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Soluble solids content (SSC) is a vital evaluation index for the internal quality of apples, and NIR spectroscopy is the preferred
technique for predicting the SSC of apples. Due to the di�erences in fruits’ sizes, their SSC predictionmodels have poor robustness
and low prediction accuracy, so it is important to eliminate the e�ects brought by the di�erences in fruit sizes to improve the
accuracy of fruit sorting models. e NIR spectra of apples with di�erent fruit sizes were collected by applying NIR spectroscopy
online detection device, and after various preprocessing of the spectra, the partial least squares (PLS) models of apple SSC were
established, respectively, and then the modeling set in the apple fruit size group of 75mm–85mm was used to predict the
prediction set samples in the apple fruit size group of 65mm–75mm and 85mm–95mm, respectively. To better address the e�ects
of apple size di�erences, data fusion techniques were used to perform an intermediate fusion of apple fruit diameter and spectra,
�rstly, the competitive adaptive reweighting algorithm (CARS) and the continuous projection algorithm (SPA) were used to select
spectral variables and build their prediction models for apple SSC, respectively, and the results showed that the models built with
61 spectral variables selected by CARS had better performance, greatly reduced the amount of data involved in modeling,
e�ectively simpli�ed the model, and improved the stability of the model. e apple size variables were added to the wavelength
variables selected by CARS, and the data were normalized to establish a PLS model of apple SSC with the normalized spectral and
apple fruit diameter data, and the results showed that the size compensation model based on intermediate fusion had the best
prediction performance, with the prediction set Rp of 0.886 for fruit diameter of 65mm–75mm, RMSEP of 0.536%, and its
prediction set Rp was 0.913 and RMSEP was 0.497% for the fruit diameter of 85mm–95mm.erefore, adding the fruit diameter
variable to establish the size-compensated model of apple SSC can improve the prediction performance of the model.

1. Introduction

Apples are rich in many vitamins and acids inside, and
eating more apples can relieve fatigue and improve brain
vitality. Due to the increasing standard of living, the demand
for high-quality apples is also increasing. Near-infrared
spectroscopy online inspection technology has been applied
to detect the internal quality of fruits such as apples,
strawberries, citrus, pears, and watermelons as a fast,
nondestructive, and green inspection technology [1–4]. e
di�erence in fruit diameter of apples a�ects the performance
of the established SSC model. erefore, selecting a size-
compensated model of apple SSC is necessary.

Scholars at home and abroad have done a lot of research
on the internal quality of fruits by applying NIR spectros-
copy. Guo et al. [5] built an online detection system for apple
heart rot using NIR transmission, and the correlation co-
e¤cient of the prediction model they built was 0.92. Liu et al.
[6] created a NIR di�use re¥ection online detection model
for SSC of navel orange, and its prediction correlation co-
e¤cient was 0.90. Li et al. [7] built an apple online non-
destructive testing equipment using NIR spectroscopy and
established a prediction model for the SSC content of apple,
whose correlation coe¤cient reached 0.949 and the root
mean square error of the prediction set was 0.449. Han et al.
[8, 9] used NIR transmission spectroscopy combined with a
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band screening method to discriminate two diseases of
apple, and their discriminantmodel accuracy reached 95.7%.
Xu et al. [10] studied compared the effect of single- and
double-point detection on the accuracy of online detection
of apple SSC. *e double-branched fiber system proved
excellent robustness, while the single-branched fiber proved
perfect accuracy with a prediction set coefficient of 0.63. *e
studies conducted by the above et al. did not consider the
effect of apple fruit diameter on the model, and the per-
formance of the established model was low [7, 8, 10]. Liu
et al. [11] established the NIR spectrum detection model for
navel oranges of different sizes and found through the study
that the use of MSC and SNV pretreatment can solve the
influence of apple size differences and improve the accuracy
of the prediction model. Tian et al. [12] established a dis-
criminative model for apple core mold of different sizes in
NIR spectra. *ey found that the NIR spectrum intensity
and optical range were exponentially related and modified
the NIR spectra and the modified model. *e prediction set
discrimination accuracy reached 90.2%, and the method can
correct the effect of fruit size on the transmission spectrum
to improve the identification of diseased apples. Two pro-
totypes of online NIR systems were developed by McGlone
et al. [13], one is based on a time-delay integral spectrometer
and the other on a large-aperture spectrometer. *e latter
system has high accuracy, with a predicted root mean square
error of 4.1% after PLS correction. However, only apples
with a mean equatorial diameter of 76mm (SD� 2.8mm)
were selected for the experiment, and the effect of fruit size
on the detection of browning tissue was not investigated.
Qin and Lu [14, 15] quantified the light transmission in
apples using Monte Carlo simulations. *ey corrected the
diffuse reflectance spectrum according to the fruit size to
eliminate the light intensity distortion caused by the curved
fruit surface. In this paper, we applied NIR spectra. We
collected apple NIR spectra at different sizes to establish
various preprocessing models, mixed size models, and data
fusion-based apple size compensation models to compare
the advantages and disadvantages of the prediction per-
formance of the three models and find the best solution for
the effect of apple size differences on themodel performance.

