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Long-term industrial activities tend to cause surface subsidence and damage to ground facilities and local ecological environment.
Monitoring and analyzing surface subsidence is of great signi�cance to prevent potential disasters. �e surface type of the Yellow
River Delta in China is complex and there are many industrial activities, so it is necessary to monitor the surface subsidence in this
area. Small Baseline Subset InSAR (SBAS-InSAR) canmonitor the surface subsidence with millimeter-level accuracy, but it takes a
long time to process wide images (Sentinel-1) and is seriously a�ected by atmospheric errors. To avoid these limitations, we
constructed a method combining the CenterNet network and SBAS-InSAR (CNSBAS-InSAR). Firstly, the CenterNet network is
used to automatically detect the subsidence areas from the wide di�erential interferogram formed by two SAR satellite images and
determine the location of the subsidence area. �en, the SBAS-InSAR monitoring is performed on the detected multiple
subsidence areas. Finally, the small-scale subsidence results are obtained. In this study, based on 24 Sentinel-1A satellite images
acquired from 10 January 2018 to 24 December 2018, nine subsidence areas in Yellow River Delta were detected. �ree of them
had long-term surface subsidence. �ey were located in Zhanhua District, Xianhe Town, and Hongguang Village, respectively.
�is paper focuses on analyzing these three areas. �e maximum subsidence rate of Zhanhua District, Xianhe Town, and
Hongguang Village were −135.21mm/a, −330.91mm/a, and −209.68mm/a, respectively. In addition, the analysis showed that
precipitation in the Zhanhua District could e�ectively slow down the subsidence rate of the area. �e subsidence of Xianhe Town
threatened the safety of the Shugang Expressway. �e subsidence of Hongguang Village caused the safety risks of buildings. �e
results of this study prove that CNSBAS-InSAR method is reliable for monitoring subsidence areas and it can provide a reference
for local construction and protection of Yellow River Delta.

1. Introduction

Surface subsidence is a complex geological disaster a�ected
by natural and arti�cial factors [1]. �e main causes of
surface subsidence include mining, urban groundwater
extraction, and industrial activities [2–4]. Large-scale sub-
sidence can easily damage ground infrastructure, causing
foundation collapse and road cracks. In addition, rapid
subsidence in a short time may lead to surface collapse,
ecological damage, landslides, and debris ¦ow [5–7]. With
the change in the ecological environment and the contin-
uous exploitation of resources, it is becoming more im-
portant to monitor the surface subsidence. It can give early

warning of danger and disaster in time to ensure human
safety and reduce economic loss.

In recent years, the interferometric synthetic aperture
radar (InSAR) technique has been widely applied to monitor
ground subsidence in various situations, such as airports and
oil �elds [8, 9]. Compared with the traditional global nav-
igation satellite system (GNSS) and precise leveling [10, 11],
the monitoring accuracy of InSAR can reach centimeter-
level, and it has the characteristics of saving time and labour,
low cost, and wide monitoring range [12]. However, in the
long-term monitoring, InSAR is limited by signal inco-
herence, which is caused by atmospheric phase error and
noise [13], resulting in reduced monitoring accuracy and a
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loss of ability to monitor tiny deformations. In view of this
problem, several scholars improved the phase filtering [14]
and phase unwrapping [15] methods in InSAR or established
a refined model for a single subsidence basin [16] to improve
the monitoring accuracy. In 2002, Small Baseline Subset
InSAR (SBAS-InSAR) was proposed by Berardino et al. [17].
+is technique combined many differential interferograms
produced by data pairs to limit the spatial decorrelation
phenomena and enabled the monitoring accuracy to reach a
millimeter level.

+e Yellow River Delta has developed industry, agri-
culture, aquaculture, etc. Shengli Oilfield, the second largest
oil field in China, is located in the area. A large number of
mining work, special geographical locations, and complex
industrial structures have caused serious damage to the
surface in many areas of the Yellow River Delta [18].
+erefore, it is necessary to monitor the surface subsidence
in this area. At present, the InSAR technique has been widely
used in surface subsidence monitoring in this area. Liu et al.
[19] combined the SBAS-InSAR with a geotechnical model
and geological, geomorphological, hydrogeological, and
geotechnical data to assess the long-term spatiotemporal
subsidence in the Yellow River Delta. Zhang et al. [20]
developed a multitemporal InSAR method to map ground
subsidence over the Yellow River Delta area by exploiting
both persistent scatterers (PS) and distributed scatterers
(DS) and obtained surface subsidence from 2007 to 2010 and
2015 to 2018. +e above methods improve the accuracy of
monitoring results by introducing parameters and com-
bining different algorithms, but they require the operation of
a wide image, including many areas without subsidence.

Due to the large amount of data required by SBAS-
InSAR, it takes a long time to process the original wide image
(Sentinel-1), and it is seriously affected by atmospheric error
during large-scale monitoring [21], resulting in lower ac-
curacy of monitoring results. At present, several scholars
have proposed new methods to reduce the errors in the
SBAS-InSAR monitoring process. For example, Duan et al.
[13] took incoherent noise and atmospheric turbulence as
random variables and proposed a new weighting method to
reduce the impact on the monitoring results. Havazli and
Wdowinski [22] proposed a method to estimate the de-
tection threshold of SBAS-InSAR to reduce tropospheric
delay to improve monitoring accuracy. Most of these
methods are improvements to the algorithm, less for the
image. Inmost cases, there are few subsidence areas in a wide
image like Sentinel-1, and we pay more attention to the
subsidence area, while monitoring the area without subsi-
dence has not much significance and will consume a lot of
time. +erefore, these problems can be effectively solved by
finding suitable SBAS-InSAR monitoring locations. Wang
et al. [23] used the histogram of oriented gradients and a
support vector machine model in machine learning to ex-
tract the subsidence basins of the mining area from the wide
differential interferogram, and the accuracy rate reached
85%. Bata et al. [24] proposed the automatic subsidence area
detection in SAR interferograms by the method of circlet
transform and tested it on the Upper Silesian Coal Basin
located in Southern Poland, and the detection efficiency of

