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Changes in land cover will cause the changes in the climate and environmental characteristics, which has an important influence
on the social economy and ecosystem. The main form of land cover is different types of soil. Compared with traditional methods,
visible and near-infrared spectroscopy technology can classify different types of soil rapidly, effectively, and nondestructively.
Based on the visible near-infrared spectroscopy technology, this paper takes the soil of six different land cover types in Qingdao,
China orchards, woodlands, tea plantations, farmlands, bare lands, and grasslands as examples and establishes a convolutional
neural network classification model. The classification results of different number of training samples are analyzed and compared
with the support vector machine algorithm. Under the condition that Kennard-Stone algorithm divides the calibration set, the
classification results of six different soil types and single six soil types by convolutional neural network are better than those by the
support vector machine. Under the condition of randomly dividing the calibration set according to the proportion of 1/3 and 1/4,
the classification results by convolutional neural network are also better. The aim of this study is to analyze the feasibility of land
cover classification with small samples by convolutional neural network and, according to the deep learning algorithm, to explore
new methods for rapid, nondestructive, and accurate classification of the land cover.

1. Introduction

Land cover is a direct result of the interaction between natural
environment and human activities. It mainly focuses on
describing the natural properties of the earth’s surface which
has specific time and space characteristics. Changes in land
cover will cause the changes in the climate and environmental
characteristics, which has an important influence on the social
economy and ecosystem [1, 2]. The main form of land cover is
different types of soil, including cultivated lands, woodlands,
grasslands, and bare lands. Therefore, it is of great significance
to classify different types of soil quickly and accurately for
land cover research, soil investigation, and mapping.

The early classification method is the land use topo-
graphic map obtained by combining with the actual ground
survey. Now the classification technology of the remote
sensing image is mostly used to realize the classification of
different types of soil [3-5]. Visible and near-infrared
spectroscopy technology is a fast, nondestructive measure-
ment method. It has been widely used in medicine, agri-
culture, oil, and other fields [6-9]. The spectral analysis
method indirectly obtains useful information of the substance.
Through establishing an effective correction model between
the spectrum and the information, the result is obtained
[10-12]. The spectral technology is introduced into the clas-
sification of soil, the remote sensing image information is
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replaced by the spectral information, and different types of soil
models are established. It can be fast and nondestructive to
realize the classification of soil.

Deep learning is modeled by simulating the neural
structure of the human brain and has made breakthroughs in
applications such as image recognition and speech recog-
nition [13, 14]. The commonly used classification method
support vector machine (SVM) is a machine learning
method based on statistical learning theory. The idea behind
SVM is that input samples are projected from low-dimen-
sional feature space to high-dimensional space through
nonlinear mapping, which allows data in the low-dimen-
sional space that is not linearly separable to transform into
linearly separable data in the high-dimensional space
[15, 16]. While deep learning is to transform the original
signal layer by layer, transform the feature representation in
the original space to the new feature space. And it auto-
matically learns to get the hierarchical feature representa-
tion, and the classification result is achieved [17].
Convolution neutral network (CNN) is a network structure
in the deep learning, which has a good effect in the clas-
sification of images and makes the CNN method widely used
in many fields [18, 19]. CNN is a new and nondestructive
method for the application of quality monitoring of agri-
cultural products, includes the detection and grading of
fruits, vegetables, etc., and has achieved good results [20, 21].
CNN is usually used for classification modeling with large
sample size.

Based on the visible near-infrared spectroscopy tech-
nology, this paper took six different types of soil orchards,
woodlands, tea plantations, farmlands, bare land, and
grasslands in Qingdao, China, as examples, and established a
convolutional neural network classification model. The
classification results under the conditions of different label
samples were analyzed, and the classification results with the
shallow network SVM were compared. In this paper, the aim
is to analyze the feasibility of land cover classification with
small samples by CNN and explore new methods for rapid,
nondestructive, and accurate classification of soil according
to the CNN.

2. Materials and Methods

2.1. Experimental Materials. Ten sampling points were
collected from Licang District, Laoshan District, Chengyang
District, and Jiaozhou District, Qingdao, China. The sam-
pling points selected are the areas with consistent color and
vegetation coverage, and the spatial distribution of each
sampling point was relatively uniform. The basic overview of
each sampling point is shown in Table 1. When sampling, a
shovel was used to take 0-20 cm of surface soil, and about
1 kg of each soil sample was collected. Then it was put in a
sealed bag and the label was stuck. It was brought back to the
lab, air-dried, and ground, and it was passed through
0.45 mm nylon sieve. Finally, it was put into the sealing bag, a
number was made, and it was marked for subsequent testing.

