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One of the significant challenges in the food industry is the determination of the geographical origin, since products from different
regions can lead to great variance in raw milk. Therefore, monitoring the origin of raw milk has become very relevant for
producers and consumers worldwide. In this exploratory study, midinfrared spectroscopy combined with machine learning
classification methods was investigated as a rapid and nondestructive method for the classification of milk according to its
geographical origin. The curse of dimensionality makes some classification methods struggle to train efficient models. Thus,
principal component analysis (PCA) has been applied to create a smaller set of features. The application of machine learning
methods such as PLS-DA, PCA-LDA, SVM, and PCA-SVM demonstrates that the best results are obtained using PLS-DA, PCA-
LDA, and PCA-SVM methods which show a correct classification rate (CCR) of 100% for PLS-DA and PCA-LDA and 94.95% for
PCA-SVM, whereas the application of SVM without feature extraction gives a low CCR of 66.67%. These findings demonstrate
that FT-MIR spectroscopy, combined with machine learning methods, is an efficient and suitable approach to classify the
geographical origins of raw milk.

1. Introduction

Consumers are increasingly demanding guarantees con-
cerning the quality and safety of food products, especially
when they are of animal origin. Food authentication consists
of checking that the product is consistent with the state-
ments made on the label [1]. Falsification or willful mis-
labeling is usually used to reduce production costs [2]. In the
milk industry especially, mislabeling can be used to confuse
the industry and consumers about the origin of the milk,
since products of different origins can have different qual-
ities [1].

The European Union (EU) promotes dairy product
quality programs designed to support farmers and safeguard

their product names from abuse and imitation [3]. Partic-
ularly, the EU promotes two principal quality regimes that
are based on the valuation of the geographical origins of
foods, called Protected Designation of Origin (PDO) and
Protected Geographical Indication (PGI), which respectively
identify food products that are produced or closely asso-
ciated with a given geographical area [4].

Food scientists support such programs by developing
analytical techniques to enhance the capacity to identify the
geographic origin of food [5]. These techniques are classified
into two types: those based on targeted approaches and those
based on untargeted approaches [6].

Targeted approaches are usually the most suitable for
regulatory purposes, as they are very specific and sensitive
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[7]. These approaches are based on a screening that looks for
a shortlist of predetermined chemical compounds [7].
Among these techniques, we can find the following: capillary
electrophoresis (CE) [8], high-performance liquid chro-
matography (HPLC) [9], and gas chromatography (GC)
[10, 11]. In addition to their advantages, these analytical
methods have certain inconveniences as they are time-
consuming and may require the use of expensive and pol-
luting reagents. Additionally, these methods are not effective
to cover the increased need for an analytical workflow that
takes several hours [12]. While the nontargeted approaches
allow the identification of the unknowns [13]. These non-
targeted analyses are therefore increasingly gaining im-
portance in the food sector, such as nontargeted
metabolomics and spectroscopy [6]. This evolution is also
explained by the increasing attention to very complex au-
thentication issues such as geographical origin or agricul-
tural techniques, thus increasing the need for innovative
analytical approaches [6, 14]. Among these methods, we find
spectroscopic methods [15], such as infrared spectroscopy,
UV-Visible, Raman, and fluorescence spectroscopy
[12, 16, 17]. Food analysis using spectroscopic techniques
has become very common and widespread since these
methods are extremely fast, inexpensive, nondestructive,
and have no negative impact on the environment [18, 19].
The nontargeted analysis is a very difficult task, as it requires
thorough processing of the generated data set. In order to
make these data meaningful, multistep strategies using
chemometric tools are needed before the eventual identi-
fication of a particular signal among a forest of interfering
signals [20].

In order to authenticate the milk, several spectroscopic
techniques have been used, such as near-infrared spec-
troscopy (NIR) [21], midinfrared spectroscopy (MIR)
[22-25], Raman spectroscopy [1, 26], and fluorescence
spectroscopy [27, 28]. In these studies, quantitative che-
mometric approaches were used for the detection of adul-
teration, prediction of some quality parameters, and
classification of milk according to species and origin.

To the best of our knowledge, there is only one study
concerning the determination of the geographical origin of
milk by means of MIR spectroscopy [25]. This study consists
of studying the capacity of the fatty acid composition and the
spectral information obtained by MIR spectroscopy for the
discrimination between sheep milk coming from different
geographical areas of Italy. In this study, the spectral results
and the chemical composition (fatty acid) are processed by a
genetic algorithm.

