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A specific variable selection method was proposed based on a three-step hybrid strategy for near-infrared spectral analysis. By
analyzing functions of each step and characteristics of various variable selection methods, synergy interval partial least squares,
iterative variable subset optimization, and bootstrapping soft shrinkage were chosen for three steps. To test the effect of the three-
step hybrid method, it was applied to corn and soil spectral data and compared to other common methods. Results for oil content
in corn data showed that the three-step hybrid variable selection method selected 1% variables of full spectrum, calibration
determination coefficient, and prediction determination coeflicient reached 0.998 and 0.993 where the explained variance was
increased by 27.30%. It could effectively extract variables related to the tested substance and provide a new variable selection

method for near-infrared spectral analysis.

1. Introduction

Near-infrared spectrum analysis technology has been con-
tinuously studied and developed since it was recognized in
the 1930s. Its advantages are fast analysis speed, simple
instrument operation, no pollution to samples, low cost, and
high accuracy. And has achieved satisfactory results in the
sample detection in many fields [1-5]. Variable selection is
necessary and important for the accuracy and stability of
quantitative analysis model by near-infrared spectrum [6].
The meaning of stability is generally different on different
occasions. Here, standard deviation and root mean square
error were used to explain. Through the variable selection
method, a small amount of variables or wavelengths are used
to represent the whole spectrum to participate in the
modeling. The model is simplified and time-consuming is
reduced to improve efficiency. More importantly, the in-
fluence of irrelevant or nonlinear variables is eliminated, to
obtain a model with stronger stability, interpretability, and
prediction ability.

Many variable selection algorithms appear and perform
better effects. Some methods choose variables by parameters
from the partial least squares (PLS) model. Algorithms based
on this idea include competitive adaptive reweighted sam-
pling (CARS) and iterative variable subset optimization
(IVSO) [7,8]. Some algorithms select variables based on the
model cluster analysis strategy. Variable combination
population analysis (VCPA), iteratively retaining informa-
tive variables (IRIV), and bootstrapping soft shrinkage
(BOSS) are typical algorithms [9,10]. Some methods do not
select wavelength points but choose wavelength interval.
Mainly including interval partial least squares (iPLS) and
synergy interval partial least squares (SiPLS) [11]. Strategy
combined with two or several variable selection methods
were focused on and performed better effects, especially the
three-step hybrid strategy [12-15]. This strategy can take
advantage of multiple methods and extract useful variables
by rough selection, fine selection, and optimal selection.

Based on the advantage of the three-step hybrid strategy
proposed by Yu et al [15], variable selection methods with
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different principles were analyzed, and algorithms were
determined for each step. The SiPLS-IVSO-BOSS variable
selection method was proposed in this paper, which was
introduced by analyzing the oil spectral data of corn in
detail. And the verification was carried out on the starch
spectral data of corn and organic matter spectral data of soil.
Results of SiPLS-IVSO-BOSS were compared with CARS,
VCPA, IRIV, single method from them, and two methods
among them. CARS, VCPA, and IRIV were used to replace
one of the algorithms of the combination strategy to illus-
trate the irreplaceability of the three algorithms in the
strategy.