The collected soil samples were divided into orchards (S1
and S2), woodlands (S3, S5, and S8), tea plantations (54),
farmlands (S6 and §9), bare lands (87), and grasslands (S10),
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as shown in Table 1. There were 26 orchards soil samples, 86
woodlands soil samples, 13 tea plantations soil samples, 73
farmlands soil samples, 13 bare lands soil samples, and 60
grasslands soil samples, totaling 271 soil samples. The
contents of total carbon (TN), total phosphorus (TP), and
total potassium (TK) in six types of soil were measured. The
average contents of TN, TP, and TK in each type of soil are
shown in Table 2, and the nutrient contents of each type of
soil are different.

2.2. Spectrum Acquisition. The spectrum of soil samples was
collected by QE-65000 spectrometer of ocean optics. Dh-
2000 of ocean optics was used as the light source, and the
QE-65000 spectrometer of ocean optics (slit 10 ym) was
connected by Y-type optical fiber of ocean optics. A set of
spectral acquisition system for soil nutrients was built
(Figure 1). The contact end of the optical fiber and the
sample was fixed by the probe bracket, keeping the incident
light 45°. Under the bracket was a self-made sample box,
where a spherical sample slot that coincided with the fiber
inlet of the bracket was designed to hold approximately 1-2 g
soil samples.

Through this spectrum sampling system, the sampling
interval of the collected spectrum was 1 nm, and the inte-
gration time was 600ms. The spectrum range was
200-1100 nm. Each soil sample was measured for 5 times,
and the average spectral reflectance was taken. Because the
noise in the front and back part of the reflection spectrum
had a great influence, the spectrum data of 226-975 nm were
retained. The average reflection spectrum of the soil samples
of orchards, woodlands, tea plantations, farmlands, bare
land, and grasslands are shown in Figure 2. The overall trend
of the six types of soil was consistent, and the reflection
spectrum increased with the increase in wavelength. But the
reflection spectrum of the six types of soil was different.

2.3. Kennard-Stone Algorithm. Based on the Euclidean
distance between two samples, the Kennard-Stone algo-
rithm (K-S algorithm) realizes the sample partition selection
with strong representativeness and uniform distribution
range [22, 23]. In this paper, the algorithm is used to classify
and select the representative calibration set and test set. The
process of Kennard-Stone algorithm is as follows: (1) cal-
culate the Euclidean distance between the two samples, select
the samples with the largest Euclidean distance (more than
2); (2) calculate the Euclidean distance between the
remaining samples and the selected samples in Step (1); (3)
for each remaining sample, select the samples with the
shortest distance from the selected samples and then select
the samples corresponding to the relative longest distance
among the shortest distances; and (4) repeat Step (3) until
the number of selected samples is greater than or equal to the
set value.

2.4. Deep Learning Algorithm. In 2006, the concept of deep
learning was first proposed by Hinton [24]. Its main point is
that multihidden layer artificial neural network has
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TaBLE 1: The location and type of soil sampling.

Sample number Types Total samples Location Vegetation

S1 Orchards 13 Chengyang District Apricot orchard

S2 Orchards 13 Chengyang District Cherry orchard

S3 Woodlands 13 Laoshan District Reed, polygonaceae, willow, and other vegetation are distributed
S4 Tea plantations 13 Laoshan District Tea plantation

S5 Woodlands 13 Laoshan District Under the poplar forest, there are branches and weeds
S6 Farmlands 13 Chengyang District Wheat field after harvest

S7 Bare lands 13 Jiaozhou District Suaeda salsa with poor growth

S8 Woodlands 60 Laoshan District The forest at the foot of the mountain

S9 Farmlands 60 Licang District Corn field

S10 Grasslands 60 Licang District Overgrown with weeds

TaBLE 2: The average contents of soil samples total carbon, total phosphorus, and total potassium.