this method was improved by 20% compared with the
Hough transform. However, traditional mathematical and
machine learning methods are easily limited by the amount
of data and need to add features manually [25]. At present,
most of the methods can only perform manual clipping of
the original wide image after determining the geographic
position of the subsidence area through field investigation
[26], which takes a long time and is prone to omission.

Object detection technology [27] under the framework
of deep learning has made practical progress in many fields,
such as detection of coastline garbage [28], animal species
[29], and vehicles [30], which greatly facilitates people’s
work. In the application of SAR remote sensing, object
detection technology is mainly used to identify ships [31]
and offshore oil spills [32]. By combining the object de-
tection technology, the subsidence areas could be auto-
matically identified in the wide differential interferogram,
and the small-scale subsidence areas could be located. +en
the SBAS-InSAR monitoring is performed for the small
subsidence areas, which saves a lot of monitoring time and
reduces the influence of atmospheric phase error on
monitoring accuracy. +e CenterNet network is an object
detection technology proposed by Zhou et al. [33] in 2019. It
had no anchor boxes and modeled the object as a single
point detection mode so that the detection results were not
limited by the object size, which was very suitable for
detecting subsidence areas. In this study, we constructed a
method combining CenterNet and SBAS-InSAR technology
(CNSBAS-InSAR) for monitoring surface subsidence. Ap-
plying this method to the Yellow River Delta, the location of
subsidence was determined and the millimeter-scale sub-
sidence results were obtained successfully.

+e sections of this paper are arranged as follows: In
Section 2, detailed information about the study area and data
is introduced; Section 3 is the method of this paper. It mainly
introduces the method of detecting subsidence area auto-
matically by CenterNet network and obtaining subsidence
rate and time series deformation by SBAS-InSAR technol-
ogy; Section 4 is experimental results and validation, in-
cluding subsidence areas detection results, subsidence rate
results, and validation by different SAR tracks; Section 5 is
about the discussion and analysis of subsidence area in the
experimental area. In Section 6, some important conclusions
are presented.

2. Materials and Data

2.1. Study Area. +e Yellow River Delta is located in
Shandong Province, China, between 36°55′–38°16′N,
117°31′–119°18′E, bordering Laizhou Bay in the east and
Bohai Bay in the north and occupying an area of over
10,000 km2.+e terrain is flat and the altitude is between 0m
and 15m. It is located in the warm temperate zone and has a
temperate continental monsoon climate.+e annual average
precipitation is about 551.6mm. +e Yellow River Delta is
rich in biodiversity and natural resources and has been
extensively studied by scholars [34, 35].

+e study area in this paper is the coverage of the
Sentinel-1A image, as shown in the red box in Figure 1(a),
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and the coverage of Sentinel-1B images used for validation is
shown in the blue box. +e background is DEM, and the
altitude is denoted by the color scale from white to jade.
Figure 1(b) shows the location of the Yellow River Delta in
Shandong Province, China, Asia. Figure 1(c) shows the
Landsat 8 image of the part of the study area for analysis in
this paper, and the imaging time is 25 March 2018.

2.2. Data. To monitor the surface subsidence in the Yellow
River Delta in 2018, 24 ascending Sentinel-1A images from
the ESAwere acquired from 10 January 2018 to 24 December
2018. +e 24 descending Sentinel-1B images were used to
verify the accuracy of subsidence results. +e parameters of
the Sentinel-1 data are shown (see Table 1).

In addition, precise orbit determination (POD) data
released by ESA was used for the orbital refinement and
phase reflattening. Topographic phases were removed using
shuttle radar topography mission (SRTM) DEM data with

90m resolution provided by the National Aeronautics and
Space Administration (NASA).

3. Methods

To solve the problem of rapid and accurate monitoring of
surface subsidence in the Yellow River Delta, we constructed
a novel method combining the CenterNet network and
SBAS-InSAR technology (called CNSBAS-InSAR) for
monitoring surface subsidence. Firstly, the sample datasets
of subsidence areas were made based on the characteristics
of the subsidence areas. +en, the CenterNet network was
used to detect the subsidence areas from the wide inter-
ferogram. Finally, SBAS-InSAR processing was conducted
on the multiple selected subsidence areas of the Yellow River
Delta, and the small-scale accurate subsidence results were
obtained. +e flow chart of CNSBAS-InSAR is shown in
Figure 2, which includes the generation of a wide inter-
ferogram, detecting the subsidence areas with the CenterNet
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Figure 1: Location of the study area. (a) SRTM DEM 90m image of the study area, the red box denotes the Sentinel-1A range, and the blue
box denotes the Sentinel-1B range; (b) the study area in Shandong Province, China, Asia; (c) the Landsat 8 image of part of the study area.
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network, locating the subsidence areas, cropping the image,
and obtaining the small-scale subsidence results.

