
Research Article
AVariable SelectionMethodBasedonFastNondominated Sorting
Genetic Algorithm for Qualitative Discrimination of Near
Infrared Spectroscopy

Hubin Liu ,1 Na Liu ,2 Yuhui Yuan ,1 Cihai Zhang ,2 Longlian Zhao ,1

and Junhui Li 1

1College of Information and Electrical Engineering, China Agricultural University, Beijing 100000, China
2Technology Center of China Tobacco Guizhou Industrial Co. Ltd., Guiyang 550009, China

Correspondence should be addressed to Junhui Li; caunir@cau.edu.cn

Received 12 March 2022; Revised 29 May 2022; Accepted 2 June 2022; Published 23 June 2022

Academic Editor: �omas Walther

Copyright © 2022 Hubin Liu et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A reliable and e ective qualitative near-infrared (NIR) spectroscopy discrimination method is critical for excellent model
building, yet the performance of models built by these methods is highly dependent on valid feature extraction.�e goal of feature
selection is to associate the selected variables with the property of interest, which many have done successfully. However, many of
selection methods focus only on strong association with the analytes or properties of interest, neglecting correlations between
variables. A variable selection method based on a fast nondominated-ranking genetic algorithm (NSGA-II) was proposed in this
paper for qualitative discrimination of NIR spectra. �e method had two objective functions: (1) maximizing the sum of ratios of
interclass variance to intraclass variance, (2) minimizing the sum of correlation coe�cients between the selected variables. FT-NIR
spectra of a total of 124 tobacco samples from di erent origins and parts in Guizhou Province, China, were used as the ex-
perimental objects, and the part-grade discrimination models of tobacco leaves were established by combining this method with
partial least squares-based discriminant analysis (PLS-DA), and compared with PLS-DA model based on the full spectrum. �e
results showed that the performance of PLS-DA model with the NSGA-II was improved, with a comparable or better correct
discrimination rate and reasonable discrimination rate, and could discriminate di erent parts of the tobacco leaves well. It
indicates that the NSGA-II can select a few and e ective feature variables to build a high-performance qualitative discrimination
model and is proved to be a promising algorithm. In addition, the method is not designed exclusively for spectral data. It is a
general strategy that could be used for variable selection for other types of data.

1. Introduction

Near-infrared (NIR) spectroscopy technology is a powerful
analysis tool to obtain feature information of the hydrogen-
containing groups (O-H, N-H, C-H) in organic substances
by recording the NIR spectra of samples, which has the
characteristics of speed, accuracy, and destructiveness and
has been widely applied for qualitative discrimination in
agriculture [1, 2] and food industries [3]. A reliable and
e ective qualitative near-infrared spectroscopy discrimina-
tion method is critical for excellent model building. At
present, NIR spectroscopy combined with pattern

recognition technique has become an important type of
nondestructive discriminant method [4].

�e commonly used pattern recognition techniques
include partial least squares-based discriminant analysis
(PLS-DA) [5], soft independent modeling of class analogy
(SIMCA) [6], support vector machines (SVM) [7], and
linear discriminant analysis (LDA) [8, 9]. However, the
performance of these models highly depends on valid
feature extraction and therefore are often combined with
variable selection methods to improve performance, such
as successive projections algorithms (SPA) [10], uninfor-
mative variables elimination (UAE) [11], competitive
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adaptive weighted sampling (CARS) [12, 13], and intelli-
gent optimization algorithms [4, 14]. Huang et al. [15]
selected two variable selection methods, genetic algorithm
and successive projection algorithm, to acquire the feature
variables of the spectra, and applied partial least squares-
based discriminant analysis and support vector machine
algorithms to establish the grading discrimination models
of Chinese Dianhong black tea based on NIR spectroscopy.
Moreira et al. [16] employed the successive projection
algorithm for variable selection and applied linear dis-
criminant analysis to establish the model for cigarette
brand classification. "e results suggested that the pro-
posed methodology is a promising alternative for assess-
ment of cigarette authenticity. "e whole procedure of
feature selection is to associate the selected variables with
the property of interest, which many have done successfully
such as regression coefficient (RC) [17], variable impor-
tance in projection (VIP), and the interval PLS (iPLS) [18].
Moreover, elimination of collinearity between variables is
also noted by some methods such as successive projection
algorithm (SPA), principal component analysis (PCA)
loadings [19]. However, many of selection methods focus
only on strong association with the analytes or properties of
interest, neglecting correlations between variables [20, 21].
In fact, combining the above two objectives may select
more effective variables.