Soil nutrient (g/kg) Orchards Woodlands Tea plantations Farmlands Bare lands Grasslands
N 1.382 0.699 1.596 0.685 0.472 1.403
TP 0.555 0.394 1.730 0.354 0.235 0.996
TK 19.785 15.234 29.290 14.236 12.154 19.732
TN: total carbon; TP: total phosphorus; TK: total potassium.
Optical fiber Spectrometer
Probe bracket \\‘ Computer

\45

D\ Soil sample

Self-made sample box

Light source

FIGURE 1: The schematic diagram of soil samples spectral measurement.

excellent feature learning ability, which can effectively
overcome the training difficulties of deep neural network by
layer pretraining “layer wise training” [17]. It is based on the
sample data through certain training methods to get the
deep network structure of multiple levels. The deep network
structure obtained by deep learning contains a large number
of single elements (neurons). Each neuron is connected with
a large number of other neurons. The connection strength
(weight) between neurons modifies and determines the
function of the network during the learning process. The
deep network structure obtained by deep learning conforms
to the characteristics of the neural network. The commonly
used deep learning models include deep belief network
(DBN) [25, 26], stacked autoencoders (SAE) [27, 28], and
convolutional neural network (CNN) [29, 30].

The basic structure of CNN is composed of input layer,
convolutional layer, pooling layer, full connection layer, and
output layer. Generally, several convolution layers and
pooling layers are selected. The alternate setting of the
convolutional layer and the pooled layer is adopted. It is that
one convolutional layer is connected to a pooled layer, and
the pool layer is then connected to a convolutional layer. The
characteristics of convolutional neural network are that the
original signal is directly used as the input of the network,
which avoids the complex feature extraction and image

reconstruction process in the traditional recognition algo-
rithm. In the convolution stage, the weight sharing structure
is used to reduce the number of weights and the complexity
of the network model. At the same time, in subsampling
stage, we use the principle of local correlation to subsample
the feature map, which can effectively reduce the amount of
data processing while retaining the useful structure infor-
mation [29, 30].

The convolutional layer can be defined as follows [31]:

xl _ g(wl*x() + bl), (1)

where x° is the input two-dimensional image, ' and b!
represent the filters and bias of the convolutional layer, x' is
the output feature maps of the convolutional layer, * rep-
resents the convolutional operator, and g(.) denotes the
rectified linear unit (ReLU) activation function. In this
paper, the spectral data of each soil sample are one-di-
mensional vector, which is converted into two-dimensional
matrix. The data band of soil spectrum is 226-975 nm, with a
total of 749 wavelength points. The one-dimensional spec-
trum vector of 749 x 1 is converted into a two-dimensional
matrix of 28 x28. The reflectances corresponding to 28
wavelength points are taken from each column in order until
749 reflectances are all ranked in the two-dimensional
matrix of 28 x 28, and the rest positions are filled with 0. That
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FIGURE 2: The average reflection spectrum of 6 types of soils.

is the input two-dimensional image. Convolution operation
is used to transform the spectral image data. The spectral
feature information can be extracted more effectively by
combining the neighboring information of spectral image.
There are two convolutional layers with six 5x 5 kernels.

The pooling layer is behind the convolution layer and
used for reducing the computational complexity [31]. The
pooling layer can be defined as

X' = g(down(xl)), (2)

where x? is the output feature maps of the pooling layer, g (.)
denotes the ReLU activation function, and down (.) repre-
sents a max-pooling function. In this paper, there are two
pooling layers with six 2 x 2 kernels.

The fully connected layer is used to extract more deep
feature [31]. The fully connected layer can be defined as

X = g(w3*x2 + b3). (3)

where @’ and b’ represent the filters and bias of the fully
connected layer, x* is the output feature maps of the fully
connected layer, and g(.) denotes the ReLU activation
function. This paper has one fully connected layer. The
specific process of CNN is shown in Figure 3. The classifier
adopts softmax classifier, and the loss function is mean
squared error.

2.5. Classification Evaluation Standard. The classification
evaluation standard uses the number of correct prediction
classification sample Y, divided by the number of all soil
samples Y. The formula is as follows: ¢ = (Y ,/Y)*100%. The
closer the ¢ is to 100%, the better the classification effect.

3. Results and Discussion

3.1. Six Types of Soil Classification Results: Dividing the
Calibration Set by Kennard-Stone Algorithm

3.1.1. Dividing Calibration Set and Test Set by Kennard-Stone
Algorithm. K-S algorithm was used to divide calibration set
and test set of six types of soil. The total number of the
calibration set samples ranged from 40 to 150, with an
interval of 10, and the rest was test set. The accuracy of
classification model in small sample was analyzed. The
number of the calibration set samples for each type of soil is
shown in Table 3.