2. Materials and Methods

2.1. Experimental Materials. A total of 480 apple samples,
including 160 of 65mm–75mm fruit diameter, 160 of
75mm–85mm fruit diameter, and 160 of 85mm–95mm
fruit diameter, were ordered from an orchard in Yantai,
Shandong Province. Upon arrival, the experimental spectra
of the apples were collected after wiping off the dust from the
surface of the apples with a wet paper towel in order to
prevent the scattering effect of the dust on the transmission
spectra and leaving the apples in a room with an ambient
temperature of 25°C for 24 hours.

2.2. Experimental Device and Spectrum Acquisition. *e
near-infrared spectrum acquisition device used in this paper
is a dynamic online diffuse transmission detection device

developed by our group [16], as shown in Figure 1. *e light
sources are two rows of halogen lamps, 5 in a row, 10 in total.
*e parameters of the halogen lamps are 12V and 100W,
which provide light sources for collecting spectrum infor-
mation in the diffuse transmission mode. *e apples are
placed on the fruit cups and transferred to the dark box by the
chain. *e halogen lamps illuminate the apples passing by,
and the light through the interior of the apples is received by
the optical fiber and transferred to the computer through the
spectrometer, which has a wavelength range of 350∼1150 nm,
and the exposure time of the samples is adjusted by the
supporting spectrum acquisition software. *e device was
preheated for 30min before the spectrum acquisition, the
detection speed of the device was set to 0.5m/s, and the
exposure time was 100ms. Each sample was collected four
times at the equatorial part, and the average spectrum was
taken as the experimental spectrum of that sample.

2.3. Parameter Measurement. *e SSC content of apple
samples was measured using a refractive digital saccha-
rimeter (PR-101a, Japan). *e measurement process was as
follows: a fruit knife was used to cut off part of the flesh of the
spectrum collection site on the four sides, and the juice was
squeezed out of the flesh and dropped on the measurement
position of the saccharimeter to measure the saccharimetric
value of this side of the apple. *e average SSC value of the
four sides was taken as the SSC value of the apple sample.
*e fruit diameter at the equatorial position of the apple was
measured using a digital vernier caliper (Mitutoyo-500,
Japan). Each apple was measured four times at the equatorial
position and the average fruit diameter was taken as the fruit
diameter of that fruit.

2.4. Data Processing. *e Kennard-Stone (K-S) algorithm
was first applied to classify the collected apple spectra. *e
collected spectrum data were imported using unscrambler
software to establish the SSCmodel of apples.*e prediction
set correlation coefficient Rp judged the performance of the
model and prediction set root mean square error value
(RMSEP). *e formulae for RP and RMSEP are shown in
equations (1) and (2), respectively.

Rp �
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where n is the number of samples in the prediction set, yi is
the predicted value of the i-th sample in the prediction set, yi
is the true value of the i-th sample in the prediction set, and
yi is the average of the true values of all samples in the
prediction set.

PLS is the most commonly used multivariate linear
correction technique, which is widely used in NIR spec-
troscopy to predict the internal quality of fruits quantita-
tively, and the principle of PLS prediction is shown in
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i�1
βiλi + B, (3)

where Y is the model prediction, i denotes the i-th wave-
length point, βi denotes the regression coe¤cient value
corresponding to the i-th wavelength point, λi is the spec-
trum energy value corresponding to the i-th wavelength
point, n is the number of wavelength points, and B is the
intercept.

3. Results

3.1. Analysis of Apple SSC and Measurement Results. e
experimental samples of 480 apples were classi�ed separately
using the K-S algorithm for the modeling set and the pre-
diction set, 160 samples under each fruit diameter group, of
which 120 were in the modeling set and 40 in the prediction
set, and the SSC measurements of apples are shown in
Table 1.e SSC content range of the modeling set was more
comprehensive (9.05–16.4 Brix) than that of the prediction
set (9.65–14.85 Brix), which could achieve a better prediction
for the apple SSC model.