2. Materials and Methods

2.1. Combined Variable Selection Method. In the process of
variable selection, the usual one-step method is difficult to
meet the needs of models in practical applications. The
three-step hybrid strategy can optimize the variables step by
step from different angles. Whether this idea applies to many
newly developed and not widely used algorithms is worth
studying. Therefore, based on this strategy and some pro-
posed three-step hybrid variable selection methods, this
study selected two algorithms, IVSO and BOSS, to explore
whether the superiority of their separate modeling could be
reflected and improved after mixing. The most important
thing about the three-step hybrid strategy is that the first two
steps should appropriately reduce the variable space, in
which the first step generally retains 10% to 20% of the
variables, and it is necessary to use the band selection
method. The second step continues to extract to about 5%,
and it is suitable to select the algorithm that can appro-
priately control the number of variables based on continuous
optimization of the variable space in the wavelength se-
lection method. The last step is to compress the variables to
dozens or even several, which is enough to build a model that
can accurately predict the unknown content. SiPLS equalizes
the wavelength range and can select 2 to 4 subintervals. The
continuity of the wavelength in the interval makes the
variables continue to be optimized. Due to its warmth, IVSO
usually retains the number of variables at the same level as
the band selection method, so it is suitable for the second
step, which can provide a sufficient number of variables for
the third step through different optimization ideas. BOSS
can highly compress the variable space, but when used alone,
the sampling process is cuambersome and the running time is
long, which requires the relatively stable variable space given
by the previous algorithm. These three algorithms have
three-step hybrid strategy implementation conditions in
theory. Therefore, the SiPLS-IVSO-BOSS variable selection
method was proposed based on a three-step hybrid strategy,
to select variables for near-infrared spectrum analysis. It
included rough selection, fine selection, and optimal se-
lection. Results of the former step would be the basis of the
next step, so the first step becomes important. The rough
selection should include enough variables related to the
tested substance so that the later method could effectively
improve the performance of the model and avoid the risk of
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falling into overfitting or variable selection being wrong
repeatedly.

2.2. Rough Selection Method. The rough selection was the first
step and basis of the fine selection. It will directly affect the
final variable selection result. In order to extract variables
related to the tested substance as many as possible, there
should be including enough variables with strong explanatory
power, greatly reducing the variable space, and retaining
enough important information variables for the next selection
after rough selection. Interval selection methods select a
group of variables by dividing wavelength points into several
groups. This kind of algorithm will be fitful for rough se-
lection. Here, SiPLS and the most basic iPLS method in the
interval selection algorithm are compared. SiPLS selects a
combination of multiple interval intervals, while iPLS selects a
single interval. Compared with iPLS, when the variables re-
lated to the tested substance are not continuous, the per-
formance of SiPLS will be better than iPLS. SiPLS considers
the combination effect and combines the intervals instead of
simply selecting several local optimal intervals. So SiPLS was
used as the first step for rough selection in this paper.

2.3. Fine Selection Method. The second step was to further
select variables based on SiPLS. Redundant information in
variables, noninformation, and weak information variables
need to be filtered out from the wavelength interval. Strong
information variables need to be retained. The variable space
needs to be optimized and narrowed to achieve the fine
selection of variables, providing sufficient quantities of
variables for the next step. IVSO uses PLS regression co-
efficient to represent the importance of variables and uses
weighted binary matrix sampling (WBMS) and sequential
addition to eliminate useless information variables in a
competitive manner. It can gently eliminate the redundancy
caused by continuity in the selected bands of SiPLS and
retain sufficient variables for the implementation of the next
algorithm. IVSO meets the above objectives, so it was used
for fine selection.

2.4. Optimal Selection Method. After the first two steps of
selection, most noise and interference variables had been
filtered, just to solve the continuity between them. By cal-
culating the regression coeflicients of multiple submodels,
BOSS determines the weight of variables. The greater the
weight, the greater the probability of being selected.
Weighted guided sampling (WBS) was used to optimize the
weight and simplify the shrinkage variable space. The op-
timal variables were determined by extracting the variable
set with the minimum root mean square error of cross-
validation (RMSECV) in the submodel. BOSS can remove
the collinearity between variables, which can find the op-
timal variable combination in the variable space with a small
wavelength span. So it was a better choice.

The core idea of the SiPLS-IVSO-BOSS method is shown
in Figure 1. The variable selection method can accurately
locate the relevant information variables from the complex
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FIGURE 1: Process of variable selection method combined synergy interval partial least squares, iterative variable subset optimization, and
bootstrapping soft shrinkage. Several variable groups were firstly collected in rough selection by synergy interval partial least squares. Then
some variables were extracted in fine selection by iterative variable subset optimization. Finally, less variables were retained in optimal

selection by bootstrapping soft shrinkage.

and huge variable space and realize the rapid and efficient
processing of data. After analyzing the effectiveness of the
method, in theory, the actual effect was verified and com-
pared with other algorithms.

