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�e ability to perform direct rapid analysis in air and at atmospheric pressure is a remarkable attraction of laser-induced
breakdown spectroscopy (LIBS) for the diagnostic quanti�cation of disease biomarker metals in body tissue. However, accurate
trace analysis is limited by matrix e�ects and a pronounced background that masks the subtle (peak-free) analyte signals because
tissue plasma is dense and most lines are optically thick. In this work, a peak-free chemometric LIBS method based on a single-
shot (for rapidity and nondestructiveness) and an arti�cial neural network multivariate calibration strategy with spectral feature
selection was evaluated for its utility for direct trace quantitative analysis of copper (Cu), iron (Fe), manganese (Mg), magnesium
(Mg), and zinc (Zn) in model soft body tissue.�e spectral signatures corresponding to the biometals (so-called because themetals
are intrinsic to tissue biochemistry) were generated by spiking their known human-body-representative concentrations in molten
para�n wax. �e developed multivariate analytical model achieved ≥95% accuracy as determined from the analysis of oyster
tissue-certi�ed reference material.�e analytical models were tested on the liver, breast, and abdominal tissue biopsies.�e results
of applying the model to the clinical tissues indicated the absence or presence (including severity) of cancer as either malignant or
benign, in agreement with the pathological examination report.

1. Introduction

In laser-induced breakdown spectroscopy (LIBS), the
microplasma that is formed when the laser ablates a sample
is a “spectral �ngerprint” of the sample matrix. �erefore,
LIBS has great potential in medicine, where it may be used to
gain diagnostic information by analysing anatomical spec-
imens such as body �uids and tissue. �e trace biometals
thereby detected may be explored and used as disease
biomarkers because they are crucial for biopathological
processes (a quarter to a third of all proteins require them to
carry out their functions).

A promising application is the elusive early cancer di-
agnosis which may be realized by providing noninvasive
detection and identi�cation of speci�c trace metal bio-
markers in tissue because the tedious and destructive sample

preparations required by other methods are in the LIBS
technique inapplicable. Unfortunately, LIBS spectra in air
and atmospheric pressure are adversely a�ected by matrix
e�ects, shot-to-shot �uctuations, and self-absorption [1–3].
Furthermore, LIBS signals su�er from intensity and re-
producibility degradation due to the softness, moisture
content, and heterogeneity of tissue samples [4, 5]. Biological
tissues contain trace biometals in very low concentrations
[6]. �erefore, LIBS spectra of trace biometals from soft
tissue show only a small number of subtle spectral lines from
the biometals amid pronounced background and noise.

�e technical, theoretical, and mathematical aspects of
LIBS are well reported [7–11]. It remains to understand
more about the dynamics of how laser light interacts with
tissue materials in order to fully realize the utility of LIBS for
disease diagnostics. LIBS analysis of trace metals in tissues
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has been reported in the past, but the concentration levels of
the metals of interest were either near or below the detection
limit (DL). *e well-known limitation of LIBS, namely, the
relatively high DL of some metals with respect to their
physiological levels has been pointed out by Santos Jr. et al.
[12]. However, Adamson and Rehse [13] demonstrated DL
<1 ppm for trace aluminium (Al) embedded as nanoparticles
in surrogate tissue using LIBS. To achieve this, the authors
used a calibration curve normalized by the nearby calcium
(Ca) II line at 393.366 nm. Most quantitative LIBS methods
involve univariate calibration curve and/or calibration-free
approaches [14]. In univariate analysis, the useful spectral
lines are carefully selected according to prior knowledge of
the elemental components and biochemical characteristics
of specific tissues, a laborious procedure. Needless to reit-
erate that the analytical approaches often fail to obtain the
desired results for complex matrix samples. Furthermore, it
is difficult to get suitable matrix-matched standards, making
LIBS at best a semiquantitative tool for trace metal analysis
in biological matrices. *e challenge is how to improve the
accuracy and speed of trace analysis by extracting useful
analytical information from the LIBS high dimensionality
data. Human tissues are molecularly complex and therefore
nonlinear. *erefore, more robust approaches are needed
for evaluation of the physiological levels of trace biometals
by extracting characteristic spectral information while
suppressing the spectral interference and noise.

