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Wavelength selection is one of the key steps in quantitative spectral analysis, which reduces the computation time while also
improving the prediction accuracy of the model. In this paper, we propose a wavelength selection algorithm based on the ant
colony optimization (ACO), in which the absolute value of the regression coefcient of the multiple linear regression (MLR)
model is used as the basis for evaluating the importance of wavelengths, and the absolute value of the regression coefcient after
full wavelength MLR modeling is used as the initial pheromone value of the ant colony optimization (MLR-ACO). In each
iteration, the absolute value of the regression coefcient corresponding to each wavelength of the individual with the highest
ftness value is used as the basis for a pheromone update. Te crossover operator is introduced in MLR-ACO (MLR-ACO-GA),
and the individuals with the top 100 ftness values inMLR-ACO are used as the initial population of the genetic algorithm (GA). A
selected frequency of wavelengths greater than the threshold among MLR-ACO individuals is calculated. A number of coarse
interval points are generated according to the selected frequency, and a coarse crossover operation is performed at the coarse
interval points. Fine crossover points are randomly generated within the coarse interval, and fne crossover operations are
performed within the coarse interval to exploit the potential of combining excellent individuals in MLR-ACO with each other as
much as possible. MLR-ACO can well solve the problem of traditional ACO initial pheromone scarcity, and MLR-ACO-GA can
avoid MLR-ACO falling into a local optimum to a certain extent and be more fexible in the selection of the number of
wavelengths, which can give full play to the advantages of MLR-ACO.

1. Introduction

Spectroscopy is widely used in the felds of agriculture [1, 2],
medicine [3, 4], environment [5, 6], and food detection [7, 8]
due to its speed, low cost, and nonpollution characteristics.
With the advancement of modern spectroscopic instru-
ments, the obtained spectral data contain tens to thousands
of wavelengths and can refect the subtle spectral diferences
of diferent constituents in the measured substances.
However, the obtained data contain a large number of
uncorrelated or redundant features with high collinearity,
and these data features usually reduce the prediction ac-
curacy of the model and worsen the experimental results
[9, 10]. To solve this problem, many wavelength selection
methods have been proposed, and many papers have

demonstrated experimentally or theoretically that per-
forming wavelength variable selection can lead to better
prediction performance and signifcant computational time
savings. Wavelength selection is a very important and es-
sential key step before performing quantitative analysis
[11–14].

In general, wavelength selection methods can be divided
into two categories, one is wavelength point selection al-
gorithms, such as successive projection algorithm (SPA)
[15], competitive adaptive reweighting sampling (CARS)
[16, 17], ant colony algorithm (ACO) [18, 19], genetic al-
gorithm (GA) [20, 21], diferential evolution algorithm (DE),
sparrow search algorithm (SSA) [22], etc. Other kinds of
wavelength interval selection algorithms, such as interval
PLS (iPLS) [23], moving window PLS (MWPLS) [24], and
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some interval partial least squares based on optimization
algorithm improvement, such as iPLS-genetic algorithm
(GA-IPLS) [25], interval random frog algorithm (IFR) [26],
etc. It can be seen that intelligent optimization algorithms
are widely used not only in wavelength point selection but
also in wavelength interval selection.

In recent years, more and more swarm intelligence op-
timization methods have been proposed and widely used in
wavelength selection. In addition to those mentioned earlier,
there are gray wolf optimization (GWO) [27], monarch
butterfy optimization (MBO) [28], slime mould algorithm
(SMA) [29], hunger games search (HGS) [30], Harris Hawks
optimization (HHO) [31], artifcial algae algorithm (AAA)
[32], etc. All of these methods have achieved good results in
the selection of feature wavelengths. Among these optimi-
zation algorithms, ACO has been widely studied because of its
positive feedback mechanism, fast convergence speed, and
high accuracy [18]. Te ACO has high efciency in solving
complicated problems, but the traditional ACO also hasmany
defects, such as a lack of initial pheromone and an easy
tendency to fall into local optimal solutions.

To solve the problems such as the lack of an initial
pheromone, Tong proposed using the importance projection
coefcients of variables (VIP) under the full wavelength
partial least squares regression (PLSR) model as the initial
pheromone of the ACO algorithm and proposed the PLS-
VIP-ACOwavelength selectionmethod [33]. Based on Tong’s
research, Xiaoming et al. proposed an elite ACO based on the
validity of variables, while combining forward selection
methods to prefer feature wavelengths and using elite ant
colony search [34]. Liu et al. proposed an improved adaptive
update ACO to improve the convergence and global search
capability of the traditional ACO [19]. However, it is worth
noting that in their studies, the predictive performance of the
PLSRmodel is used as the criterion for evaluating the selected
subset of variables. In the iteration of the ACO, it is necessary
to artifcially set the values of latent variables in PLSR or set
the values of latent variables to a certain range, which on the
one hand cannot make the PLSR model optimal, and on the
other hand, it takes a lot of time in the process of fnding latent
variables and the additional calculation of VIP coefcients
increases the complexity of the algorithm. In order to improve
these problems, this paper combines the multiple linear re-
gression (MLR) method with the ACO and establishes the
MLR model for the data at full wavelength, uses the absolute
value of the regression coefcient of the MLR model as the
criterion for evaluating the importance of wavelength and
uses it as the value of the initial pheromone of the ACO to
solve the problem of the lack of the initial pheromone of the
ACO. To improve the problem that the traditional ACO easily
falls into local optimum, the crossover operator in the genetic
algorithm is introduced into MLR-ACO. Te ten-fold root
mean square error of cross-validation (RMSECV) of the MLR
model with full wavelength data is calculated and this is used
as the threshold value. We count the individuals in the ACO
that are larger than the threshold value and calculate their
frequency of being selected for each wavelength. Several
coarse interval points are generated according to the char-
acteristics of the selected frequencies of wavelengths, coarse