3.1.2. Classification Results of Different Types of Soil Based on
Convolutional Neural Network. The spectrum of each cal-
ibration set of soil sample was transformed into two-di-
mensional matrix and then was substituted into CNN
network for training. The iterations are 2000. The classifi-
cation results of the calibration set and the test set are shown
in Table 4. When the total number of the calibration set
samples was 150-100, the classification accuracy of the
calibration set and the -test set was all 100%. The classifi-
cation results of six types of soil in 90-40 calibration set,
including orchards, woodlands, tea plantations, farmlands,
bare land, and grasslands, are shown in Table 5.

From Table 4, the classification accuracy of the calibration
set and the test set was 100% based on CNN, when the total
number of the calibration set was from 150 to 100. When the
total number of the calibration set was from 90 to 40, the
classification result of 90 calibration set samples is 98.89%,
and the rest was 100%. The classification accuracy of more
than 60 labeled samples in the test set is more than 98%.
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FIGURE 3: The convolutional neural network process for soil classification. C is the convolutional layer, and P is the pooling layer.

TaBLE 3: The number of the calibration set samples by Kennard-Stone algorithm.

The total number of calibration Type 1 Type 2 Type 3 tea Type 4 Type 5 bare Type 6
set orchards woodlands plantations farmlands lands grasslands
150 22 51 13 28 13 23
140 20 50 13 25 13 19
130 19 46 13 23 13 16
120 18 40 13 20 13 16
110 18 35 11 18 13 15
100 17 32 11 17 12 11
90 14 28 10 16 12 10
80 13 26 8 13 11 9

70 10 25 8 9 10 8
60 9 20 7 9 8 7
50 5 16 7 8 7 7
40 4 13 5 7 6 5

TaBLE 4: The classification results of the calibration set and the test set based on the different number of samples in the calibration set by

convolutional neural network.

The total number of calibration set

Calibration set

Test set

150
140
130
120
110
100
90
80
70
60
50
40

100.00% (150/150 )
100.00% (140/140 )
100.00% (130/130 )
100.00% (120/150 )
100.00% (110/110 )
100.00% (100/100 )
98.89% (89/90)
100.00% (80/80)
100.00% (70/70)
100.00% (60/60)
100.00% (50/50)
100.00% (40/40)

100.00% (121/121)
100.00% (131/131)
100.00% (141/141)
100.00% (151/151)
100.00% (161/161)
100.00% (171/171)
98.90% (179/181)
100.00% (191/191)
98.51% (198/201)
98.58% (208/211)
94.57% (209/221)
95.24% (220/231)
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TaBLE 5: The classification results of six types of soil in the test set by convolutional neural network.

The total number of calibration Type 1 Type 2 Type 3 tea Type 4 Type 5 bare Type 6
set orchards woodlands plantations farmlands lands grasslands
90 91.67% 100.00% 100.00% 100.00% 0% 100.00%
11/12) (58/58) (3/3) (57/57) (0/1) (50/50)
80 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
(13/13) (60/60) (5/5) (60/60) (2/2) (51/51)
70 93.75% 100.00% 100.00% 96.87% 100.00% 100.00%
(15/16) (61/61) (5/5) (62/64) (3/3) (52/52)
60 88.24% 98.48% 100.00% 100.00% 100.00% 100.00%
(15/17) (65/66) (6/6) (64/64) (5/5) (53/53)
50 61.90% 98.57% 83.33% 96.92% 100.00% 100.00%
(13/21) (69/70) (5/6) (63/65) (6/6) (53/53)
40 77.27% 97.26% 75.00% 96.97% 100.00% 100.00%
17/22) (71/73) (6/8) (64/66) (717) (55/55)

According to Table 5, the general trend of the test set
classification results in the type 1 orchards was that the
classification results decreased with the decrease of the label
samples. When the total number of the calibration set was
60-90, the classification accuracy was more than 88%; when
the total number of the calibration set was 50-40, the
classification accuracy dropped rapidly, and the number of
the wrong samples in the test set was more than 10. The
general trend of the test set classification results in the type 2
woodlands was the same with that of the type 1 orchards.
When the total number of the calibration set was 90-70, the
classification accuracy was 100%; when the total number of
the calibration set was 60-40, there were a small number of
samples with wrong judgment in the test set, the number of
the wrong samples was 1, 1, and 2, respectively. In the type 3
tea plantations, when the total number of the calibration set
was 90-60, the classification accuracy rate was 100%; when
the total number of the calibration set was 50-40, the samples
with wrong judgment of the test set were 1 and 2, respec-
tively. Because the number of the tea plantations samples
was less, the classification accuracy rate was lower when the
number of the calibration set was 40. In the type 4 farmlands,
when the total number of the calibration set was 90-60, the
classification accuracy was 100%; when the total number of
the calibration set was 50-40, the accuracy was above 96%. In
the type 5 bare land, except for the calibration set of 90
samples, there was a wrong sample. And there was no other
sample of misjudgment, that is, the accuracy is 100%. When
the total number of the calibration set was 90-40 in the type 6
grasslands, the correct rate is 100%.