Multivariate chemometrics analysis methods [15–17] are
applicable in this respect because the LIBS spectral signal
consists of a series of vector data with interdependent
variables. Chemometrics methods take into account nearly
all the variables in the spectra, remove unnecessary and
correlated information, and extract the most relevant var-
iables. *e errors generated by random and various non-
target factors in the spectra are also reduced. Among the
available methods of regression analysis in chemometrics,
artificial neural networks (ANNs) are the most “intelligent”
enough to learn, memorize, and create relationships among
spectral data without the need for characteristic spectral
information [18].

*e feasibility of using low signal-to-noise ratio (SNR)
analyte profiles (here called peak-free) in LIBS was dem-
onstrated when arsenic (As), chromium (Cr), copper (Cu),
lead (Pb), and titanium (Ti) were modelled for direct trace
(quantitative) analysis using partial least squares (PLS) and
artificial neural networks (ANNs) [19], where ANNs were
noted to be more robust than PLS at modelling spectral
nonlinearity and correcting matrix effects. In the biomedical
applications of LIBS, a single biomarker approach is highly
unlikely to yield results that have diagnostic accuracy;
therefore, the idea of using a basket of biomarkers has been
suggested [20, 21]. In this work, a chemometric peak-free
LIBS approach was evaluated for its utility for direct, rapid
but accurate trace quantitative analysis of copper (Cu), iron
(Fe), manganese (Mn), magnesium (Mg), and zinc (Zn)
simultaneously in soft body tissue. Such analysis would be
useful in disease diagnostics applications based on absolute
concentrations as well as the multivariate correlations and
alterations of the analysed biometals (as the disease

biomarkers) in body tissue as opposed to the practice of
exploiting relative increases or decreases in intensities of
major lines. *e emphasis on rapid (single-shot) analysis
and weak signals is crucial for clinical applications of LIBS.

2. Materials and Methods

2.1. Preparation of Model Tissue. Standard solutions of the
target trace biometals were prepared by dissolving known
amounts of analytical grade salts (copper nitrate
(Cu(NO3)2.3H2O), iron chloride (FeCl3.8H2O), ammonium
iron (I) sulphate (NH4Fe(SO4)2.6H2O), zinc nitrate
(Zn(NO3)2.6H2O), magnesium chloride (MgCl2.6H2O),
manganese chloride (MnCl2.4H2O), and potassium per-
manganate (KMnO4)) in ethanol. *e representative con-
centrations were selected in the ranges in which they occur
in the human soft body tissues [22]: Fe: 30–170 μg/g, Mg:
962–502 μg/g, Zn: 20–200 μg/g, Cu: 1–10 μg/g, and Mn:
1–30 μg/g. *e spiking concentration ranges were distrib-
uted using a research randomizer.

About 2mL of molten paraffin wax was poured into a
mould into which 5mL of the prepared mixture was added.
*e mixture was then stirred to ensure homogeneity. Stir-
ring was done while the mixture was being heated at 78°C to
ensure that ethanol and acetone boiled off. *e mould was
covered with an embedding cassette and placed in a freezer
to cool and form a block. *e block was sliced to 2 cm
thickness, each weighing ∼2 g for LIBS analysis. Oyster tissue
(NIST1566B) powder was placed in a hydraulic press to also
form method reference pellets of ∼2 g each.

2.2. Preparation of Human Cancer Tissue Biopsy Samples.
One (1) breast, two (2) liver, and one (1) abdominal tissue
needle biopsies, which had been extracted through a routine
surgical operation and histopathologically examined, were
donated by Kenyatta National Referral Hospital. *e tissues
were trimmed to 2mm thickness and placed in 10% formalin
in labelled bottles. *ey were dehydrated by soaking in
absolute alcohol three times successively for an hour each.
*e tissue samples were thereafter cleared of alcohol by
soaking in 50 : 50 alcohol for an hour, followed by toluene in
three stages lasting 30 minutes each.*e tissues were dipped
into a mould filled with molten paraffin wax, previously
placed in an oven at 58°C, and brought back to the oven
overnight for infiltration of wax to fill up the spaces left in the
tissue. *e following day, the tissues were embedded in fresh
molten wax at 58°C in moulds and left to cool at room
temperature. *e blocks that formed were labelled and
trimmed on the surface until the tissue was visible. *ey
were finally processed and fixed in paraffinwax tomake 2 cm
thick blocks fromwhich 3 μm thin sections were prepared on
Mylar films for LIBS analysis.