3.1. CenterNet Network

3.1.1. Technical Principle. +e CenterNet network is one of
the object detection methods of deep learning, which is
widely used in industry [36], transportation [37], and other
fields. +e principle [33] is modeling the object to be de-
tected as a single point, namely the center point of the
bounding box, and then determining the center point
through the keypoint heatmap. Other features of the object
can be regressed according to the image features of the
center point, such as object size, 3D extent, orientation, and

pose. +ese features are input into the network to directly
predict the height and weight of the object box. +e Cen-
terNet supports Hourglass [38], DLA [39], and ResNet [40]
as the backbone. Due to a large number of Hourglass and
DLA network parameters, it is not convenient for practical
application. +erefore, ResNet50 was adopted as the back-
bone in this paper.

+e Yellow River Delta is a complex industrial area, and
the size of the subsidence areas caused by different industrial
activities varies greatly. CenterNet network is not limited by
the size of the object to be detected because it has no anchor
box and adopts the method of heatmap regression predic-
tion. +erefore, it is very suitable for detecting the subsi-
dence areas in wide differential interferograms. In this paper,
CenterNet was used to automatically detect the subsidence

Table 1: Parameters of Sentinel-1.

Parameters Sentinel-1A Sentinel-1B
Band C C
Track 69 76
Beam mode IW∗ IW
Incidence angle (°) 38.9 39.2
Polarization VV VV
Oribit direction Ascending Descending
Resolution (m) 2.3×13.9 2.3×13.9
∗IW: Interferometric wide swath.
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Figure 2: +e flow chart of CNSBAS-InSAR.
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areas from wide interferograms before SBAS-InSAR
processing.

3.1.2. Datasets Making. +e sample datasets for training the
CenterNet network were obtained from differential inter-
ferograms of real subsidence areas. +e two-pass approach
[41] was used to carry out DInSAR processing on some areas
with many subsidence areas. +e DInSAR process only
needs to obtain the differential interferogram after phase
noise filtering, so as to accurately obtain the characteristics
of the subsidence area on the interferogram. +en, the in-
terferograms were cropped into some subimages with a size
of 416× 416 and the image data annotation software
“LabelImg” was used to draw the outer rectangular boxes of
subsidence areas on each sample image. +e subsidence
areas which lost features such as interferometric fringes due
to atmospheric phase errors and decorrelation noise were
removed. Data augmentation was used in this paper with
rotation, translation, and flipping to expand SAR data
samples [42–44]. In this study, by operating on 12 differ-
ential interferograms in the Huaibei mining area, a total of
611 subsidence area sample datasets were produced. We
used 80% of the samples for training and 20% for testing.+e
parameters of interferograms are listed in Table 2. +e
sample datasets of some subsidence areas are shown in
Figure 3.

3.1.3. Training and Evaluation of Detection Capability.
+e model training was carried out using the prepared
sample datasets. +e platform was Windows 10. +e pro-
cessor was an Intel Core I5-8400H (8GBmemory).+e deep
learning framework was TensorFlow 2.2.0, with CPU for
training and CUDA for acceleration.

+e loss function of CenterNet is divided into three
parts: heatmap loss, offset loss, and size loss. In CenterNet,
each center point corresponds to an object location, and
overlapping judgment is not required. In practical
training, the loss of other points around the center point is
the loss after attenuation, while the length and width of
the object are obtained by regression and correspond to
the current center point. We have recorded the loss curve
during the training of CenterNet, as shown in Figure 4.
+e loss curve decreased significantly during the training
process and then tended to be stable after epoch � 30 when
the loss value remained at about 1.8. +e results showed
that the CenterNet network could be a good fit to detect
subsidence areas.

For the detection results, T and F, respectively, indicated
that the sample was correctly classified and incorrectly
classified. P and N indicated that the sample was detected to
be a positive sample and a negative sample. +ere were four
types of detection results of the model: true positive (TP) was
the positive sample that was correctly detected; false positive
(FP) was the positive sample that was incorrectly detected;
true negative (TN) was the negative sample that was cor-
rectly detected; false negative (FN) was the negative sample

that was incorrectly detected. Precision (P) indicated the
proportion of all detected samples that were correct. Recall
(R) indicated the proportion of the objects recognized by the
network among all the objects that are required to be rec-
ognized. +e equations of precision (P) and recall (R) are as
follows:

P �
TP

TP + FP
, (1)

R �
TP

TP + FN
. (2)

+e P-R curve took the precision P as the ordinate and
the recall as the abscissa.+e equation for AP is shown in the
following formula:

AP �
 PM



N
, (3)

where PM is the detection accuracy of subsidence areas in
each image and N is the number of images.

In this paper, APmeasured the detection performance of
subsidence areas; that is, the precision values on the P-R
curve were averaged. +e calculated AP value was 93.69%,
indicating that CenterNet can better detect the subsidence
areas. +e P-R curve is shown in Figure 5.

3.2. CNSBAS-InSAR. Before SBAS-InSAR processing, the two
Sentinel-1A images were registered first, and then the DInSAR
was processed [41] to obtain the wide differential interfero-
gram. Goldstein filtering [45] was used to reduce phase noise
on the image to make the interferometric fringe clear. In the
process, the interferogramwas cut into 36 subimages according
to 6× 6 clipping. Grey scales were added to the blank part of the
image tomake the pixel values of width and height multiples of
32, which met the detection requirements of CenterNet. +en,
the 36 subimages were detected by the CenterNet network in
turn to obtain the detection results of the subsidence areas, and
several subsidence subregions were located according to the
detection results.

