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Te rise in population growth worldwide requires efcient management of agricultural lands through the correct determination of
authentic fertilizers. In this current study, a rapid on-site detection technique was developed by using portable NIR spectroscopy
in the wavelength range of 740–1070 nm together with optimummultivariate algorithms to identify fertilizer integrity (unexpired,
expired, and adulterated) as well as quantify the levels (10–50%) of adulteration. NIR models were built based on support vector
machine (SVM) and random forest (RF) for identifcation, while diferent types of partial least square regression (PLS, iPLS, Si-
PLS, and GaPLS) were used for quantifcation purposes. Te models were evaluated according to identifcation rate (Rt), co-
efcient of correlation in prediction (Rpre2), and root mean square error of prediction (RMSEP). For the identifcation of the
integrity of the fertilizer, among the mathematical pretreatments used, the frst derivative (FD) together with SVM gave above
99.20% identifcation rate in both calibration and prediction sets. For the quantifcation of the adulterants, Si-PLS was found to be
superior and showed an excellent predictive potential of Rpre2 = 0.95–0.98 and RMSEP= 0.069–0.11 for the two fertilizer types
used. Te overall results indicated that a handheld NIR spectrometer together with appropriate algorithms could be employed for
fast and on-site determination of fertilizer integrity.

1. Introduction

Te rise in population growth worldwide puts a lot of
pressure on agricultural resources. Tis rapid growth has
called for agricultural intensifcation to supply the neces-
sities of life, which include healthy food. To address the
demand for food to support the rising population growth,
agro-inputs such as fertilizers are rigorously used in

agriculture to increase productivity [1]. Recent studies in-
dicated that fertilizer use in agriculture has resulted in [1, 2].
Nevertheless, the proliferation of fertilizer has created an
opportunity for fraudsters to cheat by either selling fake,
adulterated, or expired fertilizer, and often this mischief goes
unnoticed and the farmers are at the receiving end. Farmers
intend to also pass on their associated burden to consumers.
therefore, time for policymakers and major players in the
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agriculture value chain to have a rapid detection technique
to assist in the precision measurement of fertilizer integrity
to help regulators ensure its quality and protect the brand.
Tis would promote high productivity and traceability to
guarantee farmers’ commitment to safe food production [3]
and contribute to sustainable development goals. Te ap-
plication of portable NIR spectroscopy coupled with a sys-
tematic selection of a multivariate algorithm for
diferentiating expired and unexpired chemical fertilizers
would be very useful.

Global food demand will continue to grow in the coming
decades, with concomitant challenges for sustainable agri-
cultural input supply. Te increase in agricultural pro-
ductivity is strongly linked to the intensive use of fertilizer
[4, 5]. However, the misuse, sale, and proliferation of ex-
pired, adulterated, and fake fertilizers are known to lead to
poor germination, weak soil nutrients, water and air pol-
lution, and serious problems for human health and the
environment at large [6, 7]. To attain maximum agricultural
output, there is an urgent need for the cautious use of natural
resources and minimal application of hazardous compounds
[1]. To make matters more complicated, the sale and use of
banned, fake, and counterfeit fertilizers in developing
countries are perceived. Tis act is often either not
researched or not reported in the literature. Tis calls for
immediate research attention to curb this menace. Te
solution lies in the development of rapid and farmer-friendly
detection technology coupled with a smartphone device. For
instance, in Ghana, the Environmental Protection Agency
(EPA) and Ghana Standards Authority (GSA) are not able to
do due diligence in monitoring, controlling, and managing
fake or adulterated agro-inputs for the production of major
staple foods. Tis is due to the cumbersome, expensive, and
slow nature of the analytical techniques available.

Until now, there are available rapid on-site and non-
destructive measurement techniques for the determination
of fertilizer integrity. Tere is therefore a need for the de-
velopment of rapid detection techniques that are appropriate
for our geographical location. Te application of portable
spectrometers and chemometrics coupled with smartphone
technology holds more promise. Spectroscopy has been used
for measuring other attributes in commodities like cocoa
[8, 9], seed germination [10, 11], and soil health [12, 13].
However, little or no research has reported on the feasibility
of portable NIR spectroscopy for measuring authentic,
adulterated, and expired fertilizer.