2.5. Data Set. Near-infrared spectral data for corn published
by Eigenvector Research, Inc. was used in this paper. There
were 80 samples with 700 wavelength variables in the range
of 1,100 to 2,498 nm in the corn data set. And soil data set
was also used; it contained 108 samples and 1,050 wave-
length points in the range of 400 to 2,500 nm [16].

Spectral data usually need to be preprocessed before
modeling. Preprocessing can remove background noise in
the spectrum and interference of specific physical factors
and generally improve the correlation between spectrum
and chemical components. The existing researches show that
it has a good processing effect on the corn data set [17,18].
Centralization eliminates the adverse effects of large-scale
differences. Therefore, this article used centralization to
preprocess the corn and soil data. Kennard-Stone (KS)
algorithm was used to divide the data set as training set and
test set with 3:1 [19]. The determination coefficient (R%), root
mean square error of calibration (RMSEC), and root mean
square error of prediction (RMSEP) of PLS models were
used to compare the effects of different variable selection
algorithms. In this paper, the prediction of oil content in
corn was analyzed in detail, and the content prediction of the
other two substances gave only modeling results. All cal-
culations were carried out in MATLAB R2014a (Math-
Works, Inc.).

3. Results

This section discussed the verification results of oil spectral
data of corn, and the implementation process of the SiPLS-
IVSO-BOSS was introduced in detail. Centralization was
used for spectral preprocessing. PLS was used to construct a
quantitative analysis model. The results were compared with
other variable selection methods. In addition, to further
check its practicality and stability, starch spectral data of
corn and organic matter of soil spectral data were researched
and only gave the prediction results.

The 80 corn samples were divided into 60 training set
samples and 20 test set samples using the KS algorithm.
Table 1 lists the statistical results of oil and starch content in
corn and organic matter content in the soil. It can be seen
that the oil content of the test set was within the range of the
training set, indicating that the sample set used for modeling
could well represent the overall sample.

3.1. Rough Selection by Synergy Interval Partial Least Squares.
When using SiPLS to screen the full spectrum bands, the
whole spectrum was equally divided into 10, 20, 30, and 40
intervals. Based on different intervals, 2 to 4 subintervals
were combined to establish PLS models. The calculation time
for each interactive verification was 0.5 to 1 minute when the
number of intervals was small; while the model verification
time increased exponentially with the increase of the vari-
ables, the execution time of the 4 subintervals increased
significantly when the interval number was 30. When the
interval number was 40 and 3 subintervals were combined,
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TaBLE 1: Statistical results of oil and starch content in corn samples and organic matter content in soil samples.

Substance Sample set Number of samples Minimum Maximum Mean Standard deviation
Training set 60 3.088 3.832 3.482 0.187
Oil in corn Test set 20 3.264 3.766 3.547 0.136
Total set 80 3.088 3.832 3.498 0.177
Training set 60 62.826 66.472 64.737 0.812
Starch in corn Test set 20 63.021 65.808 64.571 0.856
Total set 80 62.826 66.472 64.696 0.821
Training set 81 42.910 95.850 84.768 11.853
Organic matter in soil Test set 27 64.610 93.010 87.408 6.656
Total set 108 42.910 95.850 85.428 10.822

The training set and the test set were divided as 3:1 ratio by Kennard-Stone algorithm.

the number of model calculations reached 27,405; the
number of model calculations reached 91,300 for 4 com-
binations; and the calculation time surged to 24 minutes.
Therefore, this experiment did not count the variable op-
timization results under the condition of the interval
number that was 40. The joint interval with the smallest root
mean square error (RMSE) value was selected through in-
teractive verification.

Table 2 lists the results of different intervals and com-
binations. The bands of 5 and 9 subintervals and 9, 10, 17,
and 18 subintervals selected by the total number of 10 and 20
intervals were completely consistent (denoted as band I).
The RMSE was second to the bands of 13, 14, 25, and 26
subintervals selected by the total number of 30 intervals
(denoted as band II), and the difference was about 16.6%.
However, band I completely contained band II and covered
more variables; coverage increased by 34.3%, which can
theoretically provide more information for further wave-
length selection and help improve the diversity of selection.
Considering both the error and coverage, the bands 1,660 to
1,798 nm and 2,220 to 2,358 nm were selected as the initial
variable sets for subsequent variable selection.

