fingerprint emission of the
different elements. -e chemical components of the samples
can be firmed by analysing atomic and ionic emissions, and
the sample can then be discriminated and classified [13].

In the literature, LIBS has been widely used to investigate
various types of malignancies discrimination. Kumar et al.
used LIBS spectra intensities difference ratios of various
elements of the histological sections of dog liver, to dis-
tinguish normal liver and hemangiosarcoma [14]. Han et al.
used LIBS spectra in the presence of argon flow rate� 15 L/
min of mice sample (in the form of tissue and pellets) for a
distinction of surrounding dermis and melanoma via LDA
model for quantitative analysis difference of magnesium and
calcium [13]. Gaudiuso et al. usedmice blood and tissues as a
sample, for the early diagnosis of melanoma; they obtained
an accuracy of up to 96% [15]. To the best of our knowledge,
here we, for the first time, evaluated the use of LIBS to obtain
elemental analyses, the classification and discrimination of
paraffin-embedded human biopsies of healthy and malig-
nant skin tissues combined with chemometric methods.

In the present work, LIBS combined with chemometrics
approaches has been used for investigations and discrimi-
nations of human melanoma FFPE tissue samples instead of
animal samples. We performed our experiment in an open
environment while using no inert gasses during sample
ablation in experiments. We also investigate the perfor-
mance of the model for different types of input data (10 lines
intensities, 27 lines intensities, and all lines intensities). For
precise and quantified results, data preprocessing plays a
vital role. -e analyst uses different procedures for data
analysis. -e main difference in the results can come from
the use of different algorithms to perform deionizing and/or
baseline subtraction [16, 17], to extract the emission signals
for the selection of spectral line analysis. We also proposed
different preprocessing methods like standard normal

variate (SNV), autoscaling (auto), mean-centering (mean),
and normalization by area (norm). We investigated which
preprocessing method performed better and which data set
line intensity is suitable in ANN, QDA, LDA, and PLS-DA
models by comparing their impacts on the final classification
accuracies, respectively. -e performances of the models are
determined in terms of accuracy, sensitivity, and specificity
along with suitable preprocessing methods, and also re-
ported P (phosphorus) line of the FFPE tissue samples, while
the above-reported results about melanoma references
[13, 15] did not report any P lines in their spectra because of
mice samples (tissue, pellets, and blood) and earlymelanoma
diagnosis. Based on these results, we analysed distinguish-
able elements from melanoma FFPE tissues, reflecting the
clinical situation.

2. Experimental Setup and Samples

2.1. LIBS Experimental Setup. As shown in Figure 1, a flash-
pumped Q-switched Nd: YAG laser at 1064 nm with pulse
duration 5 ns, repetition frequency 1Hz, energy 64mJ/pulse,
and beam diameter ∅6mm was used as the excitation
source. -e laser pulse was focused on the sample surface by
three mirrors and a convex lens with a 100mm focal length.
-e fiber with a diameter ∅ 600 μm was used to collect
plasma emission by another convex lens with a 36mm focal
length. Two-channel spectrometer (AvaSpec 2048-2-USB2
and Avantes) was connected to the outlet of optical fiber.-e
samples were placed on a 3D translation stage in order to
ablate the fresh tissue samples spots. -e coverage range of
the spectrometer was 190 nm–1100 nm with 0.2∼0.3 nm
resolution. A digital delayer (SRS-DG535, Stanford Research
System) and a photodetector were also used in the system.
When the laser signal is detected by a photodetector, the
spectrometer was triggered by DG535 after a preset delay
time, 1.28 μs in our case, to reduce the bremsstrahlung
radiation.-e time of integration of CCD detector was set to
2ms. -e experiment was performed in an open environ-
ment without any buffer gasses.

2.2. Samples. -e melanoma and normal FFPE tissues were
used as the samples in the study; some images of samples are
shown in Figure 2 before and after laser ablation. -e
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Figure 1: LIBS experimental setup.
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samples were collected from the Origene Technologies Inc.
of America with ethical permission from the Chinese custom
Authority.

Based on the anatomic level of invasion of the layers of
skin and vertical thickness of the lesion in millimetres, two
classification schemes have been developed for skin cancer.
For accurate prediction of future tumour behaviour, the
most exclusive classification, the Breslow classification
scheme is used recently. -e stage of thin (T1) melanoma
was classified by Clark level from the last decades [18]. In our
research, the normal FFPE samples were collected from stage
I melanoma patients and the melanoma FFPE samples were
from stage III C patients. -e number of the normal and the
melanoma spectra was 111, respectively.