2.3. LIBS Spectral Acquisition and Processing. *e LIBS
system that was used in this work is a pulsed ND: YAG laser
with a maximum energy of 50mJ operating at a fundamental
wavelength of 1064 nm and a 9 ns pulse width. *e laser is
fired onto a sample, directed by a focusing lens (focal length
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of 10.16 cm), exciting it to produce a microplasma that is
characteristic of the sample under analysis. *e optical-to-
sample distance was maintained at 30mm following opti-
mization. A fibre optical cable of 0.22 numerical aperture
and 101mm focal length collects the emission from the
plasma plume through a lens into a set of seven HR 2000
atomic emission spectrometers in the spectral range of
200–980 nm, which spectrally disperse the radiation. Spec-
tral data are acquired simultaneously and displayed on the
computer screen with the help of OOILIBS software. Each
charge coupled device (CCD) detector has 2048 pixels and
an optical resolution of 0.065 nm.

Figure 1 shows examples of the LIBS spectral re-
sponses of Fe in typical soft body tissue as indicated by the
detected lines whose intensity clearly steadily increases
with the spiked concentration of Fe in the blank matrix.
From this, it is easy to differentiate between self-absorbed
lines and resonant lines, as well as those with good os-
cillator strength and those that are interference-free to be
used as potential candidates for multivariate calibration
using spectral feature selection. *e detectability of Fe by
LIBS is demonstrated in Figure 2 using a clinically ac-
quired liver biopsy sample.

As LIBS spectral responses from biomatrix analytes
suffer from matrix effects, the spectra require preprocessing
[23] because the intensity of the emission lines observed is a

function of both the concentrations of the elements of in-
terest as well as the thermochemical properties of the matrix
that contains them. Preprocessing of spectra is essential to
reduce noise and matrix effects. For this purpose, denoising,
smoothing, baseline correction, and mean-cantering tech-
niques were employed. Smoothing was done using the
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Figure 1: Laser-induced breakdown spectroscopy spectral overlay of model tissue samples with the blank matrix showing the difference in
concentration levels or absence of iron in the base matrix.
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Figure 2: Example of a laser-induced breakdown spectroscopy
spectrum of liver cancer tissue showing the lines of copper,
manganese, and iron identified in the spectral region of
275–330 nm.
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Sivitzky Golay technique to obtain clear spectral line profiles,
while wavelet transforms were used for denoising. Mean
cantering enabled all the data across the spectral region to be
involved in the modelling.

2.4. Multivariate Calibration for Quantitative Analysis. In
this work, spectral features corresponding to Cu, Mn, Mg,
Zn, and Fe of the model tissue samples were used to train
the ANN model for trace quantitative analysis using
MATLAB software. A recent review [24] sheds good light
on ANN-based LIBS. ANN is one of the computational
ways of mapping nonlinear input data to a target space.
*e most common of the network architectures is the
multilayer feed-forward system, in which the input data
proceed forward only (to the hidden layer and then to the
output layer) and never make loops, as opposed to other
techniques like the recurrent neural network system [25].
*e power of the network depends on the transfer func-
tion, the learning rule, and the network architecture [26].
During training of the network, the neurons are optimized
until the error in prediction is minimized and the network
attains the desired level of accuracy. *e trained network
can then be given new input data to predict the output
[27]. In this work, the best conditions were 3 neurons and a

feed-forward back propagation algorithm. *e model was
trained using 60% of the data, 20% was used for validation,
while the remaining 20% was used for testing. *e model
was trained a number of times until the one with the root
mean square error of calibration (RMSEC) and regression
coefficient (R2) value closest to 1 was achieved. *e model
regression curves for training, validation, testing, and the
overall curve are shown in Figure 3. *e regression curves
for Cu, Fe, Zn, Mn, and Mg, showing predicted concen-
tration versus known concentration, are shown in
Figures 4–8.

*e NIST 1566B standard was used to estimate the
analytical accuracy of the developed calibration model. In
Table 1, the predicted values are compared against the
standard reference values. It is noted that the ANN model is
suitable for the determination of the concentration of Fe,
Mn, Mg, Zn, and Cu in soft body tissue—the highest per-
centage deviation was −3.89% for Fe.