The position of the selected subinterval in the whole
spectrum using the 10 intervals is shown in Figure 2. The
selected wavelength points were 140, accounting for 20% of
the whole spectrum. SiPLS effectively eliminates a large
number of useless information and retains enough variables
for the implementation of the SiPLS-IVSO-BOSS method.

3.2. Fine Selection by Iterative Variable Subset Optimization.
The characteristic bands selected by SiPLS screened the
interference information to a certain extent and selected the
bands with relatively rich information. However, due to the
limitation of continuous wavelength in the interval, it still
contained redundant information. The selected band I was
further screened by IVSO, and the parameters were set as
follows: the maximum latent variable number of cross-
validation was set to 10, the cross-validation fold was set to
10, and the WBMS number was set to 1000. The number of
cycles was set to 50. When the number of variables sampled
by WBMS was equal to the number of combinations of
variable subsets, the cycle stopped, and the variable subset
with the lowest error value was selected as the selection result
of IVSO.

Fine selection results by IVSO are shown in Figure 3.
Figure 3(a) shows the images of the RMSECV value of oil
content cross-validation prediction model. Figure 3(b)
shows the number of selection variables changing with
the number of iterations during the IVSO operation. It can
be seen from Figure 3(a) that the lowest RMSECV was
obtained in the fourth iteration. A large number of weak
information variables are mainly eliminated in the first three
iterations, and the main information variables are eliminated
after the fourth iteration, resulting in a trend that the curve
fell first and then rose. In Figure 3(b), the number of var-
iables selected at four iterations was 52, and the variable
space was further reduced by 62.86% compared with band I,
continuing to reduce the spectral dimension.

3.3. Optimal Selection by Bootstrapping Soft Shrinkage.
After IVSO optimization, a large number of wavelengths
were concentrated in 1,660 to 1,740nm and 2,234 to
2,324 nm, which continued to show certain continuity. The
effect on the spectrum was that there were some segments of
wavelength, not scatters. In addition, there was still a cor-
relation between variables. A variable could be expressed by
the linear combination of other variables, which also had
collinearity. Therefore, the wavelengths can be streamlined
and optimized. The BOSS algorithm was used to screen the
optimal wavelength variables in the final step. The cross-
validation fold was five; the number of WBS runs was 1,000;
the best model ratio was 10%; and the iteration ran 50 times
until the number of new subset variables generated by WBS
was 1. The subset with the smallest RMSECV value was used
as the final feature variable selected by BOSS.

Results of the BOSS run for the informative wavelength
parameter for prediction of oil content in corn samples are
shown in Figure 4. It can be seen from Figure 4(a) that the
RMSECV of the submodel reached the minimum when it
was iterative to four times. Figure 4(b) is the weight values of
each feature variable at the optimal iteration. As iterations
progress, important variables will gradually take up large
weights. Variables with the strongest explanatory power for
oil content information were selected when the optimal
iteration was reached. The variable space was reduced again,
and the number of variables selected was only 7. The selected
characteristic wavelengths were 1,660nm, 1,682nm,
1,688 nm, 1,708 nm, 1,730 nm, 2,250 nm, and 2,288 nm.
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TABLE 2: Results of synergy interval partial least squares selection subintervals.

Number of intervals Number of combinations Interval nLV Corresponding band (nm) RMSE (%)

2 59 5 1,660-1,798, 2,220-2,358 2.165
10 3 4,59 4 1,520-1,798, 2,220-2,358 3.714

4 4,5,8,9 4 1,520-1,798, 2,080-2,358 4.219

2 9, 18 6 1,660-1,728, 2,290-2,358 3.747
20 3 9,17, 18 8 1,660-1,728, 2,220-2,358 2.360

4 9, 10, 17, 18 5 1,660-1,798, 2,220-2,358 2.165

2 12, 26 7 1,626-1,670, 2,270-2,314 4.075
30 3 13, 14, 26 9 1,672-1,762, 2,270-2,314 2.525