A variable selection method based on a fast non-
dominated ranking genetic algorithm (NSGA-II) was
proposed in this paper for qualitative discrimination of
NIR spectra, which both correlated the analytes with the
selected variables and largely reduced the linear correlation
between the selected variables. "e method had two ob-
jective functions: (1) maximizing the sum of ratios of in-
terclass variance to intraclass variance, (2) minimizing the
sum of correlation coefficients between the selected vari-
ables. "e former was mainly used to select the feature
information for sample categories, while the latter was
mainly used to eliminate a large amount of redundant
information with linear correlation properties. In this
study, FT-NIR spectra of a total of 124 tobacco samples
from different origins and parts in Guizhou Province,
China, were used as the experimental objects, and the part
grade discrimination models of tobacco leaves were
established by combining this method with PLS-DA, and
compared with PLS-DA model based on the full spectrum.
It was found that the NSGA-II could select fewer variables
and the model built had better performance. "e correct
discrimination rate and reasonable discrimination rate
were comparable or better compared to the model built on
full-spectrum, indicating that the algorithm can select ef-
fective feature variables to build high-performance quali-
tative discrimination models and is proved to be a
promising variable selection method. It is notable that the
method focuses on the designed objective function rather
than on the optimization algorithm itself. "e fast non-
dominated ranking genetic algorithm used can be replaced
by other multiobjective optimization algorithms such as
particle swarm algorithms (PSO) [22]. It should be pointed
out that the NSGA-II is not designed exclusively for

spectral data. It is a general strategy that can be used for
variable selection for other types of data, such as selecting
the key chemical components that affect the quality of
tobacco leaves.

2. Materials and Methods

2.1. Sample Preparation. A total of 124 raw tobacco leaves of
different origins and parts were collected from Guizhou
Province, China. Of which, the number of upper tobacco
leaves was 33, the number of middle tobacco leaves was 30,
and the number of lower tobacco leaves was 30. "e samples
were baked in an oven at 40°C for about 2 hours and were
then cooled to room temperature. To improve efficiency and
ensure rapid analysis, the tobacco leaves were ground into
powder and passed through a 40-mesh sieve (425 μm) and
were placed in the same temperature and humidity envi-
ronment to collect FT-NIR spectra. Additionally, a fixed
weight was placed on top of the sample to ensure that it was
naturally pressed.

"e contents of chemical components in different parts
of the same plant have some differences, which provide a
basis for discriminative analysis of tobacco parts by NIR
spectroscopy [23]. Hua et al. [24] studied nitrogen accu-
mulation in different parts of tobacco plant using 15N
isotope labeling technique. Results indicated that N content
decreased after transplanting, with descending order of
suckers>middle leaves> lower leaves> stem and root. Wang
et al. [25] determined the contents of reducing sugar, water
soluble total sugar, total alkaloids, chlorine, potassium, and
total nitrogen of 889 tobacco samples collected from eight
counties and cities in Honghe tobacco growing area, and the
content of main chemical components in tobacco leaves from
different parts, varieties, and production areas were analyzed
by cluster analysis. "e results showed that the content
characteristics of chemical components in upper and middle
leaves were similar, while those in lower leaves were different
from those in other positions. Moreover, tobacco leaves from
different origins may also have some differences [26, 27],
affecting the accuracy of part discrimination.