crossover operation is performed at the coarse interval points,
fne crossover points are randomly generated within the
coarse interval, and a fne crossover operation is performed at
the fne crossover points. Among them, the coarse crossover is
to discover the advantages of coarse intervals combining with
each other among diferent excellent wavelength combina-
tions, and the fne crossover is to explore whether the same
intervals combining with each other can produce better
subsets, to further exploit the advantages of MLR-ACO.

2. Method and Theory

2.1. Multiple Linear Regression Model. MLR is a common
calibration method in quantitative spectroscopy, which
focuses on the correlation between an attribute of interest
and each wavelength [35–37]. Te basic form is

y � w0 + w1x1 + w2x2 + . . . wmxm + . . . wnxn + e. (1)

It is generally written in vector form as

Y � W
T
X + e, (2)

where y denotes the attribute value of interest, xm denotes
the refectance of the corresponding wavelength, w denotes
the corresponding regression coefcient, and e is the error,
which follows a normal distribution with the mean value of
zero. n denotes the number of wavelengths.

Te regression coefcient W (W�w1,w2,...wn) is esti-
mated using the least squares method, and the estimated
amount of W is denoted as W∗(W∗ � w∗1, w∗2 . . . , w∗n)

which can be obtained from the least squares method:

W
∗

� X
T

X 
−1

X
T
Y. (3)

Using the regression vector W∗ to predict Y, the pre-
dicted value of Y can be calculated by the following equation:

Y
∗

� XW
∗
. (4)

From the appeal equation, we know thatX is a fxed value
and the value of Y∗ is determined by W∗. When the
absolute value of w∗ is larger, the greater the infuence on y.
Te absolute value of w∗i refects the contribution of
wavelength i to y. It can be said that the larger the |w∗i| is,
the more important the i-th wavelength is. Terefore, the
absolute value of the regression coefcients obtained by
building MLR models for full wavelength data is used as the
initial pheromone value of the ACO algorithm.

2.2.MLR-ACO. Inspired by the traditional ACO combining
theMLR algorithm regression coefcients with the ACO, the
main steps are as follows:

2.2.1. Parameters of the Initialization Algorithm

(1) N: the number of iterations of the ACO needs to be
large enough for the algorithm to achieve
convergence.

(2) M: the number of ants.

2 Journal of Spectroscopy



(3) Initial pheromone matrix (IP): the data at full
wavelength were modeled as MLR, and the absolute
value of the regression coefcient (β) corresponding
to each wavelength was calculated and used as the
pheromone concentration value of the initial
pheromone matrix.

(4) HAS: storing the feature wavelengths selected for
each ant in the HAS matrix.

(5) HAVE: the feature wavelength of storage ants
without selection.

(6) V-MAX: maximum number of feature wavelengths
selected per ant.

(7) Q: an important factor.
(8) ρ: pheromone volatile factor.
(9) T: the threshold value.
(10) C: the contribution matrix, the combinations of

feature wavelengths selected by ants whose ftness
value is greater than the threshold value which is
stored in the contribution matrix.

2.2.2. Ant Chooses the Path. Each ant randomly selects a
wavelength as the path start point and stores it in the HAS
matrix. Te HAVE matrix removes the wavelength, and the
IP matrix removes the pheromone value of the wavelength.
Te roulette algorithm is used to select the next feature
wavelength until the number of selected feature lengths
reaches V-MAX. Te probability of each wavelength being
selected is as follows:

Pi(n) � τihave(n)

 τhave
, (5)

where Pi is the probability that wavelength i in the HAVE
matrix is selected and τihave is the concentration value of the
pheromone at wavelength i in the HAVE matrix.

2.2.3. Calculation of the Fitness Value. Te combined data of
feature wavelengths selected by each ant are built into the
MLR model, and the RMSECV of the MLR model is used as
the basis for the calculation of the ftness value of the ACO.
Te ftness value (F) is calculated as shown in equation (6).
Te ants whose ftness value is greater than the threshold
value are selected into the contribution matrix.