4 13, 14, 25, 26 6 1,672-1,762, 2,224-2,314 1.806

Notes. nLV - number of latent variables. “nm” — nanometer. RMSE - root mean square error. The synergy interval partial least squares method divided the
whole spectrum into 10, 20, and 30 intervals. Based on three division methods, 2, 3, and 4 subintervals were combined, respectively. The RMSE value in each
case was obtained. The spectral bands corresponding to the subinterval were the selected variables.
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FIGURE 2: Results of rough selection by synergy interval partial least squares for oil spectral data in corn. The curve was average spectral data
of oil in corn and divided into 10 intervals from 1,100 to 2,500 nanometers. Two columns were selected as variable groups in rough selection.
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FIGURE 3: Results of fine selection by iterative variable subset optimization for oil content prediction in corn: (a) the root mean square error
of cross-validation varying with the number of sampling and (b) the number of variables selected varying with the number of sampling. The
lowest root mean square error appeared in the fourth iteration with 52 variables selected.

4. Results Analysis

After the SiPLS-IVSO-BOSS variable selection method, the
number of wavelengths decreased from 700 to 7 for oil
content prediction model, and the standard deviation was
smaller than other methods. This method greatly reduced
the complexity of the model and improved stability and
interpretability. The distribution of variables selected for
each step is shown in Figure 5. The number of variables was
gradually reduced. Most of the variables selected were lo-
cated in the region from 1,600 to 1,750 nm. The result was

consistent with the vibration absorption wavelength of C=C
in oil [20]. This proves that the SiPLS-IVSO-BOSS method
can effectively screen out the information related to oil in the
corn spectrum.

The PLS model was built for full spectral data and
spectral data selected by SiPLS-IVSO-BOSS. The PLS model
based on the SiPLS-IVSO-BOSS method performed with
high accuracy and stability. Contrasted with the PLS model
of raw spectral data, the determination coefficient of cali-
bration (R.?) increased to 0.998 from 0.934; the determi-
nation coefficient of prediction (sz) increased to 0.993 from
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FIGURE 4: Results of optimal selection of variable by bootstrapping soft shrinkage used for the oil content prediction in corn: (a) the root
mean square error of cross-validation varying with the number of sampling and (b) variable weights for sampling with the lowest root mean

square error of cross-validation.
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FIGURE 5: Variable selection results of oil spectral data in corn
based on method combined synergy interval partial least squares,
iterative varijable subset optimization, and bootstrapping soft
shrinkage. The curve was average spectral data of 80 corn samples
with 700 variables from 1,100 to 2,498 nanometers. Variables se-
lected in the first, second, and third steps were marked in the figure
with different symbols. The distribution trend of variables could be
seen by comparing the average spectrum.

0.720 that indicating 72.00% of information from the 700
variables; and RMSEC decreased to 0.88% from 4.77%,
RMSEP decreased to 1.35% from 9.90%. The model had high
accuracy, small error, and few variables. It proved that the
SiPLS-IVSO-BOSS variable selection method could extract
variables related to the tested substance. Seven hundred
variables from raw spectra could explain the oil content of
samples, of which 7 informative variables obtained from
SiPLS-IVSO-BOSS could explain 99.30% of the information,
indicating 27.30% explained variance increased, while 99%
(693/700) of nonrelated or uninformative variables were
eliminated.

In order to reflect the superiority of this method,
compared with other methods, Table 3 is their prediction
results. According to the results, the prediction effect of the
IVSO-BOSS model was not stable when compared with the
single method without the rough selection of the full
spectrum band by SiPLS and sometimes even worse than the

model accuracy of the single method. The reason is that there
was a lack of band extraction method for preliminary se-
lection of the full spectrum, resulting in the lack of guidance
for the extraction of wavelength points and poor inter-
pretability of the model. In addition, the prediction results of
SiPLS-BOSS and SiPLS-IVSO were better than those of
BOSS and IVSO, respectively. The reason is that SiPLS was
used to select the band partition, which is convenient for
filtering noninformation variables from the wavelength
interval and retaining important variables. From two per-
spectives, it can be seen that the rough selection by SiPLS is
essential for subsequent variable extraction. Then, IVSO can
provide enough variables for the operation of BOSS, and if
you first use BOSS and then IVSO, the initial variable set of
IVSO is too small to continue to improve model perfor-
mance. Therefore, the execution order of the algorithm is
fixed.