According to the pixel position of the subsidence sub-
regions in the original image, the N + 1 Sentinel-1A images
requiring SBAS-InSAR processing were cropped and con-
structed into a time series [3, 46]. +e acquisition time of
SAR images covering the subregions with N + 1 scenes was
T1, T2, . . . , TN and assuming each scene image formed an
interferogram with another scene image. +en, M inter-
ferograms were generated based on spatial and temporal
baseline threshold value. M satisfied the following equation:

(N + 1)

2
≤M≤

N(N + 1)

2
. (4)

Assuming interferogram j was generated by combining
SAR acquisitions at times tA and tB(tB > tA), and then the
differential interferometric phase of j in pixel of azimuth and
range coordinates (x, r) was mainly composed of five parts,
which is expressed in the following equation:

Journal of Spectroscopy 5
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Figure 3: Partial sample datasets for training the CenterNet network.

Table 2: Parameters of interferograms for making sample datasets.

Master image Slave image Path Spatial baseline (m) Temporal baseline (d)
22/12/2017∗ 27/01/2018 142 −80.56 36
15/01/2018 08/02/2018 142 −101.25 24
27/01/2018 04/03/2018 142 −32.34 36
08/02/2018 04/03/2018 142 28.72 24
11/11/2018 17/12/2018 142 38.83 36
17/12/2018 22/01/2019 142 −50.79 36
17/12/2018 27/02/2019 142 −84.14 36
03/02/2019 27/02/2020 142 −105.33 24
06/11/2019 30/11/2019 142 39.52 24
30/11/2019 24/12/2019 142 72.78 24
05/01/2020 24/12/2019 142 −41.11 24
29/01/2020 22/02/2020 142 42.48 24
∗Note. Date/month/year in Table 1.
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φj(x, r) � φj tB, x, r(  − φj tA, x, r( 

≈ φdisp + φtopo + φorb + φatm + φnoise,
(5)

where x and r are azimuth and range coordinates, respec-
tively. φdisp is the phase caused by changes in the line of sight
(LOS) distance between the object and the radar; φtopo is the
residual phase due to inaccuracies in reference DEM; φorb is
the satellite orbit phase error; φatm is the atmospheric phase
error; and φnoise is the phase caused by other noise.

In order to obtain accurate deformation results, φtopo,
φorb, φatm, and φnoise should be removed, then a system ofM
equations inN unknowns is obtained from equation (5).+e
matrix form w expressed in the following equation:

Aφ � δφ, (6)

where A is the M × N coefficient matrix; M and N denotes
the number of interferograms and SAR acquisitions, re-
spectively; φ is N unknown phase values related to high-
coherence pixels; and δ is the vector of unwrapped phase
values associated with differential interferograms.

In order to obtain the deformation rate of highly co-
herent pixels, the following equation was formed:

Bv � δφ, (7)

where B is the M × N coefficient matrix and vT can be
expressed as equation:

v � v1 �
φ1

t1 − t0
, . . . , vN �

φN − φN−1
tN − tN−1

 . (8)

Finally, the deformation rate was obtained by singular
value decomposition (SVD) in equation (7) and the time
series deformation was obtained according to the time span
between SAR image acquisitions.

4. Results

4.1. Detection Results. In this paper, two interferometric
pairs of the Yellow River Delta from 10 January 2018 to 23
March 2018 and from 06 November 2018 to 24 December
2018 were selected. Due to the serious decorrelation noise
generated by vegetation at other times, the subsidence
areas lost their characteristics, so the detection effect was
not good. +erefore, we no longer showed and listed their
results. +e parameters of interferograms are shown in
Table 3.

Subsidence areas were detected in 9 subareas. +e
interferogram from 10 January 2018 to 23 March 2018
detected 7 subsidence areas as shown in Figure 6(a). +ey
were located in Shuinan Village, Zhangqiu District, Jinan
①, Maqiao Town, Huantai County, Zibo ②, Hanting
District, Weifang ③, Yangkou Town, Shouguang City,
Weifang④, Hongguang Village, Kenli District, Dongying
⑤, Zhanhua District, Binzhou ⑥, and Xianhe Town,
Hekou District, Dongying ⑦. +e interferogram from 06
November 2018 to 24 December 2018 detected 6 subsi-
dence areas as shown in Figure 6(b). +ey were located in
Yangkou Town, Shouguang City, Weifang ④),

Hongguang Village, Kenli District, Dongying, ⑤, Zhan-
hua District, Binzhou ⑥), Xianhe Town, Hekou District,
Dongying ⑦, south of the Yellow River estuary in Kenli
District, Dongying ⑧, and Mazishan Town, Wudi
County, Binzhou ⑨. Among them, Hongguang Village
⑤, Zhanhua District ⑥, and Xianhe Town ⑦ had the
same location of the subsidence areas in the interferogram
of both time periods, indicated the surface subsidence
lasted a long time.+e detection results of each subregions
are shown in Figures 6(a) and 6(b). +e lines in
Figures 6(a) and 6(b) denote image cropping mode, and
the subsidence areas are marked by red boxes. Hongguang
Village, Zhanhua District, and Xianhe Town are shown in
the enlarged Figures 6(c), 6(d), and 6(e).