F �
Q

RMSECV
. (6)

2.2.4. Pheromone Update. Te pheromone is updated
according to the foraging behavior of ants in the biological
world. When all ants fnish the iteration, the ant with the
highest contemporary adaptation value is selected, and the
absolute value of the regression coefcient of the corre-
sponding wavelength after its MLR modeling is used as the
basis for the pheromone update, and the pheromone of the
corresponding wavelength is strengthened according to the
pheromone update formula, and the wavelengths that are

not selected will slowly become smaller because of the
pheromone volatile concentration. Te specifc pheromone
update equation is as follows:

(1 − ρ)τi
n−1 +|βi|, wavelength i is selected,

(1 − ρ)τi
n−1, others.

(7)

We repeat steps 2–4 until the set maximum number of
ant colony iterations is reached.

Te optimal wavelength combination is selected, and the
feature wavelength combination selected by the ant with the
highest ftness value among all individuals is the fnal
selection.

2.3. Introduction ofCrossoverOperator inMLR-ACO. In GA,
a crossover operator operation can produce an even better
ofspring that incorporates the characteristics of both par-
ents. Te most common crossover method is the single-
point crossover operation, which generates a random
crossover point and swaps the feature wavelengths before
and after the point between the two parents to generate two
new combinations of feature wavelengths. Te combination
of feature wavelengths with higher ftness values is saved for
comparison with the parent. Since its intersection points are
randomly generated, the stability of the generated children is
not very good. To improve this problem, an improved in-
tersection algorithm is proposed in this paper for spectral
features. In the study of the optical parameters of milk by Jun
[38], it is known that the absorption coefcients of diferent
components of the same measured sample vary at diferent
wavelengths and are strongly infuenced by the content of
that component. Te absorption coefcients of diferent
components also interact with each other, and it is difcult
for us to tell the wavelength interval of the absorption co-
efcient corresponding to the component of interest directly
from the raw spectral image. In calculating the selected
frequencies of each wavelength in the MLR-ACO contri-
bution matrix, it is found that the selected frequencies of
wavelengths also show corresponding peaks and valleys
within a certain wavelength interval. Te selected frequency
of a wavelength indicates the importance of that wavelength
for the property of interest that we need to measure. For this
reason, we divide the full wavelength into coarse intervals
according to the troughs of the selected frequencies of
wavelengths based on the selected frequency map of
wavelengths. Here, the valley points of the selected fre-
quencies of wavelengths are used as the coarse crossover
points of the crossover operator in the genetic algorithm.
Te best 100 individuals generated in the MLR-ACO iter-
ation are used as the initial population of the genetic al-
gorithm, and the coarse crossover operation is performed by
the coarse crossover point. All individuals are combined as
much as possible to discover the best individuals generated
by combining diferent wavelength intervals, and in order to
discover the advantages of combining within the same
wavelength interval, a fne crossover is randomly generated
within the coarse interval, and the two parents are combined
with each other in the same interval wavelength. Finally, four
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ofspring were generated cumulatively, and the two wave-
length combinations with the highest ftness values were left
by comparing them with their two parents. After 30 itera-
tions, the wavelength combination selected by the individual
with the highest ftness value is the fnal selection. Te fow
chart of MLR-ACO-GA is shown in Figure 1.

3. Data and Software

3.1. Wheat Protein Dataset. Te dataset is from the Inter-
national Difuse Refectance Conference (IDRC) and can be
downloaded at https://www.cnirs.org/content.aspx?
page_id�22&club_id�409746&module_id�239453. It con-
tains spectral data of 248 kinds of wheats measured by 3
spectrometers. Te wavelength range is 850–1050 nm, the
interval is 2 nm, and there are 100 bands in total. Te data
also measured protein content values for each wheat sample,
which varied from 7.97% to 18.69% with an average of
13.64%. Spectral data and protein content values measured
by Instrument C were used in this study.

3.2. Cereal Cheese Protein Dataset. Te dataset is down-
loaded from https://eigenvector.com/resources/data-sets/
#grain-sec. In this dataset, the U.S. Department of Energy
uses a mixture of three substances to predict the content of
casein, glucose, lactic acid, and water in the mixture. Among
them, the content of casein varies from 0% to 88.83%, with
an average of 29.61%. Te value of casein and the measured
spectral data are used in this study.

3.3. Corn Protein Dataset. Te dataset can be downloaded
from the website http://software.eigenvector.com/Data/
Corn/index.html. It consists of 80 corn samples measured
by three diferent near-infrared spectrometers. Te instru-
ments used are m5, mp5, and mp6. Te wavelength range is
1100–2498 nm, and the interval is 2 nm. Te data also
measures the moisture, oil, protein, and corn content of each
corn sample. Te spectral data and protein values measured
by the M5 near-infrared spectrometer were used in this
study. Te protein content varied from 7.65% to 9.71%, with
an average of 8.66%.

3.4. Equipment and Software. We use a general-purpose
computer; the CPU is Intel (R) Core (TM) i5-6500 CPU @
3.20GHz 3.19GHz, the memory is 8GB, the operating
system is Windows 10, and all calculations are implemented
on the Python 3.7 platforms.