When SiPLS was replaced by CARS, the modeling results
were not even as good as the full spectrum. The main reason
is that both CARS and IVSO select variables based on PLS
regression coefficients, and it is easy to delete variables
containing important information by using two algorithms
with the same idea in turn. Another reason is that the
number of variables screened by CARS was only 19, and the
small number of variables contained rich information. If it
continued to be selected, the importance of variables would
be redistributed, resulting in those variables with slightly
lower information content being eliminated, increasing the
risk of information loss. When IVSO was replaced by VCPA,
it generally selected fewer variables than CARS, and the
above problems still occur. When BOSS was replaced by
IRIV, IRIV would classify the variables selected from the
previous two steps according to the strength of information,
and removed the noninformation and interference infor-
mation variables through multiple iterations. This classifi-
cation method was used in the variable space after two
optimizations, and there was still the risk of judging im-
portant variables as irrelevant variables. BOSS used WBS
and general analysis technology to divide variable sets
according to weights. Compared with IRIV, BOSS had a
better optimization effect for smaller variable space.
Therefore, these three algorithms cannot be replaced arbi-
trarily, and each of them has a role to play in their respective
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TaBLE 3: Prediction results of oil content in corn by different variable selection methods.

Variable selection methods Number of variables nLV RZ RMSEC (%) R, RMSEP (%)
None 700 10 0.934 4.77 0.720 9.90
CARS 19 6 0.985+0.003 2.27+0.24 0.933+0.010 3.34+0.35
VCPA 8 6 0.985+0.011 2.29+0.37 0.954 +£0.004 2.86 £1.01
IRIV 34 8 0.956 +0.013 3.87+0.76 0.745+0.035 6.69+1.25
SiPLS 140 7 0.993 £0.002 1.41+0.47 0.984 +£0.007 1.68 +0.92
IVSO 89 6 0.996 +0.002 1.12+0.36 0.977 £0.008 201+1.14
BOSS 22 8 0.992 +0.003 1.69+0.58 0.958 +0.008 2.73+0.64
IVSO-BOSS 26 7 0.990 £0.002 1.38£0.11 0.991 +£0.003 1.63+0.28
SiPLS-IVSO 52 8 0.996 + 0.001 1.02+0.28 0.994 + 0.001 1.49+0.79
SiPLS-BOSS 21 8 0.996 £ 0.001 1.02+£0.38 0.990 £ 0.001 1.83+0.47
CARS-IVSO-BOSS 6 7 0.758 £ 0.021 6.58 +0.82 0.613 +0.047 12.54+1.02
SiPLS-VCPA-BOSS 9 6 0.992 +0.004 1.64+0.34 0.980 +0.005 2.30+0.53
SiPLS-IVSO-IRIV 35 5 0.997 +£0.003 0.93+0.21 0.992 +£0.007 1.48 +0.49
SiPLS-IVSO-BOSS 7 6 0.998 + 0.001 0.88+0.12 0.993 +0.001 1.35+0.29

Notes. nLV - number of latent variables. R.” - determination coefficient of calibration. R,” - determination coefficient of prediction. RMSEC - root mean
square error of calibration. RMSEP - root mean square error of prediction. Models were built by partial least squares method under different variable selection
methods and no method. The statistical results were expressed as mean + standard deviation of 50 runs.

positions, making it possible to gradually improve the model
performance when used in conjunction.