4.2. SBAS-InSAR Results

4.2.1. Subsidence Rate. +e detected subsidence areas were
cropped from Sentinel-1A images from January 2018 to
December 2018 to form a time series. A maximum temporal
baseline was less than 180 days and spatial baseline was
shorter than 200m generated. External registration was
carried out with SRTM DEM 90M provided by NASA.
Goldstein filter [45] was used to eliminate the noise phase.
+e minimum cost flow method (MCF) [47] was used for
phase unwrapping.+e Yellow River Delta was covered with
vegetation in many places, so there was a wide range of low
coherence areas after SAR interferometry. +e unwrapping
decomposition level was set to 2 to improve the quality and
efficiency of unwrapping and reduce unwrapping errors.+e
interferometric pairs with low coherence and poor
unwrapping were removed. A smooth ground control point
(GCP) without an obvious phase transition was used to
remove the residual terrain phase. +e influence of atmo-
spheric phase error was reduced by the spatiotemporal filter.
+e subsidence rate and time series subsidence results were
obtained. Finally, the results were converted to the World
Geodetic System 1984 (WGS84) coordinate system by
geocoding. +e spatial and temporal baselines are shown in
Figure 7.

In Hongguang Village ⑤, Zhanhua District ⑥, and
Xianhe Town (⑦), the same location of the subsidence
areas appeared in two time periods, indicating that the
surface subsidence was caused by long-term damage, so
this paper focused on these three areas. +e subsidence
rate results of these three areas are shown in Figure 8. We
superimposed results on Landsat 8 images with 50%
transparency to better display subsidence and surface
information. +e value is denoted by the color scale from
blue to red.

4.2.2. Cross Track Validation. In order to evaluate the ac-
curacy of SBAS-InSAR monitoring results, cross orbital
validation was used in this study. +e subsidence value was
obtained by using the 24-scene Sentinel-1B data when
monitoring in the same way without changing the param-
eters. Ten validation points evenly distributed in large
subsidence areas were randomly selected in Xianhe Town, as

Journal of Spectroscopy 7



shown in Figure 9(a), to check whether the monitoring
results of SBAS-InSAR at different orbits were consistent,
and root mean square error (RMSE) was adopted as the

evaluation index. +e subsidence curves of 10 points in
different orbits are shown in Figure 9(b). Due to the 6-day
time interval for Sentinel-1 image acquisition and the
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Table 3: Parameters of interferograms for detecting the subsidence areas.

Master image Slave image Path Spatial baseline (m) Temporal baseline (d)
22/12/2017∗ 27/01/2018 142 −80.56 36
15/01/2018 08/02/2018 142 −101.25 24

(a) (b)

⑤

(c)

⑥⑥⑥⑥⑥⑥

(d)

⑦⑦⑦⑦⑦

(e)

Figure 6: Detection results of subsidence areas. (a) Detection results from 10/01/2018 to 23/03/2018 interferometric pair; (b) detection
results from 13/10/2018 to 24/12/2018 interferometric pair. +e results of (c) Hongguang village⑤, (d) Zhanhua district⑥, and (e) Xianhe
town ⑦ are enlarged, respectively.

8 Journal of Spectroscopy



different look direction of ascending orbit and descending
orbit, a slight difference was acceptable. After calculation,
the RMSE was 14.66mm, and the experimental results are
considered reliable. +e equation of RMSE is as follows:

RMSE �

����

1
n



n

i�1




das,i − ddes,i  , (9)

where n denotes the number of verification points; i denotes the
point of the serial number; das denotes the subsidence rate at
the verification point of the ascending image; and ddes denotes
the subsidence rate at the point of the descending image.

5. Discussion

5.1. Analysis of Zhanhua District. Figure 10 shows the time
series of surface deformation in Zhanhua District from 10
January 2018 to 24 December 2018, which reflects the
evolution process of this area. 10 January 2018 is considered
as the reference time of the time series deformationmap, and
a total of 23 deformation maps are obtained. Here, 11 of
them are selected for display. +ere was one image every
month (except January) to show the deformation charac-
teristics in different periods. +e date is in the upper left
corner of each map.+e deformation value is denoted by the
color scale from blue to red.
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Figure 8: Subsidence rate results. (a) Subsidence rate of Zhanhua district⑥ in Figure 5; (b) subsidence rate of Xianhe town⑦ in Figure 5;
(c) subsidence rate of Hongguang village⑤ in Figure 5. Negative values indicate an increase in the distance along the LOS (subsidence) and
positive values present a decrease in the distance along the LOS (uplift).

Journal of Spectroscopy 9



N
Kilometers

0 1 2 4
Shugang expressway
Verification point

118º45'0''E 118º48'0''E

37
º5

6'0
''N

37
º5

8'0
''N

(a)

350
300
250
200
150
100
50

0

Su
bs

id
en

ce
 (m

m
)

P1 P2 P3 P4 P5
Point

P6 P7 P8 P9 P10

Ascending
Descending

RMSE=14.66 mm

(b)
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the deformation map is marked in the upper left corner of each map, and the number of the subsidence area is marked in the ellipse. +e
triangle up in the last image denotes the point where the subsidence curve is plotted.
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Five major subsidence zones were observed in Zhanhua
District, which were defined as Zone A, Zone B, Zone C,
ZoneD, and Zone E, respectively. Five zones were marked by
red dashed ellipses in Figure 10. By calculating the amount of
subsidence in each area, the maximum subsidence values of
Zone A, B, C, D, and E were −125.8mm, −56.3mm,
−76.4mm, −95.0mm, and −60.7mm, respectively.
According to the color in the time series cumulative de-
formation map, except for the 5 subsidence areas, most of
the other areas tended to be stable, and the subsidence range
was between −10mm and 20mm. With the passage of time,
the amount of subsidence value of the five subsidence zones
increased, and the subsidence range expanded continuously.
A point in each of the five subsidence zones was selected to
draw the subsidence variation curve as shown in Figure 11.
+e location of the subsidence point was triangled up in the
deformation map of 24 December 2018 in Figure 10.