4. Results and Discussion

Tree publicly available datasets of wheat protein, grain
casein, and corn protein were used to evaluate MLR-ACO
and MLR-ACO-GA, which were eventually compared with
fve established feature selection algorithms, CARS, SPA,
ACO, GA, and DE. SPA is based on vector projection
analysis, which compares the magnitude of projection
vectors between diferent wavelengths to fnd the combi-
nation of feature variables with the lowest information

redundancy in the spectral data and selects the optimal
combination of feature variables by correcting the model.
SPA can minimize the collinearity between variables and
largely reduce the number of wavelengths needed for
modeling. CARS imitates the principle of survival of the
fttest in Darwinian evolutionary theory combined with PLS
model regression coefcients, and in each iteration, samples
are drawn by monte Carlo sampling, and variables with
small absolute values of regression coefcients are forced to
be removed by the exponential decay function (EDF). Te
adaptive weighted sampling method is used to further flter
the feature wavelengths, and the set with a large value of the
regression coefcient weights is retained to create the PLSR
model and calculate the RMSECV of this feature wavelength
combination. After several iterations, the feature wavelength
combination with the lowest RMSECV value is selected as
the optimal subset. ACO screens the feature wavelengths by
simulating the foraging behavior of ants. It uses the
RMSECV of the calibration model to judge the goodness of
this combination of feature wavelengths and updates the
pheromones of the corresponding wavelengths according to
the RMSECV after each iteration. In this paper, only the ants
with the highest ftness value in each generation are selected
to update the pheromone matrix. From the experiments, it is
found that updating the pheromonematrix with the ant with
the highest ftness value is much more desirable than
updating the pheromone matrix with all ants. By imitating
the mechanism of superiority and inferiority in nature, GA
iterates repeatedly through the selection operator, crossover
operator, variation operator, and three operators to fnally
select the combination of feature wavelengths with the
highest ftness value as the optimal feature wavelength
combination.Te DE algorithm is very similar to the genetic
algorithm in that it also includes the operations of mutation,
crossover, and selection, but the specifc defnitions of these
operations are diferent from those of the genetic algorithm.
In this paper, the DE algorithm uses foating-point vector
coding to generate the initial population, while the GA uses
binary coding. In this paper, SPA, ACO, GA, and DE all use
MLR regressionmodels as calibrationmodels, and RMSECV
as the evaluation criterion for a subset of variables. However,
CARS is used to improve the prediction accuracy for the
PLSR model, so the MLR and PLSR models are built for the
combination of feature wavelengths screened by CARS and
compared with the RMSECV of the MLR and PLSR models
for the combination of feature wavelengths screened by both
MLR-ACO and MLR-ACO-GA algorithms. Te parameter
settings of each algorithm were set according to their re-
spective recommendations, 30 tests were performed on each
data set, and the RMSECV was recorded.

4.1. Parameter Confguration. In MLR-ACO, there are fve
parameters that afect the performance of the algorithm.
Before the method is used for diferent data sets, the pa-
rameters should frst be optimized. Te number of iterations
N was set to 50, 100, 150, and 200 in order, with N set too
small for the algorithm to achieve a ft and too large for N to
increase the time complexity of the computation. It was

4 Journal of Spectroscopy

https://www.cnirs.org/content.aspx?page_id=22&club_id=409746&module_id=239453
https://www.cnirs.org/content.aspx?page_id=22&club_id=409746&module_id=239453
https://eigenvector.com/resources/data-sets/#grain-sec
https://eigenvector.com/resources/data-sets/#grain-sec
http://software.eigenvector.com/Data/Corn/index.html
http://software.eigenvector.com/Data/Corn/index.html


found through experiments that the MLR-ACO algorithm
reached its ft when N was set to 50 in the wheat protein and
grain casein datasets. In the corn protein dataset, the MLR-
ACO algorithm reached the ft only when N was set at 100.
Tis is because the corn dataset has a higher number of
wavelengths compared to the other two datasets and requires
a longer iteration time. Te larger the number of antsM, the
higher the accuracy of the algorithm, and also the higher the
time complexity.Te number of ants in all three datasets was
fnally set at 80. Te pheromone volatility factor ρ was set to
0.3, 0.5, and 0.7, respectively. ρ was too small, the ants might
lose the global search ability, and ρ was too large, which
would afect the convergence speed. After experiments, it
was found that satisfactory results could be achieved when ρ
was taken as 0.3 and 0.5. In the wheat protein and grain
casein datasets, the results were slightly better when ρ was
taken as 0.3, and in the corn protein dataset, the results were
better when ρ was taken as 0.5. Q is the pheromone sig-
nifcance factor, and Q is set to 1 for all three data sets.
V_MAX is one of the most important parameters in the
MLR-ACO algorithm. If V-MAX is set too large, some ir-
relevant information variables cannot be eliminated, which
will reduce the computational efciency. If V-VAX is set too
small, some important variables may be excluded, and the
accuracy of the prediction model will be reduced. In the
wheat protein and grain casein datasets, V-MAXwas frst set
to 10, 20, 30, 40, 50, and 60 in that order, and after