2.2. NIR Spectra Measurements. "e data were acquired by
Antaris II Fourier transform near infrared spectrometer
from "ermo Nicolet. "e NIRS instrument was used to
record the diffuse reflectance spectra of the samples between
the wavenumbers of 10,000–4000 cm−1 at 8 cm−1 resolution
by 64 scans. Each sample was repeatedly measured three
times, and the average spectrum was taken as the spectral
data of that sample.

2.3. Spectral Data Preprocessing. "e raw spectra obtained
from FT-NIR spectrometer are easily affected by the physical
properties of the sample, background information, and noise
interference. A reasonable preprocessing of the raw spectra
can reduce the noise information and retain the valid in-
formation. First derivative (FD) and Savitzky–Golay (SG)
smoothing algorithms [2, 28] were chosen as preprocessing
approaches in this study."e FD can eliminate baseline drift
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and smooth out the effects of background interference,
providing higher resolution and sharper profile changes in
the spectrum than the raw spectrum. However, noise is also
amplified, so the SG smoothing algorithm is used to smooth
the spectrum to eliminate high-frequency noise.

"e samples were divided into calibration and prediction
sets by applying the classic Kennard–Stone (KS) uniform
sampling algorithm [29] to the FT-NIR spectra. "e number
of samples from different parts of the tobacco in the cali-
bration and prediction set was presented in Table 1.

2.4. Objective Functions of the Fast Nondominated Sorting
Genetic Algorithm. To select feature variables, it is necessary
to maintain a large degree of relevance between the selected
variables and a single analyte property, while reducing the
linear correlation between the variables.

"e fundamental idea of Fisher’s criterion [8] was ap-
plied to evaluate the relevance of NIR spectral features to
sample categories. "e samples were classified according to
different categories of tobacco leaves, and the ratio of in-
terclass variance to intraclass variance was maximized to
enable maximizing the interclass distance and minimizing
the intraclass distance, so as to select the feature variables
with the best discrimination ability in different categories.
"e objective function was as follows:

max JF �
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where K denotes the number of categories, Nk denotes the
number of samples in the k th class, mk is the mean value of
samples in the k th class, and m is the mean value of total
samples.

Pearson correlation coefficient [30] was applied to
evaluate the correlation between the selected variables.
Minimizing the sum of correlation coefficients of all per-
mutations between two variables in the selected variables
could make the selected variables more effective by selecting
the variables with lower linear correlation. "e associated
objective function was as follows:
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where M is the number of selected variables, N is the
number of samples, xa

i denotes the reflectance of the i th

sample at the a th variable, and xa denotes the mean value of
reflectance of all samples at the a th variable.

2.5. Process of the Fast Nondominated Sorting Genetic
Algorithm. NSGA-II is an evolutionary multiobjective op-
timization (EMO) methodology based on the Pareto optimal
solution theory, which is one of the popular biological
heuristics. [31, 32]"e algorithm has paid much attention to
scholars for its fast convergence, robustness, and better
approximation to the real Pareto optimal frontier [33].

To begin this process, the initial population P0 of size N

was randomly generated, and the offspring population Q0 was
generated by three basic operations of selection, crossover, and
mutation of genetic algorithm after nondominated sorting.
Elite strategy was then introduced, which implied that the
parent population and the offspring populationwere combined
for fast nondominated sorting, and each nondominated layer
Fi was sorted by applying the crowding distance operator, and
the best N individuals were selected to form a new parent
population Pn+1. Finally, a new offspring population Qn+1 was
generated by the basic operation of the genetic algorithm, and
so on, until the end condition of the process was satisfied.