*e accuracy of prediction shows that the multivariate
chemometrics analyticalmodels developed here would be useful
in noninvasive cancer diagnostics utilizing biometals as the
disease biomarkers because trace bimetals offer the potential for
early detection, tracking progression and recurrence, as well as
monitoring of treatment response intrinsically in tissue.

Training: R = 0.9999

Test: R = 0.95016 All: R = 0.98497

Validation: R = 0.9475
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Figure 3: Regression curves of the artificial neural network model showing regression coefficient values for training curves.
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3. Results and Discussion

3.1. Method Application to Needle Tissue Biopsies. To better
understand the metallome in disease, the determination of
actual samples is of great importance [28]. *e developed

analytical models were investigated preliminarily on the
liver, breast, and abdominal needle biopsies described above,
and the results are shown in Table 2. *e concentration
ranges determined for the tissues were Fe (51.2–137.2 μg/g),
Cu (5–18.7 μg/g), Zn (36–56.8 μg/g), Mg (78.2–507.4 μg/g),
and Mn (8.8–19.5 μg/g) for liver; Fe (87.7–113.9 μg/g), Cu
(10.9–12.3 μg/g), Zn (49.3 μg/g–55.7 μg/g), Mg
(194.3–242.3 μg/g), and Mn (14.5 μg/g–16.1 μg/g) for breast;
and Fe (96.7–125.7 μg/g), Cu (6.7–7.5 μg/g), Zn
(88.3–93.9 μg/g), Mg (467.5–583.1 μg/g), and Mn
(9.5–10.5 μg/g) for abdominal, respectively.

*e biometal concentrations in healthy and diseased
(cancer) tissues are clearly different, as previously reported
[29, 30]. From Table 2, liver tissue sample number 2 and the
abdominal samples, which had been histologically classified
as malignant, had higher concentrations of Fe and relatively
low concentrations of Cu as compared to the other liver
tissue, which had been classified as benign. *is shows there
is an increased need for Fe in proliferating tissues due to the
constant demand for supply of nutrients. *e results for
malignant and benign liver tissues clearly indicate the
presence of cancer based on the trace biometals, which is in
agreement with their pathological examination. It was also
observed by other workers that the concentrations of Ca, Fe,
Cu, and Zn are higher in neoplastic tissues (malignant and
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Figure 4: Artificial neural network regression curve of predicted
versus known concentration of iron.
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versus known concentration of copper.

0
20
40
60
80

100
120
140
160
180

Pr
ed

ic
te

d 
C

on
ce

nt
ra

tio
n 

(p
pm

)

20 40 60 80 100 120 140 160 1800
Known Concentration (ppm)

Zn
R2 = 0.994

Figure 8: Artificial neural network regression curve of predicted
versus known concentration of zinc.

Journal of Spectroscopy 5



benign) when compared with normal tissues [31, 32]. *ese
trace biometals can be considered tumour biomarkers be-
cause it is possible to classify different tissues as normal or
neoplastic, as well as different types of cancer, based on their
concentrations. Further, all the trace biometals were sta-
tistically correlated with well-known prognostic factors for
breast cancer.

4. Conclusion

*is work involved the evaluation of a rapid chemometric
peak-free LIBS technique for direct rapid (diagnostic)
analysis of trace biometals in soft body tissue. A multi-
variate chemometrics calibration model was developed
using ANN and based on paraffin wax for the determi-
nation of the concentrations of Fe, Mn, Mg, Cu, and Zn in
soft body tissue. *e model was successfully validated
using oyster tissue as a certified reference material (CRM).
*e predicted biometal concentrations were within a range
of less than 5% error. *is work has demonstrated that
LIBS can be a useful technique for rapidly and directly
detecting trace amounts of biometals in soft body tissue in
the context of spectral diagnostics of disease. *e method
was tested on malignant and benign liver tissues, and the
results agreed with those of histopathological examination,
which is based on the microscopic examination of tissue
morphology. Although the sample numbers in this work
were too few to accurately assess the deviation between
healthy and diseased tissue based on the analysed bio-
metals, the method is not only potentially accurate but is
useful for rapid diagnostics of cancer in soft body tissues.
In a typical application, the analysed biomarkers would be
measured and monitored to yield specific signatures that
can be used for detecting cancer early before morpho-
logical features become apparent.
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