determining the optimal value in this interval, the fnal V-
MAX value was determined in intervals of 5 within the value
range. In the corn protein data set, the V-MAX values were
frst set to 20, 40, 60, 80, and 100 in that order, and after
determining the optimal value in this interval, the fnal V-
MAX value was determined in intervals of 5 within this value
range. Figure 2 shows the box line plots of the RMSECV for
30 experiments with diferent V-MAX values for the three
data sets, respectively. We can know that the optimal values
of V-MAX for the three data sets are 15, 40, and 65, re-
spectively. When V-MAX is set too small, some important
wavelengths cannot be selected, which reduces the predic-
tion performance. When V-MAX is set too large, the model
accuracy is reduced instead, which can be seen as proof of
Occam’s razor theory that better prediction performance can
be achieved by using fewer wavelengths [39].

Te population size is set to 100 from the ants with the
top 100 ftness values after the MLR-ACO iterations are
completed. Te number of iterations is set to 30 because the
initial population is already excellent and the number of
iterations does not need to be set very widely. Te coarse
crossover was calculated based on the individuals with ft-
ness values greater than T produced by the 30 MLR-ACO
iterations, with a threshold T equal to the reciprocal of the
full wavelength MLR modeling RMSECV. In addition, the
coarse crossover probability and fne crossover probability
were set to 0.5 and 1, respectively. Te frequency of

Begin

Using full-wavelengths to build an
MLR model

Record the absolute regression
coefficients as the initial Pheromones

Y
N

Select a subset of variables with the
roulette algorithm

The subset of variables whose RMSECV
value is better than the threshold is

stored in the contribution matrix (C)

Update the pheromone matrix with the
absolute values of the regression

coefficients for the subset of variables
with the lowest RMSECV values

Select the subset with the lowest
RMSECV as the optimal subset for

MLR-ACO selection
End

Select the subset with the lowest
RMSECV as the optimal subset selected

by MLR-ACO-GA

Coarse and fine crossover operations.

While k < M iterations

Select the top 100 individuals with the
RMSECV value in C as the initial

population of the GA

Generate coarse crossover points from
frequency maps

Calculate the selected frequency for
each band in C

Y
N

While i < N iterations

Figure 1: Flow chart of MLR-ACO-GA algorithm.
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Figure 2: Boxplots of RMSECV under 30 diferent V-MAX values for MLR-ACO testing on three datasets: (a) wheat protein dataset,
(b) grain casein dataset, and (c) corn protein dataset.
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individuals being selected in the contribution matrix of the
three datasets and the coarse crossover point settings are
shown in Figure 3. Te wheat protein dataset generated 20
coarse crossover points, the cereal casein dataset generated
17 coarse crossover points, and the corn protein dataset
generated 42 coarse crossover points.

4.2. Wheat Protein Dataset. For wheat protein data, SPA,
CARS, ACO, GA, and DE were used for comparison with
MLR-ACO and MLR-ACO-GA, respectively. Each algo-
rithm, except SPA was run 30 times and its RMSECV was
recorded, and the results of the full wavelength model are
listed together as shown in Table 1. From Table 1, it can be
seen that MLR-ACO, MLR-ACO-GA, SPA, and ACO can be
selected for a combination of variables with a smaller
number of wavelengths, but the performance of SPA pre-
diction is not very good. Except for SPA, the prediction
performance of all algorithms is better than the full wave-
length, where CARS, ACO, GA, DE, MLR-ACO, and MLR-
ACO-GA have 20.56%, 38.38%, 31.04%, 35.89%, 40.23%,
and 40.32% lower mean RMSECV compared to the full
wavelength, respectively. MLR-ACO-GA performs CARS,
GA, and DE which not only require a larger number of
bands compared to MLR-ACO, MLR-ACO-GA, and ACO
algorithms but also the model accuracy cannot be further
improved. Te MLR-ACO algorithm can jump out of the
local optimum after adding the crossover operator. Te
standard deviation is reduced from 0.0026 to 0.0023, and the
algorithm becomes more stable.

Te spectrograms of wheat protein data and the fre-
quencies of the seven diferent methods selected for the
wavelengths on the wheat protein data set for the test
experiments are shown in Figure 4. As can be seen from
the observation of Figure 4, it is not directly evident from
the spectral images that the spectral absorption bands are
related to the frequencies of the variables selected, which
once again should confrm the conclusion in 2.3. From the
fgure, the absorption spectra selected by MLR-ACO and
MLR-ACO-GA are roughly the same, mainly including
the complex regions of protein molecular characteristic
absorption such as the stretching vibration or bending
vibration of C-H, N-H, and O-H bonds, their interaction,
and the infuence of the external environment. Te se-
lected absorption bands of MLR-ACO and MLR-ACO-
GA are mainly concentrated near 900 nm, 925 nm, and
950 nm. A few wavelengths are also selected near 860 nm,
1000 nm, and 1025 nm. Among them, 900 nm corresponds
to the quadruple frequency absorption band of C-H and
950 nm corresponds to the triple frequency absorption
band of the O-H bond. And the other selected wavelengths
are difcult to match accurately with a certain chemical
bond. However, the experimental results show that these
wavelengths play an important role in the modeling. It is
worth noting that the high-frequency wavelengths se-
lected by the two algorithms, MLR-ACO and MLR-ACO-
GA, basically match those selected by the other fve al-
gorithms, but MLR and MLR-ACO-GA discard more
irrelevant information variables.