3.1.3. Classification Results of Different Soil Types Based on
Support Vector Machine. The spectrum of each calibration
set soil sample transformed into two-dimensional matrix
was substituted into SVM for training. The kernel function
chose the radial basis function (RBF). The classification
results of the calibration set and the test set are shown in
Table 6. When the total number of samples in the calibration
set was 150-100, the classification accuracy of the test set was
100%. Table 7 shows the classification results of six types of
soil in the 90-40 samples of the calibration set.

From Table 6 by SVM algorithm, when the total number
of calibration set was 150-40, the accuracy of the calibration
set decreased with the decrease in the number of the label
samples, and all of which were above 90%. Similar to CNN
algorithm, when the total number of the calibration
set algorithm was 150-100, the classification accuracy of the
test set was all 100% by SVM. When the total number of the
calibration set was 90-40, the accuracy of classification re-
sults in the test set was 98.90%, 98.43%, 98.51%, 98.10%,
91.86%, and 91.34%, respectively. Similar to CNN algorithm,
the classification accuracy of more than 60 label samples in
the test set was more than 98%. But in the 50-40 label
samples, the classification accuracy of the test set dropped
sharply, lower than 92%.

According to Table 7, when the total number of the
calibration set in the type 1 orchards was 90-60, the correct
rate was more than 75%; when the total number of the
calibration set was 50 and 40, the wrong samples were more,
and the correct rate of the classification was less than 40%.
Most of the type 1 were judged as the type 2, indicating that
the spectra of the orchards and woodlands were similar.
SVM could not predict the category of the orchards cor-
rectly. In the type 3 tea plantations, when the total number of
the calibration set was 80 and 40, there were 1 and 5 wrong
samples, respectively, and the accuracy of the rest was 100%.
In the type 5 bare land, except for the calibration set of 40,
there was a wrong sample, and other samples were judged
right, i.e., the accuracy was 100%. In the type 2 woodlands,
the type 4 farmlands, and the type 6 grasslands, when the
total number of the calibration set was 90-40, the accuracy
was 100%.

3.2. Six Types of Soil Classification Results: Dividing the
Calibration Set by Random Method. The number of the soil
samples in six types of calibration set had different pro-
portion in their categories by Kennard-Stone algorithm. To
further verify the availability of CNN algorithm, the same
proportion of soil samples from each type was randomly
selected and classified by CNN and SVM algorithm. Table 8
shows that 1/3, 1/4, and 1/5 samples of each soil type were
taken as the calibration set samples, respectively. Table 9
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TaBLE 6: The classification results of the calibration set and the test set based on the different number of samples in the calibration set by
support vector machine.

The total number of calibration set Calibration set Test set

150 98.00% (147/150) 100.00%% (121/121)
140 97.14% (136/140) 100.00%% (131/131)
130 96.92% (126/130 100.00%% (141/141)
120 96.67% (116/120) 100.00%% (151/151)
110 97.27% (107/110) 100.00%% (161/161)
100 97.00% (97/100) 100.00%% (171/171)
90 98.89% (89/90) 98.90% (179/181)
80 96.25% (77/80) 98.43% (188/191)
70 95.71% (67/70) 98.51% (198/201)
60 95.00% (57/60) 98.10% (207/211)
50 94.00% (47/50) 91.86% (203/221)
40 90.00% (36/40) 91.34% (211/231)

TaBLE 7: The classification results of six types of soil in the test set by support vector machine.