According to Figure 11, we can obtain the cumulative
subsidence and the subsidence rate according to the value
and the slope change of the line. From January 10 to March
1, the surface subsidence of each zone always kept pace, and
the subsidence in Zone A grew the fastest, reaching about
40mm. From March 11 to March 23, Zone A and C were
briefly uplifted, and the subsidence rate slowed down in
Zone B, D, and E. From March 23 to August 2, the subsi-
dence rate of Zone A remained fast. Zone B was uplifted
from June 3 to June 27 and subsided slowly at other times.
+e subsidence rate of Zone C was always stable. In Zone D,
the subsidence rate accelerated from April 16 to April 28,
and then the surface uplift appeared from April 28 to June 4,
and the subsidence rate was stable in other times. Zone E
kept a stable subsidence rate. From August 2 to September 7,
Zone A, B, and E showed obvious surface uplift, while the
subsidence rate of Zones C and D slowed down. After
September 7, subsidence continued in all areas, with only
one uplift occurring in Zone B from October 25 to No-
vember 6. It is worth noting that the subsidence points in
Zones A, B, and E had obvious surface uplift from August 2
to September 7.

From July to August, surface uplift and subsidence rate
slowed down in many zones. +e climate of the Yellow River
Delta determined that the precipitation from July to August
was generally greater than other months, and the precipi-
tation could recharge groundwater to slow subsidence. To
verify this possibility in this area, the precipitation data of
2018 were acquired from the National Meteorological Sci-
ence Data Center (https://data.cma.cn/) for analysis, as
shown in Figure 12(a). +e average precipitation in August
was more than 300mm in 2018, much higher than in other
months.

When the amount of subsidence is large, it can better
reflect the characteristics of subsidence. +erefore, 353
points with a subsidence rate greater than −50mm/a were
selected in the five zones, and the deformation of these
points in different months was acquired to draw a scatter
diagram. Figures 12(b)–12(e), respectively, show the de-
formation of these points in January, May, August, and
November. +e red line denotes the average deformation of
these points. It was −24.31mm in January, −9.22mm in

May, −3.57mm in August, and −7.34mm in November. In
August, the average subsidence value was the smallest, and
only in August, there were many points with deformation
greater than 0mm, which was significantly different from
other months, confirming that heavy rainfall in August
slowed down the subsidence.

5.2. Analysis of Xianhe Town. +e maximum subsidence rate
of Xianhe Town was −330.9mm/a. In order to further explore
the characteristics of subsidence, two profile lines AA′ and
BB′ were established for the subsidence area. +e cumulative
surface subsidence of 30 uniformly distributed points in each
profile line was extracted to draw deformation curves, as
shown in Figure 13(c). It can be seen that the subsidence of
the two profile lines is not uniform. +e subsidence on the
side close to Dongying Shugang Expressway was more serious
than that on the side far from the expressway.

+e Shugang Expressway was an important hub between
Hekou District and the port. +e traffic flow was large, so it
was very important to ensure the safety of the Shugang
Expressway. In Figure 13(a), we set three vector boundaries
of subsidence rate that the value is greater than −300mm/a,
−250mm/a, and −150mm/a, which are represented in wine
red, green, and blue. It can be seen that some traffic positions
of Shugang Expressway have crossed the blue boundary,
denoting that the subsidence rate of this part has been
greater than −150mm/a.

According to the standard for dangerous building ap-
praisal in China, when the surface subsidence of infra-
structure was more than 20mm, the ground facilities would
suffer safety risks. So we used the time series deformation to
draw the boundary of 20mm subsidence at different times
and measured the vertical distance between the boundary
and the expressway by taking the point at the outer end of
the boundary once a month. +e linear fitting function
between distance and month was established. Distance
measurement is shown in Figure 13(b). Four of these
measurements are shown here. Brown, dark green, purple,
and light green vector, respectively, denote the boundary of
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Figure 11: Time series of subsidence at selected points.
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Figure 12: Continued.
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Figure 12: Analysis of subsidence in Zhanhua district combined with precipitation. (a) Monthly average precipitation curve in Zhanhua
district, red square is precipitation in August.+e deformation of 353 points in (b) January, (c) May, (d) August, and (e) November.+e red
line is the average deformation of 353 points in each month.
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red line; (b) the enlarged cumulative map of subsidence. +e three subsidence areas are marked with A, B, and C. +e profile line is DD′.
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14 Journal of Spectroscopy



20mm subsidence on February 15, April 10, August 14, and
December 24, respectively.

+e black line denotes distance, and values are marked in
the figure. +e linear fitting function is shown in
Figure 13(d), and the R2 (Relevance) is 0.9739. +e distance
and time almost meet the linear relationship. +is proved
that the expansion rate of the subsidence range was stable
and there was no obvious slowing trend. Subsequently, it was
necessary to strengthen governance to slow down the
continuous occurrence of surface subsidence so as to reduce
the expressway’s potential risk.

5.3. Analysis of Hongguang Village. +ere were three sub-
sidence areas in Hongguang Village, and the maximum
subsidence rate was -209.68mm/a. Combined with the
Landsat 8 image, two of them were located in the north,
about 5 km and 1.5 km away from the Hongguang Village
building, respectively, which were defined as Zone A and
Zone B. +e other was located in the south, about 3 km away
from the building, which was defined as Zone C. We marked
the geographical locations of buildings with red boxes in the
enlarged Landsat 8 image, as shown in Figure 14(a) and
overlaid the red boxes on the enlarged subsidence rate map,
as shown in Figure 14(b), to reflect the location relationship
between subsidence and Hongguang village buildings.