2.3. Data Preprocessing. Usually, due to interference of
surrounding air, fluctuation of laser energy, and inho-
mogeneity of sample surface, spectral fluctuations are
produced between the measurements of each pulse. To
reduce data fluctuations, suitable preprocessing methods
are needed [19]. For obtaining a reliable data matrix, proper
preprocessing of the raw data is very important, to perform
the actual statistical analysis. In addition, proper data
preprocessing appreciably upgrade and clarify the data
analysis [20–22]. Four types of preprocessing methods are
used in the present study, that is, autoscaling, normali-
zation by total area, mean-centering, and SNV. -e scaling
process gives equal importance to all data sets and should
not be suitable for noisy (i.e., poor signal-to-noise ratio)
data [22].

2.4.ClassificationModels. In the present study, four types of
classification models (ANN, PLS-DA, LDA, and QDA) are
used on the four types of different preprocessing methods
(autoscaling, mean-centering, normalization by total area,
and SNV). For ANN networks, feedforward networks are
used because of their excellent ability of self-adapting and
self-learning. -e two common and principal network
types of feedforward networks are radial basis function

(RBF) and multilayer perceptron (MLP). For data analysis
when ANN is used, it is very essential to determine between
the ANN model (the network’s arrangement) and ANN
algorithms (computation that eventually produces the
network output). -e network that has been constructed
for an application is ready to be trained.-ere are two types
of training approaches, which are supervised and unsu-
pervised. A fully connected ANN is used most frequently,
with a backpropagation learning rule supervised network.
ANN model of this type is better for discrimination pur-
poses [23].

PLS-DA is one of the supervised methods and needs a
learning step prior to its application to unknown samples.
-e interclass difference increases while the intraclass
difference decreases in the PLS-DA model, which
revealed the model recognition ability. PLS-DA model is
very suitable for binary classification, while complexity
will increase in the case of multiclassification PLS-DA
model [24]. PLS-DA has also been applied to the clas-
sification of LIBS data and discriminates the tissue
samples [25].

For classification purposes, both LDA and QDA are also
used and achieved good accuracy results [26, 27]. LDA and
QDA models are derived from simple probabilistic models,
which model the class conditional distribution of the data P
(X|y� k) for each k class. Bayes rules are used for predicting
the class as shown in

P(y � k|X) �
P(X|yt � nk)P(y � k)

􏽐lP(X|yt � nl)P(y � l)
, (1)

where X and y are events, P (y� k|X) is a conditional
probability, and k is the class which maximizes the condi-
tional probability.

Sensitivity is the ability of a test which decides the disease
cases correctly, while specificity is defined as the ability of a
test which decides and determines the healthy cases. Sim-
ilarly, accuracy is defined as the ability of a test to demarcate
the disease and healthy cases precisely. Sensitivity, speci-
ficity, and accuracy are calculated by the following equa-
tions, respectively:

Figure 2: -e images of FFPE normal and melanoma tissues on glass slides, before and after laser ablation: (a) normal FFPE tissue before
laser ablations; (b) after laser ablation; (c) melanoma FFPE tissue before laser ablations; (d) after laser ablation, also laser-ablated seen.
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sensitivity �
TP

TP + FN
× 100%, (2)

specificity �
TN

TN + FN
× 100%, (3)

accuracy �
TP + TN

TP + TN + FP + FN
× 100%, (4)

where (TP) is true-positive, the number of cases precisely
recognized as a disease, (FP) is false-positive, the number of
cases incorrectly identified as a disease, (TN) is true-nega-
tive, the number of cases precisely recognized as healthy, and
(FN) is false-negative, the number of cases incorrectly
identified as healthy.