3.2. Analysis of NIR Spectrum Characteristics of Apples with
Di�erent Fruit Diameters. e average spectra of apples in
the three fruit diameters were taken and compared with the
spectra of three di�erent fruit diameters, as shown in Fig-
ure 2. e peaks at 640 nm, 710 nm, and 800 nm and the
troughs at 675 nm and 755 nm are mainly related to the
multiplicative stretching vibrations of C-H and O-H bonds
at 710 nm [17, 18].e peaks at 805 nm aremainly associated
with the secondary multiplicative absorption of C-H and
N-H bonds [19, 20].

e energy spectrum of apples with a fruit diameter of
65mm–75mm is higher than apples with a fruit diameter of
75mm–85mm and 85mm–95mm. is phenomenon is
because the energy carried by near-infrared light inside the
apple decays as the light range increases. At a given
wavelength, the extinction rate of light entering the apple
interior is approximated as an exponential decay function
[21], which can be �tted as

I � I0 exp −ued( ), (4)

where I0 is the light intensity entering the interior of the
apple, I is the light intensity received by the �ber optic probe
below the apple, ue is the extinction coe¤cient, and d is the
distance from the point where the light enters the apple to
the point where the light exits the apple.

In the NIR online detection device, as in Figure 1, d in
formulae (3) is the fruit diameter of the apple. As the fruit
diameter increases, the energy of the light is absorbed more
and more inside the apple, resulting in a lower energy value
of its collected NIR spectrum. It is thus speculated that
di�erent fruit diameters of the apple will cause di�erences
in its NIR spectrum, which will impact the performance of
the apple SSC prediction model built from the NIR
spectrum.

3.3. Apple Soluble Solids Content PredictionModel for Each of
the �ree Fruit Diameters. e PLS was used to build the
apple SSC prediction model, and the number of LVs was set
to 1∼20 to prevent the model from over�tting or under-
�tting. e spectra were pretreated by MSC, SNV, and S-G
smoothing alternatively, and the results of the PLS model of
sugar content built for the three groups of fruit diameter
apples are shown in Table 2.

e results showed that the NIR spectra of apples with
fruit diameters of 65mm–75mm were treated with SNV.
eir model predictions were the best, with Rp of 0.885 and
RMSEP of 0.771%. eir scatter diagrams are shown in
Figure 3(a).eNIR spectra of apples with fruit diameters of
75mm–85mm were treated with SNV, and their model
predictions were the best, with Rp of 0.959 and RMSEP of
the scatter diagram shown in Figure 3(b). e NIR spectra of
apples with the fruit diameter of 85mm–95mm were best
predicted by SNV, with Rp of 0.937 and RMSEP of 0.421%,
and the scatter diagram is shown in Figure 3(c). e
modeling results of the original spectra at the three fruit sizes
and the modeling results after SNV pretreatment show that
SNV could solve the problem of poor performance of its
sugar prediction model due to di�erences in apple size to
some extent, because SNV, as a pretreatment method that
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Figure 1: NIR di�use transmission online detection device.
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can eliminate sample particle size, surface scattering, and
light range variation [22], can solve the e�ect of spectrum
scattering caused by uneven sample size.

3.4. Fruit Diameter Group 75mm–85mm Predicted Other
Fruit Diameter Group SSC Prediction Model. As shown in
Table 2, the modeling set of apple SSC model with fruit
diameter 75mm–85mm had better performance than the
other fruit diameter groups, so the modeling set with fruit

diameter 75mm–85mm was selected as the modeling set
of the hybrid prediction model to investigate the per-
formance of the apple SSC prediction model when the
apple fruit diameter in the modeling set was di�erent from
the apple fruit diameter in the prediction set. e mod-
eling set in the fruit diameter 75mm–85mm group was
used to predict the prediction set in the fruit diameter
65mm–75mm and fruit diameter 85mm–95mm groups.
e prediction model e�ects are shown in Table 3. e
scatter diagrams are shown in Figures 4(a) and 4(b). e

Table 1: e statistical results of SSC of apple.