4.3. Grain Protein Dataset. For the grain protein data, SPA,
CARS, ACO, GA, and DE were used for comparison with
MLR-ACO and MLR-ACO-GA, respectively. Each algo-
rithm except SPA was run 30 times and its RMSECV was
recorded, and the results of the full wavelength model are
listed together as shown in Table 2. From Table 2, it can be
seen that the fnal modeling results of all seven wavelength
selection algorithms outperformed the full wavelength
model, and the mean values of SPA, CARS, ACO, GA, DE,
MLR-ACO, and MLR-ACO-GA were reduced by 37.28%,
48.61%, 54.04%, 49.75%, 52.51%, 57.22%, and 57.46%. Tis
shows that feature wavelength selection is very important
before performing quantitative correction models. Among
these seven algorithms, MLR-ACO-GA has the best pre-
diction performance, and MLR-ACO is the second, but the
number of feature wavelengths required is not the least,
which is because the MLR-ACO algorithm believes that
when the number of wavelengths is taken to be about 30, not
all efective information variables can be selected tomake the
model efect optimal. From Figure 2(b), we can see that when
the V-MAX parameter is set to 20, the prediction efect of
CARS, SPA, and ACO can already be achieved, but theMLR-
ACO algorithm believes that a V-MAX of 20 is not the
optimal parameter value. Of course, V-MAX can be set to 20
if considered from the perspective of time complexity.

Te spectrograms of the cereal casein data and the
frequencies of the variables selected by the seven diferent
methods for the experimental tests on the cereal casein
dataset are shown in Figure 5. It can be seen from the fgure
that the high-frequency wavelengths selected by the six
algorithms are the same, mainly around 1152 nm, 1248 nm,
around 1500 nm, 1752 nm, and 2028 nm. Among the three
algorithms with better prediction performance, CARS,
MLR-ACO, and MLR-ACO-GA, the selected frequencies of
the eight bands of 1152 nm, 1164 nm, 1200 nm, 1224 nm,
1248 nm, 1752 nm, 1776 nm, and 2028 nm are more than
70%. Compared with the CARS algorithm, MLR-ACO,
MLR-ACO-GA, ACO, and GA additionally select wave-
lengths in the range of 1344–1392 nm and some other
wavelengths. Among them, the spectral regions near
1152 nm, 1500 nm, 1752 nm, and 2028 nm correspond to the
C-H bond triple frequency absorption band, N-H bond
double frequency absorption band, C-H double frequency
absorption band, and O-H combined frequency absorption
band, respectively. Te other chosen wavelengths are dif-
cult to match exactly to a particular chemical bond, but
experimental results show that these wavelengths play an
important role in modeling. Te selected wavelengths of the
swarm intelligence class algorithm are more dispersed be-
cause the total number of wavelengths is only 117. Te
swarm intelligence algorithm has a good global search ca-
pability and can exploit the advantages of the combination of
diferent wavelengths as much as possible.

4.4. Corn Protein Dataset. For the corn protein data, SPA,
CARS, ACO, GA, and DE were compared with MLR-ACO,
MLR-ACO-GA, and each algorithm was run 30 times, ex-
cept SPA and its RMSECV was recorded, and the results of
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the full wavelengthmodel are presented together as shown in
Table 3. All the algorithms except SPA outperformed the full
wavelength prediction.Temean values of CARS, ACO, GA,
DE, MLR-ACO, and MLR-ACO-GA were reduced by
40.15%, 62.45%, 41.80%, 55.08%, 91.91%, and 92.52%, re-
spectively, compared to the full wavelength RMSECV.Tere
are 700 wavelengths in the corn protein dataset, which is

about 7 times the number of wavelengths of cereal casein and
wheat protein, and the advantages of MLR-ACO and MLR-
ACO-GA over other algorithms are more prominent as the
number of wavelengths increases. SPA has a high RMSECV
although only two bands were collected, and it is clear that
SPA is not applicable to the corn protein dataset. ACO, GA,
and DE have good prediction results, but the number of

1.0

0.8

0.6

0.4

0.2

0.0
850 875 900 925

Wheat – Wavelength selected frequency

Wavelength (nm)

Fr
eq

ue
nc

y

950 975 1000 1025 1050

(a)

1200
0.0

0.2

0.4

0.6

0.8

1.0

1400 1600 1800 2000 2200 2400

Grain – Wavelength selected frequency

Wavelength (nm)

Fr
eq

ue
nc

y

(b)

1200 1400 1600 1800 2000 2200 2400

Corn – Wavelength selected frequency

Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

(c)

Figure 3: Frequency of selected wavelengths for individuals with MLR-ACO greater than the threshold for diferent datasets: (a) wheat
protein dataset, (b) grain casein dataset, and (c) corn protein dataset.
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Figure 4: (a) Spectrograms of the wheat dataset; (b–h) frequencies of variables selected by diferent wavelength selection methods on the
grain dataset. (b) SPA, (c) CARS, (d) ACO, (e) GA, (f ) DE, (g) MLR-ACO, and (h) MLR-ACO-GA.