3. Results and Discussion

3.1. LIBS Spectra Measurement Results. -e typical LIBS
spectra of human melanoma and normal FFPE tissue
samples are illustrated in Figure 3(a), which is the average of
111 spectra in the spectral range of 200–900 nm of each
sample. -e LIBS spectra are usually normalized for dis-
crimination purposes to reduce the spectral fluctuations that
are produced due to the matrix effects and experimental
variations. -e normalization is operated comparatively to a
specific line. -e Carbon C 247.482 nm line is used for
normalization purposes because the C emission is a specific
line [13]. Carbon C 247.482 nm is used for normalization
purposes because the C emission is firmed among all the
measurement of LIBS spectra. -e normalized LIBS spectra
of the samples in the spectral region of 200 to 900 nm are also
illustrated in Figure 3(b). Emission lines of magnesium Mg
II, Mg I, calcium Ca I, Ca II, iron Fe I, phosphorus PII,
sodium Na I, potassium K I, hydrogen H, oxygen OI, and
CN molecular bands (386–389 nm) are observed in the
melanoma and normal FFPE tissue samples spectra. -e
spectral intensities of the melanoma and normal FFPE tissue
samples are different. For example, the intensities of Ca II
(393.366 nm and 396.847 nm), Ca I (422.67 nm), P I
(531.607 nm), and K I (766.5 nm and 769.9 nm) in mela-
noma FFPE tissue sample are stronger as compared to those
in normal FFPE tissue sample. It is notable that the spectral
data intensities and ratio between them are very important
for the classification purpose of FFPE tissue samples.

For further classification analysis, these 27 element lines
are selected as features variables of the LIBS spectra. -e
main spectral lines can be seen, which is located at the ionic
and atomic lines from Ca, Fe, H, K, Mg, Na, O, and P. -ese
atomic and ionic emission lines of melanoma are more
vigorous than those of the normal FFPE tissue samples.
Other emission lines like Fe and H are frail and weaker.
-erefore, these emission lines are listed in Table 1 for the
classification of FFPE melanoma and normal tissue sample.

We detected significant changes in the LIBS spectra
betweenmelanoma and normal samples. Inmelanoma FFPE
tissue samples, the peak intensities of Ca, K, Mg, and P
increase relative to the normal FFPE tissue peak intensity.
Magnesium plays an important role in regulating cell

division as well as Ca. -e melanin-containing pigment
granules have an enormous amount in melanoma cells,
which are wealthy in Ca [28]. -e high levels of Ca are also
reported in previous literature in different cancer tissues, like
breast cancer, colorectal cancer [13], uterine cancer [29], and
canine hemangiosarcoma [14]. Magnesium has also an
important role in cell proliferation and the biosynthesis of
proteins [30]. In the LIBS imaging technique, the elemental
images of the tumour reported a gradient concentration for
Ca, Mg, and P in metastatic melanoma cases, and also re-
ported the wide dynamic ranges of concentration for ele-
ments, such as Fe and Na from low to high concentration
[31]. A bioelemental study of melanoma lymph nodes also
showed a clear distinction of P from the normal tissue [32].

-e normalized intensities of 27 emission lines of the
melanoma and normal FFPE tissue samples are shown in the
bar graph in Figure 4. -ese 27 emission lines are selected as
features emission lines of normal and melanoma spectra.
-en, the area average was taken for these 27 elemental lines
and selected only 10 lines on the basis of their normalized
spectral intensities to draw a threshold line, which is also
shown in Figure 4. For discrimination purposes, three types
of input variables are used as input data for all the classi-
fication models (10 lines, 27 lines, and all lines intensities,
resp.).

3.2. Classification Results. Classification accuracy is defined
as the division of the number of correct predictions by
predictions number, multiplied by 100% to gain the per-
centage accuracy. We performed all the models with the
training set including 83 spectra of melanoma and normal
sample (166 spectra in all) and a test set including 27 spectra
of melanoma and normal sample (54 spectra in all).

For the ANN model, the number of hidden layers of
neurons l, which needs to be optimal, is calculated according
to the formula

l �
�����
n + m

√
+ α. (5)

-e accuracy of the ANN model for different input
variable data sets (10 lines, 27 lines, and all lines) is illustrated
in Figure 5. In 10-line input variable data set, the highest
accuracy is 100% for an autoscaling method in all hidden
layers of a neuron, while the mean-centering, normalization
by total area, and SNV preprocessed method showed 98%
and 97%, respectively, which is shown in Figure 5(a).
Similarly, for 27-line intensity, input variables data set
mean-centering showed the highest accuracy 100%, while
the autoscaling and SNV showed 98% accuracy for different
hidden neurons’ layers as shown in Figure 5(b). Further-
more, for the whole input spectra variable data set, the ANN
accuracy is 98% in autoscaling and 99% for normalization in
all hidden layers, while themean-centering and SNV showed
very low accuracy for all the hidden layers as shown in
Figure 5(c). Overall, the normalization data set revealed the
best sensitivity, specificity, and accuracy results, for the ANN
model. So, for tissue analysis, the normalization by area is
the best and suitable compared to other preprocessing
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Figure 3: LIBS spectra of human melanoma and normal FFPE tissue samples (average of 111 measurement points of each sample) in the
spectral range of 200–900 nm. (a)-e original and (b) normalized spectra of the FFPE sample of melanoma and normal tissue, respectively.
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methods in the ANN model; the accuracy % result of the
ANN model is illustrated in Figure 6(a).