Data set Min/Brix Max/Brix Mean/Brix Standard deviation

65mm–75mm
All 160 9.8 17.2 13.8 1.62

Calibration set 120 9.8 17.2 13.8 1.24
Prediction set 40 10.9 16.7 13.8 1.60

75mm–85mm
All 160 8.3 17.2 13.4 1.78

Calibration set 120 8.3 17.2 13.2 1.73
Prediction set 40 8.7 16.5 12.73 1.92

85mm–95mm
All 160 10.9 15.3 13.3 0.93

Calibration set 120 10.9 15.3 13.3 0.88
Prediction set 40 11.3 15.3 13.3 1.06
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Figure 2: Near-infrared spectra of three fruit sizes of apples.

Table 2: Modeling results of apple SSC modeled for each of the three fruit diameters.

Fruit diameter range Preprocessing methods LVs Rc Rmsec/% Rp RMSEP/%

65mm–75mm

Raw 12 0.938 0.562 0.879 0.782
MSC 13 0.921 0.664 0.859 0.789
SNV 13 0.958 0.412 0.885 0.771

S-G smoothing 12 0.912 0.667 0.878 0.789

75mm–85mm

Raw 12 0.976 0.375 0.947 0.643
MSC 13 0.988 0.262 0.957 0.593
SNV 14 0.989 0.257 0.959 0.578

S-G smoothing 13 0.968 0.434 0.948 0.635

85mm–95mm

Raw 12 0.962 0.242 0.918 0.493
MSC 10 0.933 0.318 0.932 0.482
SNV 10 0.956 0.295 0.937 0.421

S-G smoothing 12 0.931 0.322 0.918 0.492
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results showed that the prediction model of apple SSC was
poor when the di�erence between the modeling set and
the prediction set of apple fruit diameter was signi�cant,
and compared with the modeling results of separate
groups of fruit diameter in Table 2, the prediction set of
apple SSC model for fruit diameter 65mm–75mm Rp
decreased from 0.879 to 0.779 and RMSEP increased from
0.782% to 0.877%. e prediction set Rp decreased from
0.918 to 0.745 and RMSEP was risen from 0.493% to
0.914% for the model of the SSC of apples with
85mm–95mm fruit diameter. e di�erence in apple size
had a signi�cant in¥uence on the prediction model of the
SSC of apples. In the actual fruit sorting line, the size of
apples can vary greatly, which can lead to the poor sorting

performance of the fruit sorting model, so size com-
pensation of the apple SSC model is needed to increase the
prediction performance of the sorting model.

3.5. Prediction Model of Soluble Solids Content under Apple
Size Compensation

3.5.1. Analysis of the Relationship between Apple Size and
Spectrum. Apples with fruit diameters of 65mm, 67mm,
69mm, 71mm, 73mm, 75mm, 77mm, 79mm, 81mm,
83mm, 85mm, 87mm, 89mm, 91mm, 93mm, 95mm were
taken separately to establish the relationship between their
fruit diameter and the light intensity of their collected NIR

Table 3: Results of the prediction model for SSC of apples in the remaining fruit size groups predicted from 75mm–85 mm fruit diameter.

Modeling set fruit diameter Predicted fruit set diameter LVs Rc Rmsec/% Rp RMSEP/%

75mm–85mm 65mm–75mm 9 0.918 0.686 0.779 0.877
85mm–95mm 13 0.958 0.412 0.745 0.914
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Figure 4: Scatter diagram of SSC prediction model. (a) 75mm–85 mm fruit size group predicted 65mm–75 mm fruit size group.
(b) 75mm–85 mm fruit size group predicted 85mm–95 mm fruit size group.
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Figure 3: Predicted scatter diagram for each fruit size group. (a) Fruit diameter 65mm–75mm, (b) fruit diameter 75mm–85mm, and
(c) fruit diameter 85mm–95mm.
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spectra at 750 nm, as shown in Figure 5, from which it can be
seen that the size of the apple will have an e�ect on its NIR
spectrum and thus will have an e�ect on the performance of
the apple SSC prediction model established by its NIR
spectrum, so it is necessary to compensate the size of the
apple SSC model to increase the prediction performance of
the sorting model.