The total number of calibration Type 1 Type 2 Type 3 tea Type 4 Type 5 bare Type 6
set orchards woodlands plantations farmlands lands grasslands
90 83.33% 100.00% 100.00% 100.00% 100.00% 100.00%
(10/12) (58/58) (3/3) (57/57) (1/1) (50/50)
30 84.62% 100.00% 80.00% 100.00% 100.00% 100.00%
(11/13) (60/60) (4/5) (60/60) (2/2) (51/51)
70 81.25% 100.00% 100.00% 100.100% 100.00% 100.00%
(13/16) (61/61) (5/5) (64/64) (3/3) (52/52)
60 76.47% 100.00% 100.00% 100.00% 100.00% 100.00%
(13/17) (66/66) (6/6) (64/64) (5/5 (53/53)
50 14.29% 100.00% 100.00% 100.00% 100.00% 100.00%
(3/21) (70/70) (6/6) (65/65) (6/6) (53/53)
40 36.36% 100.00% 37.50% 100.00% 85.71% 100.00%
(8/22) (73173) (3/8) (66/66) (6/7) (55/55)
TaBLE 8: The calibration set samples in different proportions by random method.
Proportion of Type 1 Type 2 Type 3 tea Type 4 Type 5 bare Type 6 Total
calibration set orchards woodlands plantations farmlands lands grasslands
1/3 9/26 29/86 4/13 24/73 4/13 20/60 90
1/4 7126 22/86 3/13 18/73 3/13 15/60 68
1/5 5/26 17/86 3/13 15/73 3/13 13/60 56

TaBLE 9: The classification results of the calibration set and the test set based on the different number of samples in the calibration set by
random method.

Convolutional neural network
Test set

. — Support vector machine
Proportion of calibration set
Test set

Calibration set Calibration set

1/3 100.00% (90/90) 95.58%(173/181) 98.89% (89/90) 91.16% (165/181)
1/4 100.00% (68/68) 94.09% (191/203) 98.53% (67/68) 91.13% (185/203)
1/5 100.00% (56/56) 87.91% (189/215) 100.00%(56/56) 88.37% (190/215)

shows the classification results of different types of soil based
on CNN and SVM by random method. Figures 4(a)-4(c),
respectively, show the classification results of each type of
soil (orchards, woodlands, tea plantations, farmlands, bare
land, and grasslands) based on SVM and CNN under the
number of different proportion calibration set, which were
displayed in the form of histogram.

According to Table 9, the classification accuracy of the
calibration set by CNN was 100%. The 1/3 and 1/4 pro-
portion of the calibration set by SVM had a wrong sample,
respectively, and the accuracy in the 1/5 proportion was
100%. In the test set, when the proportion was 1/3 and 1/4,
the accuracy of CNN was higher than that of SVM; when the
proportion was 1/5, the accuracy of SVM was slightly higher
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than that of CNN, with 88.37% and 87.91%, respectively. In
general, when the number of samples was relatively large, the
classification results of CNN were better than those of SVM.
When the number of samples was small, the SVM had
certain advantages.

According to Figure 4, when the proportion of the
calibration set was 1/3 and 1/4, the classification accuracy of
six types of soil by CNN was not lower than that by SVM.
The classification accuracy of the farmlands, the grasslands,

and the woodlands was above 95%, followed by the orchards
(88.24%, 84.12%) and the tea plantations (77.78%, 70%). The
classification accuracy of the bare land was the worst, which
was 66.67% and 60%. When the proportion of the calibration
set was 1/5, the classification accuracy by CNN and SVM in
the woodlands and the farmlands was the same, with good
classification effect (97.1%, 100%). Followed by the grass-
lands, the classification accuracy was both higher than 85%,
and SVM was slightly better than CNN, with 89.36%. The
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TaBLE 10: The classification results of soil samples based on convolutional neural network and support vector machine by randomly dividing

the calibration set 10 times.

1/3 proportion
Number of times Prop

1/4 proportion 1/5 proportion

CNN (%) SVM (%) CNN (%) SVM (%) CNN (%) SVM (%)
1 93.92 90.61 96.06 93.10 81.11 85.71
2 91.16 86.74 84.24 88.18 92.17 82.49
3 88.95 88.95 93.10 85.22 87.10 86.18
4 93.37 85.08 84.73 82.27 79.72 83.87
5 91.71 87.85 81.28 85.22 86.18 85.25
6 90.61 86.19 89.16 89.66 86.18 88.02
7 91.71 86.19 95.07 91.63 85.25 84.33
8 86.19 90.06 90.64 88.18 78.34 86.18
9 93.37 92.82 91.13 85.71 94.01 90.78
10 93.37 95.03 91.63 91.63 78.34 79.26
Average 91.44 88.95 89.70 88.08 84.84 85.21

CNN: convolutional neural network; SVM: support vector machine.

classification results of the orchards were poor, which was
about 60%, and the classification accuracy of the bare land
was the lowest, which was lower than 50%. In the classifi-
cation results of six types of soil, CNN was better than SVM
in general.