+e profile line DD′ through Hongguang Village was
established as shown in Figure 14(b), and the cumulative
surface subsidence of 30 uniformly distributed points on the
profile line was extracted to draw a profile map. +e profile
map is shown in Figure 14(c).

We marked the points in the location of Hongguang
Village buildings with a red box in Figure 14(c). +e surface
subsidence value of these buildings was small. However,
because it was located between subsidence Zone B and Zone
C, when the subsidence range on both sides expanded
continuously, the surface around Hongguang village
buildings would sink. Before reaching a stable state, the
subsidence would gradually extend to Hongguang Village,
causing safety risks to the building.

6. Conclusion

In this paper, we constructed the CNSBAS-InSARmethod to
monitor and analyze the surface subsidence in the Yellow
River Delta.+is method first uses the CenterNet network to
automatically detect the subsidence areas from the wide
differential interferogram and determine the subsidence
area. +e main purpose of this step was to determine the
location to crop the image, so as to save time and reduce the
atmospheric phase error. +en we conducted SBAS-InSAR
processing on the small-scale subsidence area to obtain the
subsidence results. Based on 24 scene Sentinel-1A images
from 10 January 2018 to 24 December 2018, the subsidence
location and small-scale subsidence rate of the Yellow River
Delta were obtained. Finally, based on precipitation data,
Landsat 8 image, highway vector, and building, we analyzed
the causes and potential risks. +rough the study in this
paper, some valuable conclusions can be drawn as follows:

(1) 9 subsidence areas were detected in the Yellow River
Delta. +ree of them had long-term surface subsi-
dence. +ey were located in Zhanhua District,
Xianhe Town, and Hongguang Village.

(2) +ere were 5 obvious subsidence areas in Zhanhua
District, and the maximum subsidence rate was
−135.21mm/a. +e surface subsidence in this area
was closely related to precipitation. Heavy rainfall
can reduce the amount of surface subsidence.

(3) +e maximum subsidence rate was −330.91mm/a in
Xianhe Town. It was worth noting that the subsi-
dence rate of part of the Shugang Expressway
exceeded −150mm/a. +e distance between the
subsidence area boundary and the expressway and
time almost met the linear function (R2 � 0.9739),
which indicated that the subsidence area was still
expanding without a slowing downtrend.

(4) +ere were three subsidence zones in Hongguang
Village, and the maximum subsidence rate was
−209.68mm/a. In 2018, the subsidence value of
Hongguang village buildings was small. However,
through the analysis of the profile line of subsidence,
the subsidence on both sides of the building posed a
great threat to its safety.

Overall, CNSBAS-InSAR accurately detected the sub-
sidence location of the Yellow River Delta, and then the
small-scale SBAS-InSAR processing was conducted to ob-
tain a millimeter-level surface subsidence value of the
subsidence area. +e method in this paper plays a positive
role in short time and efficient SBAS-InSAR monitoring.
And the analysis results can also provide a reference for local
construction and protection in Yellow River Delta, but this
study also has some limitations. Some error detection and
leak detection occurred when using CenterNet to detect
subsidence areas. +is requires continuous improvement of
the network and data set. In addition, the detection capa-
bility of CenterNet at different noise levels is also worth
exploring to meet the requirements of different spatial and
temporal baselines for SBAS-InSAR processing. We will
solve these above problems in the future work.
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Scientific Reports, vol. 11, no. 1, pp. 7704–7713, 2021.

[2] K. Pawluszek-Filipiak and A. Borkowski, “Integration of
DInSAR and SBAS techniques to determine mining-related
deformations using sentinel-1 data, the case study of
rydułtowy mine in Poland,” Remote Sensing, vol. 12, no. 2,
p. 242, 2020.

[3] L. Zhou, J. Guo, J. Hu et al., “Wuhan surface subsidence
analysis in 2015-2016 based on sentinel-1A data by SBAS-
InSAR,” Remote Sensing, vol. 9, no. 10, p. 982, 2017.

[4] G. Yao, C. Q. Ke, J. Zhang, Y. Lu, J. Zhao, and H. Lee, “Surface
deformation monitoring of Shanghai based on ENVISAT
ASAR and Sentinel-1A data,” Environmental Earth Sciences,
vol. 78, no. 6, p. 225, 2019.

[5] C. Pu, Q. Xu, K. Zhao et al., “Characterizing the topographic
changes and land subsidence associated with the mountain
excavation and city construction on the Chinese loess pla-
teau,” Remote Sensing, vol. 13, no. 8, p. 1556, 2021.

[6] X. Yang, G. Wen, L. Dai, H. Sun, and X. Li, “Ground sub-
sidence and surface cracks evolution from shallow-buried
close-distance multi-seam mining: a case study in bulianta
coal mine,” Rock Mechanics and Rock Engineering, vol. 52,
no. 8, pp. 2835–2852, 2019.

[7] Q. Xu, C. Guo, X. Dong et al., “Mapping and characterizing
displacements of landslides with InSAR and airborne LiDAR
technologies: a case study of danba county, southwest China,”
Remote Sensing, vol. 13, no. 21, p. 4234, 2021.

[8] S. Wu, Z. Yang, X. Ding, B. Zhang, and L. Zhang, “Two
decades of settlement of Hong Kong international airport
measured with multi-temporal InSAR,” Remote Sensing of
Environment, vol. 248, Article ID 111976, 2020.