3.5.2. Mixed Apple Size Soluble Solids Content Prediction
Model. From Table 3 and Figure 5, it is known that apple
size di�erences will a�ect its NIR spectrum, so it is necessary
to build an apple size compensation model to solve the
in¥uence of apple size di�erences on the model. 120 rep-
resentative apple samples from each fruit size group were
selected as the modeling set of the mixed apple size SSC
prediction model using the K-S algorithm, and 40 apple
samples were selected as the prediction set. e PLS pre-
diction models for SSC of di�erent apple sizes were con-
structed, the model e�ects are shown in Table 4, and the
scatter diagrams are shown in Figure 6.e results show that
the prediction models established for mixed apple sizes �t
better, the model performance is better, the correlation
coe¤cient Rp is signi�cantly improved, the root mean
square error value RMSEP of the prediction set is signi�-
cantly reduced, and the model stability is signi�cantly im-
proved compared with the prediction models established in
Table 3. e model stability was signi�cantly improved, and
the in¥uence of the model on the SSC of apple due to apple
size could be reduced.

As shown from Table 4, the constructed PLS model of
mixed apple size SSC has improved its model prediction
performance relative to Table 3 when the modeling set and
prediction set of fruit diameter is di�erent. Still, its pre-
diction set root mean square error value RMSEP is as high as
0.911%. In the actual fruit sorting line, such a high error
value will lead to inaccurate apple quality sorting. Add the
size variable, and then build its SSC prediction model. Its
model prediction results are shown in Table 5.

As shown in Table 5, the model prediction performance
of the mixed apple size SSC prediction model improved after
adding the size variable. e root means square error value
RMSEP of the prediction set decreased from 0.911% to
0.822%, but the improvement of its size variable on the
model performance was negligible. In the apple mixed size
solids content model, its modeling set containing each group
of the e�ect of size variables was diluted in the mixed size
solids content model, resulting in an insigni�cant impact.

3.5.3. Development of a Size-Compensated Soluble Solids
Content Prediction Model for Apples. In this study, the e�ect
of apple fruit size on the SSC model of apple in NIR
spectroscopy was investigated by the data fusion technique.
e main objective of this technique is to optimize the
amount of information on the tested sample metrics through
the synergistic e�ect between the individual assays of the
same sample [23], which consists of three levels of fusion:
primary, intermediate, and advanced fusion. Primary fusion
is the fusion and modeling of the raw data from multiple

assays; intermediate fusion is the screening of the e�ective
variables of each assay and then data fusion and modeling;
advanced fusion is the modeling of each assay independently
and then the decision making after considering the results of
each model. In recent years, data fusion techniques have
been applied in several �elds, such as metabolomics [24, 25],
artwork identi�cation [26, 27], dye classi�cation [28], and
food testing [29, 30]. In this study, a preliminary analysis of
the e�ect of apple fruit diameter on the visible/near-infrared
spectrum fruit nondestructive inspection model was con-
ducted using a mid-level data fusion technique, the technical
¥ow chart shown in Figure 7.

CARS and SPA were used to select the spectrum vari-
ables of the apple modeling set in the fruit diameter of
75mm–85mm to eliminate useless variables, further opti-
mize the prediction model’s performance, and improve the
detection speed of the model. PLS modeling was performed
in two cases: (1) PLS models of apple SSC were established
with the wavelength variables selected by CARS or SPA. (2)
e wavelength variables selected by CARS or SPA were
fused with their corresponding apple size data and nor-
malized to establish the PLSmodel of apple SSC.e selected
spectrum wavelength points of CARS and SPA are shown in
Figures 8(a)) and 8(b), and the results of the established PLS
model of apple SSC are shown in Table 6.e results showed
that most of the wavelength points selected by CARS and
SPA were located at 650 nm–850 nm. Most of them were at
the peaks and valleys, indicating a large amount of infor-
mation on the SSC of apples in this spectrum region. e
poor performance of the SSC model built with the screened
wavelengths after using SPA wavelength screening was
caused by the fact that the SSC has multiple representations
on the spectrum, and the wavelength selection was per-
formed to remove a lot of useful information, which led to
the poor performance of the model. Among them, the Rp of
the model prediction set established by SPA for fruit di-
ameter of 65mm–75mmwas 0.744 and RMSEP was 1.340%;
the Rp of the model prediction set for fruit diameter of
85mm–95mm was 0.665 and RMSEP was 1.942%. Using
PLS to model the wavelength variables selected by CARS, the
Rp of the model prediction is set for fruit diameter of
65mm–75mm.e number of wavelength variables used in
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Figure 5: Diagram of apple fruit diameter versus spectrum.
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the model decreases from 1044 to 61, e�ectively simplifying
the model and improving its stability.

e apple size variables were added to the wavelength
variables selected by CARS, and the data were normalized
because the apple size data and spectrum data units do not
coincide [31]. e e�ect of data normalization is to eliminate
the impact of data dimensionality and make the data metrics
comparable, which is essential for model building [32]. A PLS
model of apple SSC with the intermediate level fusion of
spectrum and apple fruit diameter data after normalization was
established to show the model performance in Table 7. e
model scatter diagrams are shown in Figures 9(a) and 9(b).