Table 1: Te results of diferent methods on the wheat protein dataset.

Method RMSECVa RMSECVb nVara nVarb

Full 0.6093 — 100 —
SPA 0.6377 — 10 —
CARS 0.4839 ± 0.0607 0.4076–0.6070 49.03 ± 26.25 11–99
ACO 0.3754 ± 0.0036 0.3667–0.3810 13.76 ± 3.14 8–21
GA 0.4201 ± 0.0071 0.4044–0.4350 43.96 ± 7.44 30–59
DE 0.3906 ± 0.0029 0.3845–0.3964 20.16 ± 3.15 14–25
MLR-ACO 0.3641 ± 0.0026 0.3605–0.3708 10 —
MLR-ACO-GA 0.3636 ± 0.0023 0.3603–0.3694 10.5 ± 1.6 8–14
aStatistical results of mean± standard deviation of 30 replicate simulations of diferent methods. bStatistical results of the variation range of 30 repeated
simulations with diferent methods.
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Figure 5: (a) Spectrograms of the grain dataset; (b–h) frequencies of variables selected by diferent wavelength selection methods on the
grain dataset. (b) SPA, (c) CARS, (d) ACO, (e) GA, (f ) DE. (g) MLR-ACO, and (h) MLR-ACO-GA.

Table 2: Te results of diferent methods on the grain protein dataset.

Method RMSECVa RMSECb nVARa nVARb

Full 0.6288 — 117 —
SPA 0.3943 — 27 —
CARS 0.3231 ± 0.0231 0.2870–0.3900 30.93 ± 6.86 22–40
ACO 0.2889 ± 0.0060 0.2805–0.3088 31.66 ± 4.28 21–43
GA 0.3159 ± 0.0102 0.2791–0.3332 54.2 ± 45.37 43–66
DE 0.2985 ± 0.0035 0.2876–0.3047 49.43 ± 4.26 42–60
MLR-ACO 0.2689 ± 0.0049 0.2552–0.2759 40 —
MLR-ACO-GA 0.2674 ± 0.0043 0.2552–0.2759 40.46 ± 1.33 37–43
aStatistical results of mean ± standard deviation of 30 replicate simulations of diferent methods. bStatistical results of the variation range of 30 repeated
simulations with diferent methods.
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Table 3: Te results of diferent methods on the corn protein dataset.

Method RMSECVa RMSECVb nVARa nVARb

Full 0.0735 — 700 —
SPA 0.4250 — 2 —
CARS 0.0440 ± 0.0314 0.0202–0.1483 50.16 ± 14.73 29–83
ACO 0.0276 ± 0.0037 0.0201–0.0338 150.9 ± 12.03 119–172
GA 0.0428 ± 0.0028 0.0386–0.0503 341.3 ± 13.46 317–365
DE 0.0330 ± 0.0013 0.0359–0.0306 329.06 ± 12.45 308–357
MLR-ACO 0.0059 ± 0.0020 0.0024–0.0118 65 —
MLR-ACO-GA 0.0055 ± 0.0018 0.0024–0.0113 67.2 ± 1.6 62–69
aStatistical results of mean ± standard deviation of 30 replicate simulations of diferent methods. bStatistical results of the variation range of 30 repeated
simulations with diferent methods.
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Figure 6: (a): Spectrograms of the corn protein dataset; (b–h) frequencies of variables selected on the grain dataset by diferent wavelength
selection methods. (b) SPA, (c) CARS, (d) ACO, (e) GA, (f ) DE, (g) MLR-ACO, and (h) MLR-ACO-GA.
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selected wavelengths is much higher compared to the other
methods. Te MLR-ACO and MLR-ACO-GA perform best
in terms of prediction accuracy. Te number of selected
wavelengths is slightly more than CARS, but the model
accuracy is higher and the stability is also the best. It is worth
noting that, observing Figure 2(c), it can be seen that when
the V-MAX parameter in MLR-ACO is set to 20, the average
value of RMSECV is 0.0181, which is lower than SPA, CARS,
ACO, GA, and DE. In practical applications, the value of the
V-MAX parameter can be set according to both time de-
mand and accuracy demand.