In this study, we develop several methods based on
midinfrared spectroscopy, combined with machine learning,
to classify the geographical origins of milk from 4 regions in
Morocco. In detail, PLS-DA has been studied to simplify the
feature extraction process while ensuring the precision and
accuracy of the prediction. In addition, LDA and SVM were
also applied to develop a set of classifiers with the spectral
features selected by principal component analysis (PCA).
The results provide a new insight and an attempt to apply
MIR spectroscopy and machine learning methods in food
and agri-food applications, and also to show the importance
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of using PCA as a preliminary method of feature reduction
for building accurate, sensitive and specific classification
models.

2. Materials and Methods

2.1. Sampling. This study was conducted on the raw milk of
cows coming from various regions of Morocco (region 1:
Mechra Bel Ksiri, region 2: Souk Larbaa, region 3: Maaziz,
and region 4: Tiflet). The samples were collected during the
year 2020. Samples are frozen immediately after collection in
a cooler stacked with ice packs on their way to the freezer
where they are stored until the day of analysis.

150 raw milk samples were selected to conduct this
study; region 1 =36, region 2 = 36, region 3 =42, and region
4=36. In order to build a classification and prediction
model, 100 samples are used for model training and 50
samples are used for model validation.

2.2. Spectral Acquisition. Fourier-transformed midinfrared
spectra of cow’s milk samples were recorded on a JASCO
FTIR 460 PLUS spectrometer (PIKE Technologies, Madison,
USA) in the spectral region between 600 and 4000 cm™". The
instrumental resolution was 4 cm™", and each spectrum was
composed of 3400 data points. Using a micropipette, each
milk sample was placed on the crystalline surface of the ATR,
which was cleaned for each analysis using the acetone so-
lution, allowing both cleaning and drying of the ATR ac-
cessory. The spectra obtained were processed with the
software (Spectra manager) in order to eliminate the effect of
carbon dioxide in the three corresponding bands (at
2349 cm™ !, 1388 cm ™!, and 667 cm ™) as well as the effect of
moisture (at 3756 cm™, 3652 cm ™", and 1595 cm™).

2.3. Data Analysis. In order to adequately process the
spectral data obtained by midinfrared spectroscopy, mul-
tivariate data analysis (chemometrics) was used to explore
the data and build classification models. The multivariate
analysis became a major component of analytical chemistry.
This is related to the necessity for computational approaches
able to extract relevant information from increasing
amounts of data provided by modern analytical instruments.
Generally, these multivariate data analysis approaches
concern the exploratory analysis of a single data matrix, such
as principal component analysis (PCA), or the matching of
an explanatory matrix to another descriptive matrix, as in
regression methods such as PLS, or discriminant methods
such as linear discriminant analysis (LDA), partial least
squares discriminant analysis (PLS-DA), and support vector
machine (SVM).

PCA is among the most commonly used methods in
chemometrics since it allows to answer many objectives,
such as visualization of data, detection of outliers, investi-
gating the similarity between individuals, and the correlation
between variables [29]. PCA is an unsupervised method for
feature reduction that allows high-dimensional data to be
projected into a new reduced-dimensional representation of
the data that describes the variance of the data as much as
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possible with minimal reconstruction error [30]. This
method provides a new set of variables, known as principal
components. Each principal component represents a linear
combination of the initial variables. All principal compo-
nents are mutually orthogonal; therefore, there is no re-
dundant information. The principal components together
form an orthogonal database of datasets [31]. These data-
bases can also be used as variables for other multivariate
methods.

We can also find the supervised classification methods.
These methods use the membership of the samples of dif-
ferent classes to build a model [32], such as PLS-DA, LDA,
and SVM.

The PLS-DA uses the PLS method to explain and predict
the membership of individuals to several classes, based on
quantitative or qualitative explanatory variables [33]. PLS-
DA is a relatively new technique in chemometrics that
extends and merges the functionality of principal compo-
nent analysis and multiple regression [12, 34, 35]. This
technique consists of performing a decomposition of the two
matrices, matrix of variables X and response (Y), under the
condition that the factorial coordinates extracted from X
should be correlated as much as possible with the factorial
coordinates extracted from Y.