2.6. Procedure for Determining Optimal Feature Variables.
"e minimum root mean square error of cross-validation
(RMSECV) [1, 34] was used as an evaluation criterion for
optimal feature variables. NSGA-II can generate multiple
nondominated solutions, which are called Pareto fronts. "e
multiple nondominated solutions obtained by NSGA-II were,
respectively, modeled for discriminant analysis by partial least
squares. "e formula for RMSECV was as follows:
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2.7. Variable SelectionBased onCARS. CARS [12, 17] is a new
and novel variable selection method based on PLSR and
“survival of the fittest,” the principle of Darwin’s "eory of
Evolution. "e main feature of this algorithm is the calculation
of PLS regression coefficients and reweighted sampling. N
subsets of variables were selected by N sampling runs in an
iterative manner and finally choose the subset with the lowest
RMSECV value as the optimal subset. In each sampling run,
CARS works in four successive steps including Monte Carlo
model sampling, enforced wavelength reduction by EDF,
competitive wavelength reduction by ARS, and RMSECV cal-
culation for each subset. Of these, EDF-based wavelength re-
duction in combination with competitive wavelength reduction
by ARS is a two-step procedure for wavelength selection.

2.8. Partial Least Squares-Based Discriminant Analysis.
PLS-DA is a linear discrimination method based on PLS
regression is widely applied for qualitative analysis [6, 35].
To achieve the classification, a PLS regression model was
established between the matrix of independent variables (X)
and the matrix of dependent variables (Y). Y was coded in a

Table 1: Number of calibration and prediction samples in each
class.

Class Calibration set Prediction set
B 33 10
C 30 12
X 30 9
Total 93 31
Note. B denotes upper tobacco leaf, C denotes middle tobacco leaf, and X
denotes lower tobacco leaf.

Journal of Spectroscopy 3



binary way (1 or 0), where 1 indicates that the sample be-
longs to the class and 0 indicates that it does not. In this
study, tobacco leaves were classi¥ed in the upper (B), middle
(C), and lower (X) part categories; therefore, B, C, and X
were coded in the form of 1.0.0, 0.1.0, and 0.0.1, respectively
[4, 5]. �e predicted values were then obtained by the
PLS–DA model, and Bayesian statistics were adopted to
calculate the classi¥cation threshold between categories and
identify the category of each sample based on the calculated
threshold value of each class. Finally, the class of each sample
was identi¥ed based on the PLS-DA model.

2.9.PerformanceEvaluation. To evaluate the performance of
the classi¥cation model, correct discrimination rate (CDR),
reasonable discrimination rate (RDR), sensitivity (Sen), and
speci¥city (Spe) were considered. �e CDR was calculated
referring to the ratio of the number of correct identi¥ed
samples to the number of total samples. �e RDR was the
ratio of the number of samples correctly identi¥ed and
identi¥ed as adjacent categories to the number of total
samples. One of the reasons RDR was considered as a
performance evaluation was the continuity of tobacco
growth, which made it di�cult to discriminate which cat-
egory the junction between the upper and middle of the
tobacco and the junction between the middle and lower of
the tobacco belonged to. �erefore, the number of samples
correctly identi¥ed as adjacent categories were both con-
sidered reasonable. Sensitivity (Sen) is the proportion of
positives that are identi¥ed as such. Speci¥city (Spe) is the
proportion of negatives that are correctly identi¥ed as such.
�e higher the values of these parameters are, the better the
performance of the classi¥cation model is.

3. Results and Discussion

3.1. NIR Spectra. After a preliminary inspection of the
spectra, those regions in which the detector was saturated or
the signal-to-noise ratio was poor were discarded. As a

result, the 8,000–4000 cm−1 interval was selected for the
study. Figure 1(a) presents the raw FT-NIR spectra of the
124 tobacco samples in the range of 8,000–4000 cm−1. As can
be seen, the spectra are noisy and display systematic vari-
ations in the spectral baseline. �ese problems were cir-
cumvented by applying the FD and the SG with a 15-point
window, as shown in Figure 1(b). Each spectrum had 1036
wavenumber variables.