2. Materials and Methods

In this study, two brands of fertilizer samples were used, as
shown in Table 1. Te frst category was brand A (authentic
improved urea, expired improved urea, and adulterated
improved urea) and brand B (authentic nitrabor, expired
nitrabor, and adulterated nitrabor). Te formulation of the
adulterated category was done by spiking the two authentic
fertilizers diferently with various levels of expired ones in
the range of 10–50wt/wt.%. Te authentic samples were
obtained from registered and recommended fertilizer
dealers in Cape Coast, Kumasi, and Accra, while their

expired counterparts (expired 1.5–3 years) were also ob-
tained from the Department of Soil Science at the University
of Cape Coast. All samples were labelled and transported
into the laboratory for further analysis.

2.1. Spectral Acquisition. Te spectrum of each unique
sample was taken in the refectance mode using a handheld
spectrometer (SCIOR) in the wavelength range of
740–1070 nm with a 1-nm resolution for spectra data
readings operated with the aid of Scio Lab assisted by
a smartphone device. Te SCIO (Model CP-SCM001)
portable NIR used in this study is from consumer physics; it
weighs 35 g (68× by 40.2×18.8mm) and employs Bluetooth
to connect to a smartphone or tablet (Android or iOS) and
an SCIO lab app, which operates using Internet connectivity
for a two-way communication when scanning. For more
information, refer to other authors [14, 15]. Each fertilizer
sample was collected into a sample cup and scanned three
times after rotating the sample 45°. Te whole process was
carried out at a temperature of 31± 2°C and a relative hu-
midity of 60± 3%. Te spectra data stored at the cloud base
was downloaded and transported into MATLAB (R2020a;
TeMathWorks, Natick, MA), where all the calculations and
modelling were done inWindows 10.Te refectance spectra
were then transformed into absorbance by using

A � Log10
1
R

. (1)

2.1.1. Chemometric Techniques. All the chemometric tech-
niques used in this experiment for spectra data analysis
included preprocessing tools such as Savitzky–Golay frst
derivative (FD), Savitzky–Golay second derivative (SD),
multiplicative scatter correction (MSC), and standard
normal variant (SNV). Tese aforementioned preprocessing
techniques were done to comparatively evaluate their known
unique impacts, such as removing baseline drifts, multi-
plicative scattering efects, background noise, and signal
noise, as proposed by other authors [16, 17]. After pro-
cessing the spectra data set, identifcation models (random
forest; RF; and support vector machine; SVM) and quan-
tifcation models (partial least square, PLS; interval partial
least square, iPLS; synergy interval partial least square, Si-
PLS; and back interval partial least square, Bi-PLS) were built
for identifying authentic from expired ones as well as
quantifying the adulterant in the pure samples. For more
information on the theories of the identifcation and
quantifcation models used, refer to other authors [8, 18, 19].
Te optimal identifcation and quantifcation models’ per-
formances were compared among the diferent algorithms
using equations (2)–(7), respectively. More specifcally, the
identifcation rate would be evaluated using the percentage
accuracy in the prediction set, while it is mostly a rule to
judge the performance of the quantifcation model using
statistical parameters such as the correlation coefcient in
the prediction set and the root mean square error in the
prediction set.
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Accuracy(%) �
TN + TP

Total
x100, (2)

Sensitivity(%) �
TP

Tp + FN
x100, (3)

Specif icity(%) �
TN

TN + FP
x100, (4)

Error rate(%) �
FP + FN

Total
x100, (5)

Rpre �
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n
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n
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2,




, (6)

RMSEP �

�����������


n
i yi − yi( 

2

n
.



(7)

3. Results and Discussion

3.1. Spectra Examination. In this feasibility study, two
categories of fertilizers were used separately and simul-
taneously, namely brand A (authentic improved urea,
expired improved urea, and adulterated improved urea)
and brand B (authentic nitrabor, expired nitrabor, and
adulterated nitrabor) fertilizers (improved Urea and
nitrabor) were investigated using portable NIR spec-
troscopy. As seen in Figure 1, the raw spectra profle and
Savitzky–Golay second derivative (SGSD) spectra profle
reveal useful peaks associated with ROH, RNH, CH, CH2,
and CH3 hydrogen bonds at the third overtone region
[20]. For the raw spectra as seen in Figure 1(a), a major
peak was observed at 950 nm to 1000 nm, while it was
observed that other peaks were magnifed when the sec-
ond derivative technique was used, as seen in Figure 1(b).
Tese peaks are located around 780 nm, 830 nm, 940 nm,
975 nm, and 1025 nm, and these peaks could be associated
with RNH2, CH, and ArCH [21] in fertilizer A (improved
urea), which contains sulphur-enriched granular urea-
based fertilizer with diferent levels of nitrogen and sul-
phur oxide (40% N and 14% SO3). In Figure 2, it was seen
that fertilizer brand B (nitrabor) had two major peaks for
raw spectra around 800 nm and 1025 nm, which are lo-
cated in the third overtone region. While for the SGSD
spectra profle (Figure 2(b)), the major peaks were ob-
served at several wavelengths, including 775 nm, 850 nm,
900 nm, 1000 nm, and 1045 nm. Tese wavelengths cor-
respond to the third overtone region associated with CH3,
CH2, CH, RNHR, and RNH2 [20, 22]. Tese compounds
could be related to the chemical properties of the fertilizer
samples used, as it has been observed that spectral fn-
gerprints normally originate from a combination or
overtones of C-H stretching modes of saturated CH2 and
CH3, or aromatic functional groups [23, 24].