The proportions of 1/3, 1/4 and 1/5 soil samples were
taken as the calibration set samples, respectively. Table 10
shows the classification results of different types of soil based
on CNN and SVM by randomly dividing the calibration set
10 times.

According to Table 10, the classification results of CNN
were better than that of SVM in 1/3 proportion and 1/4
proportion, but it was lower than that of SVM in 1/5
proportion. With the reduction of calibration set samples,
the classification accuracy of CNN and SVM test set de-
creased. Compared with SVM, the classification accuracy of
CNN decreased more obviously.

4, Discussion

4.1. The Feasibility of Land Cover Classification with Small
Samples by Convolutional Neural Network. The essence of
CNN is that each convolutional layer contains a certain
number of convolution kernels. Compared with the tradi-
tional neural network, CNN reduces the number of training
weights and computational complexity through weight
sharing. CNN is to input the original data directly into the
network and conduct network learning in the training data
invisibly. It can avoid manual feature extraction and realize
automatic classification. CNN is mostly used for the image
information classification with a large amount of data, which
contains a large number of label samples. But it is seldom
used in a small amount of data classification.

In this paper, the spectral data are one-dimensional
vector. To be suitable for CNN, it is transformed into two-
dimensional vector for convolution and other operations,
and a better classification effect is obtained. The first reason
is that CNN can extract more deep and abstract features of
the spectrum, which is conducive to the classification of
different types of soil. The second reason is that it takes 2000
iterations to improve the accuracy of the model. SVM is a
commonly used classification method, which has a good

classification effect in small label samples. In this paper,
compared with SVM, CNN not only has a good classification
effect in the condition of more training samples but also has
a better classification effect in small label samples. However,
with the continuous reduction of training samples, SVM has
more advantages. Therefore, CNN can be applied to the
classification of land cover with small samples, but SVM is
still better for the training set with too small samples.

4.2. The Advantages of the Kennard-Stone Algorithm. In this
paper, different methods are used to divide the samples of the
calibration set, and different classification results are obtained.
The results by K-S algorithm are good. K-S algorithm is mainly
used to select representative samples from the original sample to
establish the model. The main idea is to select the spectrum
samples with large differences as training samples and uses the
samples with relatively close spectrum to predict, so as to avoid
the uneven distribution of training samples. However, dividing
the calibration set by random method has uncertainty and
limited distribution information, so the calibration results by KS
classification are better.

4.3. The Analysis of the Different Number of Samples in the
Calibration Set. In the analysis of the classification results of
various types of soil samples, the woodlands, farmlands, and
grasslands, all show good classification effects under the different
number of samples in the calibration set. However, the classi-
fication accuracy of orchards, tea plantations, and bare lands is
not stable. More training samples can have a higher classification
accuracy, and less training samples have a decline in classifi-
cation accuracy. The total samples of forest land, farmland, and
grassland are more than 60, while the total samples of orchards,
tea plantations, and bare lands are less, with 26, 13, and 13,
respectively. CNN cannot train enough calibration set samples,
so it cannot get a better classification model, and the test set
classification prediction is poor.

5. Conclusion

Based on the visible near-infrared spectroscopy technology,
this paper takes six different types of soil (orchards,
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woodlands, tea plantations, farmlands, bare land, and
grasslands) in Qingdao, China, as examples, and establishes
a convolutional neural network classification model. The
classification results under the conditions of different
number label samples are analyzed, and the classification
results with the shallow network SVM are compared. Under
the condition that Kennard-Stone algorithm divides the
calibration set, the classification results of six different soil
types and single six soil types by convolutional neural
network are better than those by the support vector machine.
The classification accuracy of the test set is above 95%. Under
the condition of randomly dividing the calibration set
according to the proportion of 1/3 and 1/4, the classification
results by convolutional neural network are also better. The
classification accuracy of the test set is over 87%. According
to the deep learning algorithm, the aim is to explore a new
method for rapid, nondestructive, and accurate classification
of the land cover. This method has guiding significance for
the practical application of soil investigation and mapping.
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