3.2. Variable Selection. To determine that the number of
retained variables (N) has a signi¥cant e ect on model
performance which decides the stability and accuracy of the
model. When the number of retained variables is too small,
the robustness and accuracy of the model may be a ected
due to the loss of key informative variables. On the contrary,
if the number of retained variables is too large, uninfor-
mative variables may be contained in the model and make its
performance poor. �e NSGA-II was applied for variable
selection and the variation of the calibration set RMSECV
with variable number N was investigated. �e population
size of the NSGA-II was set to 200, the number of iterations
was set to 150, and the mutation probability and crossover
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Figure 1: (a) Original and (b) preprocessed FT-NIR spectra of the samples. First derivative and Savitzky–Golay smoothing algorithms were
chosen as preprocessing approaches.
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probability were set to 0.02 and 0.8, respectively. �e 10-fold
crossover validation was employed to validate the perfor-
mance of PLS-DA classi¥cation model. Figure 2 shows that
the RMSECV was obtained with the number of variables N
from 20 to 400 and a step of 20, and it was compared with the
number of variables 500 and the full variables.

It can be seen that the RMSECV was large at the be-
ginning and decreased rapidly with the increase of N. Ap-
parently, the RMSECV reached the lowest at N of 160. After
that, the RMSECV gradually increased with the increase of
N, with certain ¨uctuations. It is indicated that fewer feature
variables are bene¥cial for improving the model perfor-
mance. However, the RMSECV also increased for too few
variables, which were due to the fact that useful wave-
numbers cannot be completely included, resulting in poor
model quality. In contrast, irrelevant variables also a ected
the prediction results when more invalid variables were
used. �erefore, N� 160 is used for further study. Notably,
the RMSECVs of the PLS-DA with variable selection, al-
though having some ¨uctuations, were both lower than the
RMSECVs of the PLS-DA without variable selection, indi-
cating that the NSGA-II can select e ective feature variables
and improve the model performance.

Figure 3 shows the results of variable selection obtained
by the NSGA-II. It can be seen that most of the 160 selected
variables were located in the absorption peaks of FT-NIR
spectra, which were mainly clustered in six chemically
meaningful wavenumber bands under 7370–7115 cm−1,
7007–6397 cm−1, 6138–5698 cm−1, 5613–5266 cm−1,
5158–4687 cm−1, 4532–4170 cm−1, which were corre-
sponding to stretching and bending vibrations of C-H
groups in the ¥rst overtone region, stretching vibrations of
N-H groups and O-H groups in the ¥rst overtone region,
stretching vibrations of C-H groups in the ¥rst overtone
region, stretching vibrations of O-H groups in the

combination and stretching vibrations of C-O groups in
the ¥rst overtone region, symmetric and asymmetric
stretching vibrations of N-H groups in the combination,
stretching and bending vibrations of C-H groups in the
combination, respectively. It is suggested that the selected
variables contained key variables of chemical signi¥cance,
indicating further the validity of the proposed method. It is
worth noting that some of the variables were also selected
in the 7995–7467 cm−1 band (already circled in red dashed
lines), but there is almost no absorption of groups in this
band. �e possible reason was that some of the instru-
ment-generated noise was selected and sometimes a cer-
tain amount of noise contributes to the stability of the
model.

3.3. Comparison of the Classi�cation Results from Di�erent
Variables SelectionMethods. Table 2 shows the classi¥cation
results of the full-spectrum-based PLS-DA, NSGA–II–PLS-
DA, and CARS-PLS-DA. Compared with those of the full-
spectrum-based PLS-DA model, the CCR, RDR, Sen, and
Spe of the calibration set and prediction set in the NSGA-
–II–PLS-DA model have been increased obviously. Of
which, the RDRs of both calibration and prediction sets
reached 100%, indicating that the failure of assigning a
reasonable category to a sample was solved. To further
comparison of the performance with CARS-PLS-DA, the
RDRs of calibration and prediction sets are 98.92% and
100%, respectively were and also adopted to identify the part
grade. �ough high reasonable discrimination rate was
achieved, the classi¥cation performance of these models was
still lower than that of the NSGA–II–PLS-DA model (the
RDRs of both calibration and prediction sets are 100%),
further validating the capability of the NSGA–II–PLS-DA
model, indicating that the selected few variables by this
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method can well discriminate di erent parts of tobacco
(upper, middle, and lower).