3.2. Principal Component Analysis (PCA). PCA of the
various categories was observed after diferent applica-
tions of preprocessing treatment were compared with
each other. It was observed for fertilizer A that both the
raw spectra and the other two techniques (SNV and
SGFD) could not give a clear separation of the three
categories, as seen in Figures 3(a)–3(c). However, the
SGSD PCA cluster plot showed a well-defned separation
of the three distinct fertilizer categories used, as seen in
Figure 3(d). More so, this same phenomenon was ob-
served by fertilizer B, as seen in Figures 4(a)–4(c). Tis
means that SGSD spectra preprocessing treatment
techniques work better than the others for clustering
fertilizer categories. Also, it could be observed that fresh
fertilizer is diferent from expired and adulterated fer-
tilizers. Tese separations could be attributed to difer-
ences in the chemical properties of the categories of
fertilizer. Most importantly, the expired fertilizers could
have lost their potency because fertilizers stored poorly
under unfavourable temperature and humidity condi-
tions can lose their rich chemical properties and break
down their nutrients. Under prolonged storage under
high-temperature conditions, nitrogen is lost [25–27]. It
is also believed that fertilizer does not break down easily
but can, however, change its chemical properties by
chemical reaction or become free ions at high humidity
and moisture as ammonia volatilization is the main
mechanism of nitrogen loss from urea [28, 29].

4. Identification Model

Furthermore, identifcation models were comparatively
built and evaluated. Tese models included random forest
(RF) and support vector machine (SVM). Te models
revealed optimum results after preprocessing treatments
such as SNV, FD, and SD. From Table 2, it can be seen that
all the identifcation models performed well above a 90%
identifcation rate. However, after preprocessing the raw
spectra data set, the second derivative spectra pre-
processing treatment performed comparatively better than
the others, with a 97% identifcation rate when RF was
employed, while when SVM was also used, it gave a 99%
identifcation rate. Te best performance by SVM could be
attributed to the potential of the model overcoming
overftting and the strong nonlinear supervised attribute, as
well as the higher generalization of SVM by maximizing the
margin and supporting efcient learning of nonlinear
functions [30]. Furthermore, the major peaks that con-
tributed to the neat clustering and strong identifcation rate
are described by the Eigenvectors value for the identif-
cation of fertilizer categories, as seen in Figure 5. From this
Figure, it can be seen that the major peaks are 800 nm,
925 nm, and 975 nm, which correspond to CH, CH2, and
CH3 in the third overtone region [20].

For fertilizer B, the identifcation rate observed was
between 93% and 97% for the RF with diferent pre-
processing treatments. A similar trend was observed for
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fertilizer B, as the second derivative spectra performed better
than the other preprocessing treatments. On the other hand,
as seen in Table 3, SVM also gave a superior identifcation
rate than the RF algorithm. Tis phenomenon further
proved that SVM shows good performance for classifying
high-dimensional data when a limited number of samples
are available. Hence, it has increasingly become a very
popular classifcation algorithm with strong nonlinear su-
pervised potential [31, 32]. From Figure 6, it can be seen that
the major wavelengths that contributed to the accurate
identifcation are centered around 800 nm, 960 nm,
1025 nm, and 1040 nm. Tese wavelengths are associated
with the second overtone region, which represents nitrogen.

5. Quantification Model

In this research, an attempt to quantify the adulteration of
the expired fertilizer was made for the frst time using
various partial least square multivariate algorithms. From
the study, it was observed that the NIR spectra data set could
be a model for rapid quantifcation of fertilizer integrity. For
fertilizer A, as seen in Table 4, it could be observed that all the
quantifcation models developed had prediction rates above
0.93 (R2). Tese results proved the feasibility of rapid de-
termination of fertilizer integrity to aid accurate agricultural
production and increase yield. Furthermore, it must be
emphasized that among the models developed, the Si-PLS
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Figure 1: Spectra profle: (a) raw and (b) SGSD of fertilizer A categories.
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model performed superior to the others with a coefcient of
determination of R2 � 0.94 and 0.95 in the training and test
sets, respectively, with the selected wavelengths of
820–839 nm, 938–956 nm, and 995–1013 nm, as seen in
Figure 7. While its closest model Bi-PLS also selected similar
wavelengths of 825–841 nm, 927–942 nm, and 959–975 nm.
Tese wave bands in the spectra wavelength region used in
this study were those responsible for the correct identif-
cation of the categories of samples used [33].