4.1. Content Prediction Results of Starch of Corn and Organic
Matter of Soil. The prediction results of the content of two
substances by different methods are shown in Tables 4 and 5.
Table 4 is the prediction results of starch of corn based on
different variable selection methods. The SiPLS-IVSO-BOSS
method compressed the number of variables to 1.14% of the
original. Contrasted with the PLS model of raw spectral data,
RZ increased to 0.999 from 0.941; sz increased to 0.999
from 0.882; and RMSEC decreased to 2.40% from 19.89%;
and RMSEP decreased to 2.80% from 28.05%. It can be seen
that the prediction accuracy of the model was gradually
increasing after the SiPLS-IVSO-BOSS method, which can
achieve better results than a single method or two-step
strategy. Table 5 is the prediction results of different variable
selection methods for the organic matter content of the soil.
The number of variables was reduced from 1,050 to 10
through the SiPLS-IVSO-BOSS method, and the spectral
space was fully compressed. Taking RMSEC as a reference,
after the gradual optimization of the SiPLS-IVSO-BOSS
method, its value decreased from 184.25% to 129.99%.
Opverall, its modeling results were superior to other methods.

5. Discussion

The superiority of the SiPLS-IVSO-BOSS method was
proved after the detailed analysis of the prediction of oil
content in corn. Moreover, the above research showed that
the SiPLS-IVSO-BOSS method also had the best prediction
effect and could effectively extract relevant information of
the tested components for starch spectral data and organic
matter spectral data. In order to reflect the superiority of this
method, the experimental results were compared with other
studies. In some previous PLS-based models, references
[21-23] used centralization as a pretreatment method. When
the starch content of corn was predicted in reference [21],

VCPA was used to select variables, and the RMSEC and
RMSEP were 5.18% and 4.87%, respectively. When the oil
and starch contents of corn were predicted in reference [22],
BOSS was used to select variables, and their RMSEP were
2.32% and 19.10%, respectively. Reference [23] predicted the
oil content of corn by using Fisher optimal subspace
shrinkage to select variables; RMSEC was 1.06%; RMSEP
was 1.61%; R was 0.997; and sz was 0.979. Reference [24]
used a standardized pretreatment method and used sparse
coefficients wavelength selection and regression to select
variables. The experiment used the organic matter content of
soil for verification. The obtained R was 0.948; sz was
0.977; RMSEC was 240.32%; and RMSEP was 172.96%. It
can be seen that SiPLS-IVSO-BOSS has a better model
performance. Admittedly, this combined strategy increases
the computational task and makes the model more complex.
However, it does not significantly increase the computation
time, and the gradually shrinking variable space allows the
variable selection algorithm to execute more smoothly and
efficiently. When applied, the integration is packaged to-
gether without additional burden, and the process of run-
ning the program can be simple and convenient. In the
prediction of the content of the three substances, the method
improved the prediction error by at least 8% compared to the
two-step strategy, which is an improvement that should not
be overlooked in content detection studies, since small
differences can cause different results in practical applica-
tions. Therefore, SiPLS-IVSO-BOSS has the advantage for
variable selection of near-infrared spectral analysis from its
principle to practice. It is a choice when dealing with high-
dimensional data, which provides an algorithm fusion idea
for researchers.

The method in this paper can theoretically realize the
rough selection to the optimal selection of variables.
Experiments were carried out on this basis. Through
modeling on public data sets of corn and soil, the content
of the three substances was predicted. The accuracy of the
model had been improved, but the degree of improvement
is different, which is related to the nature of the data itself.
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TABLE 4: Prediction results of starch content in corn by different variable selection methods.