Figure 4 shows the results of the confusion matrix for the
full-spectrum-based PLS-DA and NSGA–II–PLS-DA in the
modeling and prediction process. It can be seen that the
NSGA–II–PLS-DA calibration set and prediction set had a
great improvement in the number of correct discriminations
for the upper and lower tobacco leaves compared with the
full-spectrum-based PLS-DA, in which only two samples of
upper tobacco were misjudged as the middle tobacco leaves,
and there was no false discrimination for the lower tobacco
leaves. It is suggested that the selected variables can improve
the performance of the model and enhance the discrimi-
nation for tobacco parts, further indicating that the pro-
posed method is a promising variable selection method for
qualitative discrimination. Notably, the misclassi¥ed

samples were mainly distributed between adjacent classes,
and more middle tobacco leaves were judged as upper and
lower tobacco leaves, which may be due to di erences in
fertilization and plant densities of tobacco origins lead to
some di erences in the same tobacco part, or may be due to
the continuity of tobacco growth, making the correct dis-
crimination rate of the middle tobacco leaves lower.

4. Conclusions

A variable selection method based on a fast nondominated
ranking genetic algorithm was proposed in this paper for the
qualitative discrimination of NIR spectra. �e method se-
lected variables that satisfy the objective function by the fast
nondominated sorting genetic algorithm, which maximized
the interclass variance andminimized the intraclass variance

Table 2: Classi¥cation results of PLS-DA model based on di erent variables selection methods.

Model Number of variables Class
Calibration

set Prediction set

Sen Spe CDR (%) RDR (%) Sen Spe CDR (%) RDR (%)

PLS-DA 1036
B 0.879 0.917

79.57 96.77
0.800 0.905

77.42 96.77C 0.667 0.905 0.583 0.947
X 0.833 0.873 1.000 0.818

NSGA-II-PLS-DA 160
B 0.970 0.933

87.10 100
0.900 0.857

80.65 100C 0.633 0.984 0.583 0.947
X 1.000 0.889 1.000 0.909

CARS-PLS-DA 91
B 0.970 0.917

84.95 98.92
1.000 0.857

80.65 100C 0.633 0.968 0.583 0.947
X 0.933 0.889 0.889 0.909

Note “Sen,” “Spe,” “CDR,” and “RDR” denote sensitivity, speci¥city, correct discriminant rate, and reasonable discriminant rate, respectively.
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Figure 4: Confusion matrix description results of PLS-DAmodel and NSGA-II-PLS-DAmodel in the modeling and prediction process: (a)
Calibration and (b) Prediction of PLS-DA model. (c) Calibration and (d) Prediction of NSGA-II-PLS-DA model.
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while minimizing the correlation between the selected
variables. "e key variables were selected for the feature
information of the sample classes, and a large amount of
redundant information with linear correlation property was
eliminated. Combining this method with PLS-DA to build a
discrimination model of tobacco parts and comparing it
with a full-spectrum partial least squares-based discrimi-
nation analysis model, the results showed that the algorithm
can select a few and effective feature variables to improve the
model performance, which can discriminate well between
different parts of tobacco and obtain better classification
results. "e algorithm is demonstrated to be a promising
algorithm for wavelength selection to build high-perfor-
mance qualitative discriminant models.

It should be noted that the variable selection method
proposed in this paper focuses on the designed objective
function rather than the optimization algorithm, and
NSGA-II can be replaced by other multiobjective optimi-
zation algorithms such as particle swarm algorithm (PSO).
Moreover, the method is not designed only for spectral data.
It is a general strategy that can be used for the variable
selection of other types of data, such as the selection of key
chemical components that affect the quality of tobacco
leaves. In addition, it can be used to build qualitative dis-
crimination models for different years, regions, or grades of
tobacco, all of which are important for improving the quality
of tobacco. Our future work will focus on these aspects.
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