The main objective of linear discriminant analysis (LDA)
is to be able to classify new individuals not belonging to the
initial data. The idea is based on a method looking for a
linear combination of the variables Xj that maximizes the
similarity between the elements within the same group [36].
In other words, it is a question of finding a linear combi-
nation of Xj that maximizes the inertia or the intergroup
variance and, therefore, the one that minimizes the intra-
group variance. It consists in explaining and predicting the
membership of an individual to a predefined class (group)
from his/her characteristics measured by means of predic-
tive variables. For large datasets such as in image recognition
and spectral data, linear lines often do not allow a good
separation of the groups because LDA is not the ideal
method in cases where the explanatory variables are highly
correlated. In such situations, it is necessary to regularize it
in order to disrupt the correlation of the predictors to obtain
better results. To overcome these limitations, there are other
methods to extend the LDA in order to have a better
classification, especially the combination of this method with
other methods of variable reduction such PCA and genetic
algorithm.

SVMs are a family of machine learning algorithms that
solve classification, regression, and anomaly detection
problems [37]. They are known for their strong theoretical
guarantees, their great flexibility, and their simplicity of
use, even without much knowledge of data mining. Its
principle is simple: it aims at separating the data into classes
using a boundary that is as simple as possible so that the
distance between the different groups of data and the
boundary that separates them is maximal [38]. This dis-
tance is also called “margin,” and SVMs are thus called
“wide margin separators,” the “support vectors” being the
data closest to the border. This notion of frontier assumes
that the data are linearly separable, which is rarely the case.

To overcome this, SVMs often rely on the use of “kernels”
[39]. These mathematical functions allow to separate the
data by projecting them in a feature space [32]. The
technique of margin maximization allows us to guarantee
better robustness to noise and therefore a more general-
izable model.

These classification approaches struggle to build efficient
models when the size of the spectral data set is very high, the
so-called “curse of dimensionality,” since the redundancy of
spectral variables affects the classification results of con-
ventional machine learning models [40-42]. This is par-
ticularly pertinent for algorithms that use distance
calculations, such as LDA and SVM [41]. Feature extraction
is the most crucial step to overcome the curse of dimen-
sionality through the creation of a smaller set of features, so
spectral features were extracted using PCA as a reduction
variable method [40]. This is the case in this study, in which a
preliminary treatment by PCA is used to extract synthetic
variables used for the construction of classification models.

In classification issues, accuracy is commonly given as an
evaluation metric. However, if there are more than two
categories, accuracy on its own can be misleading and will
not provide reliable information. Exploiting the confusion
matrix obtained by the classification methods provides more
information about their performance. The confusion matrix
provides insight into the types of errors committed during
estimation. As a result, it shows which points are correctly
classified and which are misclassified.

In the present study, accuracy, sensitivity, and specificity
parameters were used to compare the classification per-
formance of different methods employed. Accuracy evalu-
ates the efliciency of the algorithm by displaying the
probability of the true value of the class target. For our
purposes, accuracy is the number of correct predictions of
geographical regions in relation to the total number of
predictions. However, we denote sensitivity as the propor-
tion of positive events that are well classified and specificity
as the proportion of negative events that are well classified.
These parameters are calculated according to the following
formulas:

accuracy = TP + TN
Y T TIN+TP+FP+FN
N
specificity = TN+ FP (1)
TP

SenSitiVity = m,

where FN, FP, TN, and TP designate false negatives, false
positives, true negatives, and true positives, respectively.

The flowchart of the main procedures applied to build
the classification models is presented in Figure 1.

2.4. Software. PLS-DA models were built on the basis of the
partial least squares algorithm using the NIPALS algorithm
(nonlinear iterative partial least squares). PCA, PLS-DA,
LDA, and SVM methods were applied using the Un-
scrambler software 10.4.
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FIGURE 1: Principal steps employed for the classification of the geographical origin of raw milk.