Te spectrograms of the corn protein data and the
frequencies of the wavelengths selected by the seven
diferent methods for the experiments on the corn
protein data set are shown in Figure 6. Te wavelengths
selected by the six algorithms are mainly around
1750 nm, 1776 nm, 2168 nm, and 2374 nm. Te wave-
lengths selected by the six algorithms are mainly around
1750 nm, 1776 nm, 2168 nm, and 2374 nm. Among them,
1750 nm corresponds to the C–H bond double frequency
absorption band, 2168 nm corresponds to the N–H bond
frequency absorption band, and 2374 nm corresponds to
the C–H bond frequency absorption band. As can be seen
from the fgure, the wavelengths selected by the CARS
algorithm are relatively concentrated, while the ACO,
GA, and DE algorithms are relatively divergent, which
for ACO is due to the lack of an initial pheromone. For
GA and DE, this is because the random population is
randomly generated and the fnal result is directly related
to the initial population. Te improved MLR-ACO and
MLR-ACO-GA algorithms just make up for the defects of
GA and ACO. On the other hand, the bionic algorithm
has better global search capability and can exploit the
advantages of combination between diferent bands as
much as possible. It can be observed in the frequency
diagram that each algorithm produces certain peaks and
valleys in frequency for a certain wavelength interval,
and the positions of the peaks and valleys of these six
algorithms are the same.

4.5. Comparison of the Results of the PLS Correction Model
Established by CARS, MLR-ACO, and MLR-ACO-GA.
Te results of the PLS correction models for the combi-
nations of the selected feature variables for 30 tests of the
MLR-ACO and MLR-ACO-GA and CARS algorithms are
shown in Table 4. In the wheat protein dataset, the ac-
curacy of PLS correction models for the selected com-
binations of variables in CARS, MLR-ACO, and MLR-
ACO-GA was better compared to the full wavelength, and
the mean value of RMSECV was reduced by 3% in CARS,
15% in MLR-ACO, and 10% in MLR-ACO-GA, respec-
tively, compared to the full wavelength. MLR-ACO pre-
dicted the best results and was more stable. In the cereal
casein dataset, the accuracy of the RLSR correction
models for the selected combinations of variables in
CARS, MLR-ACO and MLR-ACO-GA were better
compared to the full wavelength, with a 25.56% reduction
in the mean value of RMSECV for CARS compared to the

full wavelength, and a 37.32% and 35.17% reduction in
RMSECV for MLR-ACO and MLR-ACO-GA compared to
the full wavelength. Both MLR-ACO and MLR-ACO-GA
performed better due to CARS. in the maize protein dataset,
the accuracy of RLS correction modeling was also better for
the combination of variables selected for CARS, MLR-ACO
and MLR-ACO-GA compared to the full wavelength, with a
79.20% reduction in CARS compared to the full wavelength
RMSECV mean, and a 79.20% reduction in MLR-ACO and
MLR-ACO-GA compared to the full wavelength RMSECV
mean. ACO and MLR-ACO-GA reduce the full wavelength
RMSECV values by 78.27% and 78.42% compared to the full
wavelength, respectively. CARS performs the best and is the
most stable among the three algorithms, but the minimum
RMSECV values of MLR-ACO andMLR-ACO-GA are better
than CARS. Apparently, the combination of feature wave-
lengths selected by MLR-ACO and MLR-ACO-GA can also
achieve good results in the PLSR model.

5. Conclusion

In this paper, we propose an improved algorithm based on the
ant colony algorithm, combining ACO with MLR and adding
the crossover operator of the genetic algorithm to MLR-ACO
to combine them into MLR-ACO-GA. Te MLR-ACO makes
up for the defects of the original ant colony algorithm well, and
the MLR-ACO-GA further exploits the advantages of the
MLR-ACO-GA algorithm. Compared with other methods,
these two algorithms are highly accurate and require fewer
wavelengths, but require more time to complete the iterations.
Our future work will try to solve this problem and apply the
algorithm to practical applications. It is worth noting that these
two algorithms can be applied to the selection of feature
wavelengths for NIR spectral data and can also be extended to
other data requiring quantitative analysis for the selection of
feature wavelengths.

Data Availability

Te data used in this study are a public dataset; the source is
detailed in the text.

Table 4: Results of PLS modeling with diferent methods on
diferent datasets.

Dataset Method RMSECVa RMSECVb

Wheat

Full 0.4305 —
CARS 0.4188 ± 0.0142 0.3893–0.4356

MLR-ACO 0.3654 ± 0.0034 0.3607–0.3732
MLR-ACO-GA 0.3850 ± 0.0243 0.3655–0.4517

Grain

Full 0.4433 —
CARS 0.3321 ± 0.0298 0.2889–0.4293

MLR-ACO 0.2779 ± 0.0119 0.2576–0.3151
MLR-ACO-GA 0.2874 ± 0.0186 0.2652–0.2889

Corn

Full 0.1108 —
CARS 0.0230 ± 0.0042 0.0168–0.0372

MLR-ACO 0.0245 ± 0.0078 0.0115–0.0424
MLR-ACO-GA 0.0239 ± 0.0070 0.0099–0.0392

aStatistical results of mean ± standard deviation of 30 replicate simulations
of diferent methods. bStatistical results of the variation range of 30 repeated
simulations with diferent methods.
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