More so for fertilizer B, the quantifcation of the adul-
teration was successfully achieved above R2 � 0.95, as seen in
Table 5. Tis means that each of the developed models could
be used for industrial and market surveillance analyses of
fertilizer integrity. However, for improved performance, the
Si-PLS model used its superiority over the others. Te

optimum wavelength ranges selected for the superior model
were 740–767 nm, 824–851 nm, and 990–1016 nm, as seen in
Figure 8.Tis means that the selected wavelengths correlated
well for the quantifcation of adulteration of the fertilizer
used in this experiment. Te wavelengths are also associated
with third overtone regions with functional groups such as
NH2, C-H, and RNH2. Tese groups, especially NH2 groups,
are known to vanish as chemicals expire [34].

6. Simultaneous Measurement of Adulteration
Levels in Fertilizer Brands A and B

After a successful classifcation and quantifcation of indi-
vidual fertilizers (A and B), this research further exploited
the feasibility of quantifying adulteration levels in two
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Figure 3: PCA score plot: (a) raw, (b) SNV, (c) SGFD, and (d) SGSD of fertilizer brand A.
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Figure 4: PCA score plot: (a) raw, (b) SNV, (c) SGFD, and (d) SGSD of fertilizer brand B.

Table 2: Te infuence of preprocessing technique on identifcation models (fertilizer A).

Models Evaluation
Preprocessing treatment at 5PCs

Raw SNV FD SD
Train Test Train Test Train Test Train Test

RF

Accuracy 93.70 94.70 93.50 94.60 96.50 96.50 93.70 94.70
Error rate 6.30 5.30 6.50 5.40 3.50 3.50 6.30 5.30
Sensitivity 96.40 96.00 95.30 94.00 96.80 97.60 96.40 96.00
Specifcity 99.70 99.70 98.90 99.50 98.50 99.20 99.70 99.70

SVM

Accuracy 92.30 92.30 98.50 98.50 99.20 99.50 92.30 92.30
Error rate 7.70 7.70 1.50 1.50 0.80 0.50 7.70 7.70
Sensitivity 96.30 97.10 98.50 96.80 99.20 99.50 96.30 97.10
Specifcity 92.30 92.30 97.50 97.50 99.20 99.50 92.30 92.30
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Table 3: Te infuence of preprocessing technique on identifcation models (fertilizer B).

Models Evaluation
Preprocessing treatment at 5 PCs

Raw SNV FD SD
Train Test Train Test Train Test Train Test

RF

Accuracy 97.50 97.50 97.40 97.40 97.40 97.50 98.00 98.00
Error rate 2.50 2.50 2.60 2.60 2.60 2.50 2.00 2.00
Sensitivity 98.10 98.40 98.00 97.50 92.10 91.50 98.00 98.00
Specifcity 99.60 99.60 99.20 99.20 99.60 99.60 99.60 99.60

SVM

Accuracy 98.70 98.70 99.30 99.40 99.50 99.50 99.70 99.40
Error rate 1.30 1.30 0.70 0.60 0.50 0.50 0.30 0.60
Sensitivity 98.20 99.50 99.70 99.80 99.50 99.50 99.40 99.60
Specifcity 99.70 99.70 98.60 97.90 97.60 96.80 98.20 97.80
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fertilizer groups simultaneously. It was observed that the
NIR spectra data set could be trained to quantify adulter-
ation levels in diferent types of fertilizers. Te models used
obtained results between 0.81–0.94 and 0.79–0.92 of R2 in
the training set and test set, respectively, as seen in Table 6. It
was observed that the PLS model had the least performance
(R2 � 0.81 and 0.79 using variables 331), while the best

performance was obtained for Si-PLS at 61 variables with
R2 � 0.94 and 0.92 in the training set and test set,
respectively.

It could be explained that Si-PLS used 61 variables and
made optimum use of these selected wavelength ranges of
740–755 nm, 816–830 nm, 936–950 nm, and 966–980 nm
that corresponded accurately with the group of fertilizers
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Figure 7: Si-PLS spectra selection: (a) and model plots (b) for NIR estimation and measured value.