3. Results and Discussion

3.1. FT-MIR Spectra of Milk Samples. The spectra of the milk
obtained (Figure 2) show the presence of spectral bands of
interest. A broadband between 3700 and 3100 cm ™" corre-
sponds to stretching of -OH and -NH in proteins,
3000-2800cm ™" coincides with C-H stretching in fatty
acids, 1.750-1.650 cm ™" corresponds to ~C=0 of fatty acids
and esters, and a band between 1,660 and 1,446 cm™" cor-
responds to —-C=0 and -NH of the I and II amides of the
proteins arising from various combinations of vibrations in
the peptide linkages and secondary structure of the casein
protein. Amide I vibration is mainly due to stretching of
C=0 bonds, and amide II vibration is due to deformation of
N-H bonds and stretching of C-N bonds. The amide I
vibration is measured in the region of 1660-1550 cm™ ' and
the amide II vibration in the region of 1550-1446 cm™".
Other small bands were observed in the spectral zone
1200-800 cm™; this region corresponds to the stretching
—-C=0 of polysaccharides and C=C of acids [43, 44].

These four groups of samples show slight differences in
the band of 3000-2800cm™; 1,750-1,650cm™’; and
1,660-1,446 cm ™', which mainly represents the absorption of
substances, such as proteins, fatty acids, and esters.

However, it is still difficult to directly categorize the
geographical origins owing to these minor differences.
Consequently, it is necessary to study the classification
model in order to help to identify the geographical origins of
raw milk.

To further describe the data in a very small dimensional
space, a PCA was first performed on the milk spectra to
exploit the data set and to obtain information about the
distribution and behavior of the samples regarding the
measured variables that represent the wavenumber of the
MIR spectral data.

3.2. Identification of the Geographic Origin of Raw Milk

3.2.1. Principal Component Analysis. PCA was applied to
raw spectral data to visualize the samples in a well-reduced

space in order to get a clear view of the data distribution.
PCA shows that the first three components account for 97%
(PC1: 65%, PC2:17%, and PC3:15%) of the total variability
contained in datasets. From Figure 3, which represents the
configuration of the samples on the first three PCs, we can
distinguish a grouping of the samples according to their
geographical origin, indicating that the samples belonging to
each group had similar FTIR properties. However, the PCA
plot shows that some milk samples from different regions
exhibited high overlapping due to the same compositional
properties. However, the first three PCs are not sufficient to
distinguish between R1, R3, and R4. For this reason, more
than 3 components are selected and used as feature variables
for the construction of classification models such as PLS-
DA, LDA, and SVM.

3.3. Discrimination Analysis. In order to build a model able
to discriminate and predict the membership of milk
according to their geographical origin. In this study, three
different supervised classification algorithms, including PLS-
DA, LDA, and SVM, were investigated to classify different
geographical origins of raw milk. For the PLS-DA and LDA,
feature extraction is used directly, since these methods
cannot be applied directly on spectral data without feature
extraction of latent variables. While the SVM is applied
without and with feature extraction of latent variables by
PCA, in order to demonstrate the importance of feature
extraction variables in improving classification performance,
finally, the classification models were compared.

(i) Partial Least Square Discrimination Analysis. PLS-DA
analysis was applied over the entire MIR spectral region
(4000 cm™" and 600 cm™") without spectral preprocessing
and with spectral preprocessing. The choice of the optimal
number of latent variables required for a good classification
and prediction is made on the basis of the values obtained by
the cross-validation procedure, namely, the root mean
square error and R-square which are calculated on the basis
of the leave one out algorithm [45]. In our case, 12 latent
variables were selected.
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FIGURE 2: Midinfrared spectra of different cow’s milk.

PC-1 (65%)

09 YC_\ «’5%\

A R3
R2 + R4

Explained Variance
100 ~

90 -
80
70 S
60

50 o

X-Variance

40

30

20

T T T T
PC-0 PC-1 PC-2 PC-3 PC-4 PC-5
PCs

FIGURE 3: Scores plot of the PCA model with three principal components PC1-PC2-PC3 and a graphic of the explained variance of each

principal component.

Based on the results in Table 1 obtained by the PLS-DA
method, we conclude that the PLS-DA method provides
good results for the classification of milk according to their
geographical origin, these performances are represented by
the high value of the R-square and the low value of the RMSE
for both calibration and cross-validation results. These re-
sults also show that the spectral data preprocessed by the
detrend algorithm using polynomial degree 1 gives the
lowest value of RMSE and the highest value of R-square.

(ii) Linear Discriminant Analysis. Subsequently, the PCA-
LDA model was developed to classify and predict milk

according to its geographical origin. LDA was applied on the
first 5 components obtained by PCA using the statistical
method of Mahalanobis. In our case, the application of the
LDA analysis directly on the spectral data cannot be done
because the number of spectral variables is higher than the
number of samples.