Variable selection methods Number of variables nLV R? RMSEC (%) R, RMSEP (%)
None 700 8 0.941 19.89 0.882 28.05
CARS 25 6 0.980 +0.002 11.58 £0.52 0.971 +£0.004 13.69+0.97
VCPA 9 9 0.990 £ 0.001 8.04 +2.51 0.987 +£0.002 9.28 £2.19
IRIV 16 6 0.964 +0.004 15.65+1.68 0.920+0.009 22.59+1.97
SiPLS 182 8 0.991 +£0.002 7.60+1.63 0.976 £0.010 12.65 +1.89
IVSO 102 10 0.984 +£0.002 10.26 +1.34 0.965 +0.006 14.92+2.11
BOSS 13 9 0.991 +0.001 7.74 +0.85 0.990 +0.002 8.02+1.09
IVSO-BOSS 31 8 0.987 £0.001 8.92 +0.49 0.974 +£0.003 13.52+£0.67
SiPLS-IVSO 90 7 0.998 +0.001 4,05+ 0.68 0.995 +0.001 5.55+0.84
SiPLS-BOSS 27 6 0.999 +£0.001 2.35+0.57 0.997 +£0.001 4.22+0.52
CARS-IVSO-BOSS 8 5 0.812+0.024 28.15+3.54 0.0751 £ 0.054 34.02 +3.87
SiPLS-VCPA-BOSS 7 7 0.709 £ 0.042 9.31+2.14 0.711 +£0.032 9.81+1.89
SiPLS-IVSO-IRIV 23 6 0.999 +0.001 2.52+0.43 0.999 +0.002 3.01 £0.68
SiPLS-IVSO-BOSS 8 8 0.999 + 0.001 2.40+0.23 0.999 +0.001 2.80+0.35

TaBLE 5: Prediction results of organic matter content in soil by different variable selection methods.

Variable selection methods Number of variables nLV RZ RMSEC (%) RP2 RMSEP (%)
None 1,050 10 0.976 184.25 0.749 318.79
CARS 72 8 0.985+0.002 146.77 £10.15 0.916 +0.022 154.80 +£22.36
VCPA 8 7 0.978 £0.016 151.41 £10.53 0.948 +0.031 122.40 £20.24
IRIV 11 9 0.983 +0.006 149.90 +12.13 0.933+0.027 139.06 £ 15.47
SiPLS 140 8 0.985+0.007 143.04 +15.89 0.876 £0.035 240.06 +24.19
IVSO 202 8 0.982 +0.009 152.96 + 16.43 0.923 +£0.029 148.41 +24.18
BOSS 50 10 0.987 +£0.003 134.07 £24.73 0.901 +0.024 168.21 +25.12
IVSO-BOSS 26 6 0.985+0.003 145.44 +21.31 0.891 +0.187 193.45+22.74
SiPLS-IVSO 68 8 0.987 +0.001 137.22 +£10.74 0.977 +£0.168 95.41 £12.54
SiPLS-BOSS 13 7 0.988 + 0.001 131.71 +11.85 0.971 £0.013 108.80 +£20.57
CARS-IVSO-BOSS 6 8 0.901 +£0.027 200.57 £20.64 0.682 +0.058 347.23+24.13
SiPLS-VCPA-BOSS 9 6 0.984 +0.017 142.87 £ 13.54 0.941 +0.067 204.19+27.10
SiPLS-IVSO-IRIV 15 8 0.983 +£0.002 131.71 £ 12.64 0.977 £0.029 100.04 £ 16.47
SiPLS-IVSO-BOSS 10 9 0.988 +0.001 129.99 £ 10.07 0.979 +£0.009 94.03+11.76
This experiment shows that the application of SiPLS- Data Availabi]ity

IVSO-BOSS to variable selection is feasible and has a
certain versatility. To achieve the best results in more data
sets, further research is needed. The research will be
carried out in future work.

6. Conclusions

Referring to the three-step hybrid strategy of near-infrared
spectral analysis, SiPLS-IVSO-BOSS variable selection
method was proposed. In the first two steps, the variable
space was continuously contracted, and then the collinearity
was removed from the remaining variable set, and the
smaller variable combination was extracted from the large
variable set. It was validated in spectral data sets of corn and
soil and achieved better prediction results than a single
algorithm, the combination of two algorithms, and CARS,
VCPA, IRIV, and other mainstream algorithms. It provides
an effective solution for dealing with high-dimensional data,
avoids time-consuming and inefficient problems, and can
provide a theoretical reference for the variable selection
strategy of the spectrum. When used for other data, some
parameters in the algorithm can be debugged to obtain the
optimal model.

The website of corn spectral data is http://www.eigenvector.
corn/data/corn/index.html. The website of soil spectral data
is Quality & Technology.
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