As shown in Table 7, compared with the PLS model of
apple SSC built with CARS selected wavelength variables,
the developed size-compensated intermediate fusion model
had an improved prediction set Rp from 0.854 to 0.886 and
a reduced RMSEP from 0.611% to 0.536% for fruit diameter
of 65mm–75mm, and its prediction set Rp from 0.863 to
0.913 and a reduced RMSEP from 0.586% to 0.497% for
fruit diameter of 85mm–95 mm improved to 0.913 and
RMSEP decreased from 0.586% to 0.497%. Compared with
the mixed fruit size model, its prediction set Rp had a
signi�cant improvement and RMSEP had a considerable
decrease. e results indicate that apple size in¥uences the

Table 5: PLS model results for SSC of mixed apple sizes after adding size variables.

Modeling set sample size Prediction set sample size LVs Rc Rmsec/% Rp RMSEP/%
120 40 11 0.943 0.711 0.862 0.822
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Figure 7: Flow diagram of data fusion technology.

Table 4: PLS model results for SSC of mixed apple sizes.

Modeling set sample size Prediction set sample size LVs Rc Rmsec/% Rp RMSEP/%
120 40 11 0.932 0.869 0.853 0.911
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Journal of Spectroscopy 7



Table 7: PLS model for SSC of apples with intermediate data fusion.

Sample selection
algorithm

Modeling set fruit
diameter

Predicted fruit set
diameter

Number of
variables Rc Rmsec/% Rp RMSEP/%

CARS 75 mm–85 mm 65mm–75 mm 61 0.967 0.440 0.886 0.536
85mm–95 mm 0.967 0.440 0.913 0.497
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Figure 9: Intermediate fusion model scatter diagram. (a) Fruit diameter 75mm–85 mm predicted fruit diameter 65mm–75 mm, and
(b) fruit diameter 75mm–85 mm predicted fruit diameter 85mm–95mm.
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Figure 8: Distribution of the selected wavelength points. (a) CARS and (b) SPA.

Table 6: Results of the models built by CARS and SPA.

Sample selection
algorithm

Modeling set fruit
diameter

Predicted fruit set
diameter

Number of
variables Rc Rmsec/% Rp RMSEP/%

CARS 75mm–85mm 65mm–75 mm 61 0.932 0.568 0.854 0.611
85mm–95 mm 0.932 0.568 0.863 0.586

SPA 75mm–85mm 65mm–75 mm 16 0.815 0.942 0.744 1.340
85mm–95 mm 0.815 0.942 0.665 1.942
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performance of the apple SSC model, and adding fruit
diameter variables to establish a size-compensated model of
apple SSC can improve the prediction performance of the
model.

4. Conclusion

*is paper investigated the effect of apple fruit diameter
differences on its SSC prediction model. *e results showed
that apple size differences will have an impact on its spec-
trum, and apple size and its spectrum light intensity satisfy
the relationship of the logarithmic function, which will
eventually have an effect on the prediction performance of
the PLS model of apple SSC established by it. For this reason,
the solution methods of different size differences and dif-
ferent preprocessing models, and apple fruit size were
studied. We found that SNV is a pretreatment method that
can eliminate sample particle size, surface scattering, and
light range variation. It can solve the poor performance of
the prediction model of SSC due to the difference in apple
size to a certain extent. *e correlation coefficient Rp was
significantly improved; the root means the square error of
the prediction set RMSEP was reduced considerably. *e
stability of the model was dramatically enhanced, which
could reduce the influence of apple size on the model of
apple SSC. *e prediction set Rp for fruit diameter
65mm–75 mm is 0.886 and RMSEP is 0.536%, and the
prediction set Rp for fruit diameter 85mm–95 mm is 0.913
and RMSEP is 0.497%, which is the best model performance.
*erefore, adding the fruit diameter variable to establish the
size compensation model of apple SSC can improve the
model’s prediction performance and meet the requirements
of online detection of the SSC of apples with different fruit
diameters.
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