PLS-DA is also used to discriminate against the tissue
samples. -e 10-line intensity data set showed the highest
accuracy result for PLS-DAmodel classification. Both mean-
centering and SNV data sets showed good classification
accuracy as compared to other preprocessing data sets as
revealed in Table 2. -e classification result of the PLS-DA
model for a different preprocessing method is shown in
Figure 6(b).

For classification purposes, both LDA and QDA are also
used and achieved good accuracy results. In the LDA model,
the accuracy of classification for all the cases (10 lines, 27
lines, and all lines) cannot achieve the 100% for FFPE tissues
differentiation. -e highest and lowest accuracy values for
LDA classification model are 98% and 77%, respectively.
While in QDA model classification, normalization by total
area preprocessed method achieved 98% accuracy in the 27-
line input variable data set.-eminimum accuracy for QDA
model classification is calculated for the whole spectra input

Table 1: -e selected atomic and ionic emission lines.

Elements Wavelength (nm)
Mg II 279.552, 280.270, 515.762
Mg I 285.6, 287.586
Ca I 422.67, 443.142, 445.096, 611.873, 615.813
Ca II 315.459, 317.483, 370.392, 373.466, 393.366, 396.847
Fe I 308.798, 358.046, 404.106,
P II 531.607
Na I 588.99, 589.59, 819.48
K I 766.5, 769.9
Hα 656.270
O I 777.318
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Figure 4: Evaluation of the normalized intensities of 27 LIBS emission lines of human FFPE samples of the melanoma and healthy tissue.
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variable data set in SNV preprocessed method, which is 77%.
-e percentage accuracy rate of LDA and QDA models are
shown in Figures 6(c), and 6(d), respectively.

-e accuracy results of ANN, PLS-DA, LDA, and QDA
models along with suitable and appropriate preprocessing
methods are illustrated in Table 2, which showed the highest
accuracy for different input variable data sets and suitable
preprocessed method. In the ANN model for the 10-line
input variable data set, only the autoscaling preprocessed
method showed the highest 100% accuracy, while for the 27-
line input variable data set only the mean-centering showed
the highest 100% accuracy. For the whole spectral input data
set, only the norm-area preprocessing method showed the
highest 98% accuracy, while the other preprocessed methods
showed lower accuracy results. Similarly, in the PLS-DA
model for 10-line intensity input variable data set, three
preprocessing methods (autoscaling, SNV, and mean-cen-
tering) showed the highest 100% accuracy; on the other

hand, for 27-line intensity and whole spectral data set, the
preprocessed methods (mean-centering, normalized by the
area, and SNV) showed the highest 100% accuracy, re-
spectively. Furthermore, the LDA model classification for
10-line input variable data set showed the highest 98%
accuracy for the autoscaling preprocessed method, while for
27-line intensity, the only normalization by area (norm-
area) revealed 98% accuracy result and for the whole input
variable data set and also only the autoscaling preprocessed
method showed 98% accuracy result. In the QDA model
classification for 10 lines, input variable data set, only
autoscaling, and normalization preprocessed method
showed the highest 94% accuracy; similarly, for 27-line input
variable data set, normalization by area showed 100% ac-
curacy as well, and for whole data input variable, only
autoscaling revealed the highest 98% accuracy result for
melanoma FFPE and normal tissue differentiation. In
comparison, ANN and PLS-DA is the best classification
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Figure 5: Accuracy results of ANNmodel generated by different types of input data: (a) the 10-line intensity, (b) 27-line intensity, and (c) all
lines intensities, by using different preprocessing methods.
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model instead of QDA and LDAmodels for all types of input
variable data sets.