Based on the results obtained by PCA-LDA, we can
conclude that this method gives powerful results for the
classification of milk. This classification ability is represented by
the high values obtained for sensitivity, specificity, and clas-
sification correct rate % (CCR), as shown in Table 2. It was clear
that all the built models provide high sensitivity (otherwise
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TaBLE 1: Statistical results obtained by the PLS-DA method.

. Number of ) R%Cross. Sensitivity Specificity %
Preprocessing data LVs Groups R cajibrarion RMSEC e RMSECV (%) (%) CCR
R1 0.98 0.056 0.97 0.069 100 100
R2 0.99 0.036 0.99 0.041 100 100
Raw 12 R3 0.95 0.10 0.81 0.200 100 100 100
R4 0.93 0.11 0.79 0.200 100 100
R1 0.98 0.055 0.97 0.070 100 100
Detrend polynomial 13 R2 0.99 0.034 0.99 0.040 100 100 100
1 R3 0.97 0.075 0.83 0.183 100 100
R4 0.97 0.071 0.83 0.178 100 100
R1 0.98 0.056 0.97 0.070 100 100
Detrend polynomial 13 R2 0.99 0.034 0.99 0.041 100 100 100
2 R3 0.97 0.075 0.84 0.185 100 100
R4 0.97 0.072 0.84 0.182 100 100
TABLE 2: Statistical parameters obtained by the PCA-LDA method.
. . Actual o .
Confusion matrix Sensitivity (%) Specificity (%) % CCR
R1 R2 R3 R4
R1 24 0 0 0 100 100
R2 0 24 0 0 100 100
Raw R3 0 0 28 1 100 100 995
R4 0 0 24 100 98.7
R1 24 0 0 100 100
. . R2 0 24 0 0 100 100
Detrend polynomial 1 Predicted R3 0 0 )8 0 100 100 100
R4 0 0 0 25 100 100
R1 24 0 0 0 100 100
. R2 0 24 0 0 100 100
Detrend polynomial 2 R3 0 0 28 3 100 100 98.5
R4 0 0 0 22 100 96.2

known as the true-positive rate), as demonstrated by the high
value that reaches 100% for the three models. These models
also show a high specificity, 99% for the model built on raw
data, 100% for the model built on preprocessed data by detrend
polynomial degree 1, and 98.5% for the model built on pre-
processed data by detrend polynomial degree 2.

(iii) Support Vector Machine. The SVM method has been
applied to the spectroscopic data with and without feature
extraction, using the radial basis function method. The use of
the SVM method without extraction of characteristics shows
a CCR of 66.97, 69.68, and 67.97, respectively, for raw
spectral data, spectral data corrected with detrend using a
polynomial of orders 1 and 2, as shown in Table 3. According
to the confusion matrix obtained by this method, we can
observe that not all samples belong to their class for a certain
group. This method shows an important specificity, i.e., a
good capacity for the good classification of negative events.
Therefore, low sensitivity has been observed for this method,
i.e., low classification of positive events.

However, the application of the SVM method on the first
5 components obtained by PCA shows good results rep-
resented by the high values of CCR which reach 98.51, 98.49,
and 99.00 using features extracted from spectral data
without spectral preprocessing and spectral data pre-
processed by detrend using polynomials of degree 1 and 2,

respectively, as shown in Table 3. This method shows a
sensitivity of 100%, which verifies the high capacity of this
statistical approach for the prediction of correct events as
well as correct events, and a high specificity ranging between
96.2% and 100%.

3.4. Validation of Classification Models. In order to evaluate
the classification and predictive capacity of the constructed
models, external validation of the models was carried out
using different samples to those used for the construction of
the models.

In the case of PLS-DA, the predicted y-value of a given
sample is close to 1 (or greater than 0.5) and allocates the
sample to a specific category, while a sample with a predicted
y-value of less than 0.5 allocates it outside the category.