Table 5: Optimum performance of diferent quantifcation models for fertilizer B.

Model R2 RMSECV Bias R2 RMSEP Bias RPD
PLS 0.9523 0.0801 0.0054 0.9529 0.0898 0.0092 4.3444
iPLS 0.9613 0.0945 0.0004 0.9648 0.0908 −0.0007 3.8200
Bi-PLS 0.9664 0.0881 −0.0002 0.9676 0.0879 −0.0050 3.9460
Si-PLS 0.9767 0.0736 0.0007 0.9799 0.0692 −0.00 2 5.0 24
GAPLS 0.9736 0.0782 0.0004 0.9766 0.0742 0.0028 4.6746

Variables Selected wavelength range (nm)
PLS 331 740–1070
iPLS 17 757–773
Bi-PLS 47 757–773, 959–974, 1009–1022
Si-PLS 83 740–767, 824–851, 990–1016
GAPLS 331 740–1070

Table 4: Optimum performance of diferent quantifcation models for fertilizer A.

Model R2 RMSECV Bias R2 RMSEP Bias RPD
PLS 0.9351 0.1297 0.0094 0.9450 0.1201 0.0133 3.0767
iPLS 0.9346 0.1302 −0.0003 0.9433 0.1227 −0.0045 3.0128
Bi-PLS 0.9424 0.1224 −0.0005 0.9299 0.1362 −0.0134 2.7141
Si-PLS 0.9496 0.  47 0.0004 0.9529 0.  22 −0.0076 3.2947
GAPLS 0.9409 0.1240 −0.0011 0.9493 0.1157 0.0010 3.1950

Variables Selected wavelength range (nm)
PLS 331 740–1070
iPLS 16 927–942
Bi-PLS 50 825–841, 927–942, 959–975
Si-PLS 58 820–839, 938–956, 995–1013
GAPLS 331 740–1070
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Figure 8: Si-PLS spectra selection: (a) and model plots (b) for NIR estimation and measured value.

Table 6: Optimum simultaneous quantifcation of fertilizers A and B adulteration levels.

Model R2 RMSECV Bias R2 RMSEP Bias RPD
PLS 0.8133 0.2064 0.0102 0.7966 0.2139 0.0161 1.6589
iPLS 0.8920 0.1603 −0.0003 0.8824 0.1692 −0.0198 2.0972
Bi-PLS 0.9156 0.1426 0.0002 0.7068 0.2537 −0.0366 1.3987
Si-PLS 0.9460 0.1150 −0.0003 0.9295 0.1328 −0.0193 2.6720
GAPLS 0.8895 0.1620 −0.0002 0.8551 0.1864 −0.0135 1.9020

Variables Selected wavelength range (nm)
PLS 331 740–1070
iPLS 16 959–974
Bi-PLS 50 740–756, 808–824, 927–942
Si-PLS 61 740–755, 816–830, 936–950, 966–980
GAPLS 331 740–1070

0.8
0.9

1

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

A
=l

og
 (1

/R
)

800 850 900 950 1000 1050750
Wavelength (nm)

(a)

Pr
ed

ic
te

d 
%

 ad
ul

te
ra

tio
n

Rcal2 = 0.946 RMSECV = 0.115
Rpre2 = 0.929 RMSEP = 0.132

Fertilizer

40

60

80

100

120

1009030 40 702010 8050 600
Measured % adulteration

Calibration
Prediction

(b)

Figure 9: Si-PLS spectra selection (a) and plot (b) of NIR estimation and measured value.
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used and their levels of adulteration as observed in Figure 9.
Furthermore, Si-PLS is known to possess the potential of
selecting multiple spectra subintervals that are informative
enough to provide optimum results as well as eliminate
irrelevant information that could infuence the performance
of the model [35].

7. Conclusion

Tis research has shown that on-site and rapid detection of
fertilizer integrity is feasible and could be an efective tool for
efcient quality control of fertilizer. In this study, the frst
derivative (FD) preprocessing together with either SVM
gave above 99.20% identifcation rate in both the calibration
and prediction sets. For the quantifcation of the adulterants,
Si-PLS was found to be superior and showed an excellent
predictive potential of Rpre2 = 0.95–0.98 and
RMSEP= 0.069–0.11 for the two fertilizers used. Te results
only showed feasibility studies, and further studies are
needed to include a wide range of samples and potential
adulterants to improve the robustness of the models. It could
ofer a user-friendly technique for monitoring and quality
control services in the fertilizer value chain.
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