Receiving operative curves (ROC) is a graphical plot that
shows the diagnostic capability of a binary classifier system
as its discrimination threshold is varied. -e ROC curves for
ANN, PLS-DA, LDA, and QDA are revealed in Figures 7(a)–
7(d) for a different input variable data set of 10 lines, 27 lines,
and whole spectral data along with different preprocessing
methods, respectively. -e best ROC result is shown by the
PLS-DA model as shown in Figure 7(b)

-e ROC curves of the ANN, PLS-DA, LDA, and QDA
model showed the lowest accuracy of 98% for the 10-line
input variable dataset. Similarly, for the ROC curve for 27-
line input variable data set, the highest sensitivity 100%,
specificity 100%, and accuracy 100% for ANN, PLS-DA, and
QDA model are shown, while LDA showed the same result

as for 10-line input variable data set. On the other hand, for
the whole input variable data set, the highest sensitivity
100%, specificity 100%, and accuracy 100% are revealed for
PLS-DA models while for LDA and QDA classification
models, the whole input variable data set showed the highest
sensitivity 96%, specificity 100%, and accuracy 98%. It is
concluded that the PLS-DA models are the best and useful
for FFPE tissue classification as compared to LDA and QDA
models.

-e classification compact results of all the preprocessing
methods, input variable data sets, and all four types of
models ANN, PLS-DA, LDA, and QDA are shown in Fig-
ure 8. For ANN model classification, the highest accuracy is
100%, shown by the autoscaling preprocessed method in 10-
line input variable data set, and mean-centering in 27-line
input variable data set, respectively, while the lowest
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Figure 6:-e accuracy of (a) ANNmodel, (b) PLS-DAmodel, (c) LDAmodel, and (d) QDAmodel for different preprocessingmethods and
different types of input data (10-line intensity, 27-line intensity, and whole spectra).
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Table 2: Optimal accuracy of different models along with suitable preprocessing methods.

Models Input data Accuracy (%) Suitable preprocessing

ANN
10 lines 100 Auto
27 lines 100 Mean
All lines 98 Norm

PLS-DA
10 lines 100 Auto, mean, SNV
27 lines 100 Mean, norm, SNV
All lines 100 Mean, norm, SNV

LDA
10 lines 98 Auto
27 lines 98 Norm
All lines 96 Auto

QDA
10 lines 94 Auto, norm
27 lines 98 Auto
All lines 96 Auto
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Figure 7: ROC curves of the (a) ANNmodel of 10-line input variable (solid line), 27-line (dash line), and the whole spectra (dot line) input
data and different preprocessing methods; (b) PLS-DA; (c) LDA; and (d) QDA models showed the sensitivity and specificity, respectively.
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(minimum) accuracy percentage is shown 52% by SNV
preprocessed data in whole spectral input variable data set.
Similarly, for PLS-DA model classification, the highest ac-
curacy is 100%, while the lowest is 94% for normalization by
area (norm-area) in 10-line input variable data set. Fur-
thermore, for the LDA model classification, the highest
accuracy is 98% while the lowest (minimum) accuracy is
77% for SNV preprocessed method in the whole spectral
input variable data set. On the other hand, for QDA clas-
sification model, the highest accuracy is 100%, while the
lowest is 77% for SNV preprocessed method in the whole
spectral input variable data set, the same as the LDA model
result for the whole input variable data set. All model results
revealed that the 27-line intensity was the average highest
accuracy rate of 97.6% as compared to others; autoscaling
data set showed the highest average accuracy 97.8% of all the
models, and PLS-DA showed the averaged best performance
model in all of them; average accuracy is 99.16%.

4. Conclusion

-e purpose of the research was to discriminate melanoma
skin cancer and normal skin by using laser-induced
breakdown spectroscopy (LIBS) combined with the che-
mometric methods.-emelanoma and normal FFPE tissues
were used as samples. In the LIBS spectra, the intensities of
the lines of several elements showed a significant difference
between the melanoma and normal FFPE samples and were
regarded as feature variables. -e lines intensities of calcium
(Ca), magnesium (Mg), phosphorus (P), potassium (K),
sodium (Na), and oxygen (O) in melanoma samples were
higher than the normal samples. Phosphorus (P) line,

especially, showed the highest intensity for malignancies.
-erefore, phosphorus (P), calcium (Ca), magnesium (Mg),
and potassium (K) were defined as biomarkers for dis-
crimination in this study. -e chemometric models, such as
ANN, PLS-DA, LDA, and QDA were used to analyse the
spectral data from melanoma and normal tissue in FFPE.
-e best performance of the model (sensitivity, specificity,
and accuracy) has been achieved by the ANN and PLS-DA
models (all were 100%). -e results indicated that LIBS
combined with the chemometric models could be used as a
quick discrimination method for human malignancies.
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