[9] A. Yusupujiang, Y. Fumio, L. Wen, and K. Alimujiang,
“Monitoring of land-surface deformation in the karamay
oilfield, xinjiang, China, using SAR interferometry,” Applied
Sciences, vol. 7, no. 8, p. 772, 2017.

[10] N. Cenni, S. Fiaschi, and M. Fabris, “Monitoring of land
subsidence in the po river delta (northern Italy) using geodetic
networks,” Remote Sensing, vol. 13, no. 8, 2021.

[11] E. Carminati and G. Martinelli, “Subsi-dence rates in the po
plain, northern Italy: the relative impact of natural and an-
thropogenic causation,” Engineering Geology, vol. 66, no. 3-4,
pp. 241–255, 2002.

[12] P. A. Rosen, S. Hensley, I. R. Joughin et al., “Synthetic aperture
radar inter-ferometry,” Proceedings of the IEEE, vol. 88, no. 3,
pp. 333–382, 2000.

[13] M. Duan, B. Xu, Z. Li et al., “A new weighting method by
considering the physical characteristics of atmospheric tur-
bulence and decorrelation noise in SBAS-InSAR,” Remote
Sensing, vol. 12, no. 16, p. 2557, 2020.

[14] G. Xu, Y. Gao, J. Li, and M. Xing, “InSAR phase denoising: a
review of current technologies and future directions,” IEEE
Geoscience and Remote Sensing Magazine, vol. 8, no. 2,
pp. 64–82, 2020.

[15] Z. Wang, L. Li, Y. Yu, J. Wang, Z. Li, and W. Liu, “A novel
phase unwrapping method used for monitoring the land
subsidence in coal mining area based on U-Net convo-
lutional neural network,” Frontiers of Earth Science, vol. 9,
Article ID 761653, 2021.

[16] Z. Wang, J. Zhang, Y. Yu et al., “Monitoring, analyzing, and
modeling for single subsidence basin in coal mining areas

based on SAR inter-ferometry with L-band data,” Scientific
Programming, vol. 2021, Article ID 666, 10 pages, 2021.

[17] P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti, “A new
algorithm for surface deformation monitoring based on small
baseline differential SAR interferograms,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 40, no. 11,
pp. 2375–2383, 2002.

[18] Q. Zhu, P. Li, Z. Li, S. Pu, X. Wu, and N. Bi, “Spatiotemporal
changes of coastline over the yellow river delta in the previous
40 years with optical and SAR remote sensing,” Remote
Sensing, vol. 13, no. 10, 2021.

[19] Y. Liu, J. Liu, X. Xia et al., “Land subsidence of the yellow river
delta in China driven by river sediment compaction,” ;e
Science of the Total Environment, vol. 750, no. 6, Article ID
142165, 2020.

[20] B. Zhang, R. Wang, Y. Deng, P. Ma, H. Lin, and J. Wang,
“Mapping the yellow river delta land subsidence with mul-
titemporal SAR interferometry by exploiting both persistent
and distributed scatterers,” ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 148, pp. 157–173, 2019.

[21] F. Dou, X. Lv, and H. Chai, “Mitigating atmospheric phase
errors in InSAR stacking based on ensemble forecasting with a
numerical weather predictionmodel,” Remote Sensing, vol. 13,
no. 22, 2021.

[22] E. Havazli and S. Wdowinski, “Detection threshold estimates
for InSAR time series: a simulation of tropospheric delay
approach,” Sensors, vol. 21, no. 4, 2021.

[23] Z.Wang, L. Li, J. Wang, and J. Liu, “Amethod of detecting the
subsidence basin from InSAR interferogram in mining area
based on HOG features,” Journal of China University of
Mining & Technology, vol. 50, no. 2, pp. 404–410, 2021, in
Chinese.

[24] J. Bata, M. Dwornik, and A. Franczyk, “Automatic subsidence
troughs detection in SAR interferograms using circlet
transform,” Sensors, vol. 21, no. 5, 2021.

[25] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning
and deep learning,” Electronic Markets, vol. 31, no. 3,
pp. 685–695, 2021.

[26] D. Chen, H. Chen, W. Zhang et al., “Characteristics of the
residual surface deformation of multiple abandoned mined-
out areas based on a field investigation and SBAS-InSAR, a
case study in Jilin, China,” Remote Sensing, vol. 12, no. 22,
p. 3752, 2020.

[27] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[28] C. Ren, H. Jung, S. Lee, and D. Jeong, “Coastal waste detection
based on deep convolutional neural networks,” Sensors,
vol. 21, no. 21, 2021.

[29] M. Ibraheam, K. F. Li, F. Gebali, and L. E. Sielecki, “A per-
formance comparison and enhancement of animal species
detection in images with various R-CNN models,” A & I,
vol. 2, no. 4, pp. 552–577, 2021.

[30] L. G. Galvao, M. Abbod, T. Kalganova, V. Palade, and
M. N. Huda, “Pedestrian and vehicle detection in autonomous
vehicle perception systems-a review,” Sensors, vol. 21, no. 21,
p. 7267, 2021.

[31] G. Gao, G. Shi, and S. Zhou, “Ship detection in high-reso-
lution dual-polarization SAR amplitude images,” Interna-
tional Journal of Antennas and Propagation, vol. 2013, no. 3,
Article ID 519296, 5 pages, 2013.

[32] B. Liu, Y. Li, Q. Zhang, and L. Han, “Assessing sensitivity of
hyperspectral sensor to detect oils with sea ice,” Journal of
Spectroscopy, vol. 2016, Article ID 6584314, 9 pages, 2016.

16 Journal of Spectroscopy



[33] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,”
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