The results found by the external validation of the
machine learning classification models (Table 4) show that
the best results are provided by applying PLS-DA, PCA-LA,
and then PCA-SVM which shows a strong classification
capacity represented by the high values of CCR, specificity,
and sensitivity which reaches 100% for PLS-DA and PCA-
LDA and a CCR of 94.95 for PCA-SVM, while the appli-
cation of the SVM method without feature extraction gives a
CCR of 66.67% which is considered unsatisfactory for the
corresponding classification of samples according to their
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TABLE 3: Statistical parameters obtained by the SVM and PCA-SVM methods.
. . Actual . o
Confusion matrix (SVM) Sensitivity (%) Specificity (%) % CCR
R1 R2 R3 R4
R1 22 0 8 15 48.89 96.3
R2 0 24 0 0 100 100
Raw R3 2 0 20 2 46.51 87.1 66,97
R4 0 0 0 8 100 79,52
R1 0 0 0 0 0 69,23
. . R2 0 24 0 0 100 100
Detrend polynomial 1 Predicted R3 24 0 )8 23 100 100 69,68
R4 0 0 0 2 100 69,33
R1 0 0 0 0 0 68,42
. R2 0 24 0 0 100 100
Detrend polynomial 2 R3 24 0 28 25 100 100 67,97
R4 0 0 0 0 0 67,53
. . Actual N o o
Confusion matrix (PCA-SVM) Rl R2 R3 R4 Sensitivity (%) Specificity (%) % CCR
R1 24 0 0 0 100 98,68
R2 0 24 0 0 100 100
Raw R3 1 0 28 2 100 100 98,51
R4 0 0 23 100 97,44
R1 24 0 0 0 100 100
. . R2 0 24 0 0 100 100
Detrend polynomial 1 Predicted R3 0 0 )8 3 100 100 98,49
R4 0 0 0 22 100 96,2
R1 24 0 0 0 100 100
. R2 0 24 0 0 100 100
Detrend polynomial 2 R3 0 0 28 2 100 100 99
R4 0 0 0 23 100 97,44

TaBLE 4: Performance parameters obtained for the validation of the PLS-DA and PCA-LDA models and SVM and PCA-SVM models
constructed using FT-MIR spectral data preprocessed by detrend polynomial degree 1.

. . Actual L e
Confusion matrix Sensitivity (%) Specificity (%) % CCR
R1 R2 R3 R4

R1 12 0 0 0 100 100
R2 0 12 0 0 100 100

PLS-DA R3 0 0 14 0 100 100 100
R4 0 0 0 12 100 100
R1 12 0 0 0 100 100
R2 0 12 0 0 100 100

PCA-LDA R3 0 0 14 0 100 100 100
) R4 0 0 0 12 100 100
Predicted RI 0 0 0 0 0 68,42
R2 1 12 1 0 85,71 100

SVM R3 11 0 13 11 100 92,86 66,67
R4 0 0 0 1 100 69,44
R1 11 0 0 0 100 97,3
R2 0 12 0 0 100 100

PCA-SVM R3 1 0 12 0 100 94,6 94,95
R4 0 2 12 85,71 100

membership. These results show the usefulness of using PCA
as a first step for classification methods. Applying this
method as a primary step for SVM analysis improves
considerably the classification performance as shown by the
results.

4. Conclusion

The present work constitutes an exploratory investigation on
the use of vibrational spectroscopy for milk samples in

Morocco. In which MIR spectroscopy combined with ma-
chine learning methods has been proposed to quickly
identify the geographical origin of milk. After sample col-
lection, the MIR spectra of raw milk can be rapidly acquired.
Then, the obtained MIR spectral data are modeled using four
classification methods (including PLS-DA, PCA-LDA, SVM,
and PCA-SVM). Then, acceptable classification results are
provided by these classification approaches. Compared with
the PLS-DA (CCR=100%), the PCA-LDA and PCA-SVM
methods obtained more accurate and reliable classification



results and were able to identify raw milk samples from
different geographical origins with a CCR of 96% and 100%
for the test set. In addition, satisfactory sensitivity and
specificity were found reflecting the performance of these
classification approaches. On the other hand, the application
of the SVM method without feature extraction gives a low
CCR of 65%. These results also prove that the use of PCA as a
preliminary method for machine learning methods im-
proves the classification performance by extracting features
and reducing the data size.

The suggested exploratory approach based on MIR
spectroscopy combined with machine learning methods
proved to be an efficient strategy for the dairy industry to
identify the geographical origin of raw milk. The above
results confirm that the proposed method can be considered
as a promising alternative for determining geographical
origin.
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