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+is paper introduces a method to detect the content of sucrose, an adulterant of red ginseng, based on terahertz spectroscopy.
Experiments were carried out on red ginseng with 6 levels of adulterated concentrations using terahertz time-domain spec-
troscopy (THz-TDS). We separately extracted the information of the terahertz spectral curve by principal component analysis
(PCA) and Monte Carlo uninformative variable elimination (MCUVE) and then separately performed quantitative analysis by
partial least squares regression (PLSR) and support vector regression (SVR). Because the nonlinear line factor in the terahertz
spectral curve of red ginseng samples is considered, theMCUVE-SVR has high correlation coefficient (>0.99) and ratio prediction
to deviation (>7.4), low root means square error of deviation (<1.2%), and Bias (<0.05%).+e results prove thatMCUVE-SVR can
be regarded as an ideal quantitative analysis method in the detection of sucrose incorporation in red ginseng by
terahertz spectroscopy.

1. Introduction

In Asia, red ginseng is a kind of famous herb that is popular
among people because of its positive effects on cognitive
ability [1], anti-ageing [2], anti-oxidation [3], anti-inflam-
matory [4], anti-obesity [5], and improving immunity [6].
However, high-quality red ginseng is not easy to process.
First of all, qualified fresh ginseng needs to be picked out,
washed, and then steamed at a specified time and dried into
red ginseng finally [7]. In order to obtain more benefits,
some unlawful businessmen add cheap sucrose during the
processing of red ginseng, which can increase the weight and
improve the color [8]. +erefore, an effective method to
detect whether red ginseng is adulterated is necessary to
ensure its quality.

So far, the most commonly used methods for the detection
of sucrose are chemical analysis [9] and high-performance

liquid chromatography (HPLC) [10–12]. At the same time,
there are some othermethods suitable for quantitative analysis,
such as liquid chromatography–mass spectrometry (LC-MS)
[13], nuclear magnetic resonance (NMR) [14], and capillary
electrophoresis (CE) [15]. All these methods can obtain ac-
curate and objective results but often require additional
chemical consumption and complex operations. +e result is
not only the rising cost and time consumption but also the
detected red ginseng can no longer be used. In East Asian
countries, precious red ginseng is in great demand, so a rapid
and nondestructive detection technology is valuable.

From many research reports, terahertz time-domain
spectral systems (THz-TDS) have been applied to research
on drugs [16], food safety [17], materials [18], and bio-
medicine [19, 20], and the results show that terahertz time-
domain spectroscopy technology is a fast, nondestructive,
and nonpolluting detection technology.
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For the analysis of component content of terahertz
spectroscopy, support vector regression (SVR) and partial
least-squares regression (PLSR) are the two most commonly
used algorithms, and they are used in applications such as
evaluation of peroxide value in peanut oils [21], detection of
maltose in wheat grains [22], and detection of octogen
content [23]. +e Monte Carlo uninformative variable
elimination (MCUVE) was originally an effective infor-
mation extraction algorithm for the application of PLSR
[24, 25]. To obtain a potential ideal way for the detection of
adulteration of red ginseng, we further consider the non-
linearity and the removal of invalid data on the basis of
studying SVR and combined SVR with MCUVE.

2. Materials and Methods

2.1. Sample Preparation. Red ginseng in dried form was
purchased from Tongrentang Co., Ltd. (Beijing, China), and
the sucrose was purchased from Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). +e purity of su-
crose is above 99.9%.

Since herbs are not a single component and the spatial
distribution of components is uneven, the sample needs to
be ground into powder to mix evenly. Because there is no
chemical reaction in the testing process, the tested samples
will not lose their medicinal value. +erefore, the detection
method based on terahertz spectroscopy is considered
nondestructive.

+e red ginseng was crushed into powder with a grinder
(DFX-X200, Wenzhou Dingli Medical Instrument Co.,
China), while the sucrose was ground into powder with a
pestle and mortar. All powders were sieved with 200 meshes
and then placed in a drying box, where they were dried at a
temperature of 50°C for two hours to remove water. Each
sample is made independently. +e powders of red ginseng
were added with sucrose powders and thenmixed evenly at a
variety of concentrations of 5%, 10%, 15%, 20%, 25%, and
30%. +e appearance change of red ginseng is obvious when
the sucrose concentration is more than 30% and can be easily
identified by observation. After that, the powders were made
into circular tablets with a diameter of 13mm and a
thickness of 1.2mm under a pressure of 12MPa by using a
hydraulic press (PC-15, Tianjin Jingtuo Instrument Tech-
nology Corp., China). +e weight of each sample is about
220mg. +ere are 36 samples made for each concentration.
For each sucrose content, samples were randomly selected in
the form of sampling without replacement, until 24 samples
were selected. +ese 24 samples were put into the training
set, and the remaining 12 samples were used as the testing
set. Repeat this operation until each sucrose content has
been sampled.+en, the training set has 144 samples and the
testing set has 72 samples.

2.2. Instrumentation. +e terahertz time-domain spectral
system (THz-TDS) used in this study is composed of a
terahertz time-domain spectrometer (Z3, Zomega Terahertz
Corp., USA) and a femtosecond laser (FemtoFiber pro NIR,
TOPTICA Photonics Inc., Germany).+e structure is shown

in Figure 1. When the laser is working, it generates laser
pulses with a repetition frequency of 82Hz, a pulse width of
about 100 fs, a wavelength center of 780 nm, and an average
power of nearly 100mW. +e laser beam is divided into a
pump beam and a probe beam through a cube beam splitter
(CBS). +e terahertz pulse generated by the pump beam
irradiating the photoconductive antenna penetrates the
sample under test. After passing through the delayed optical
path, the probe light and the terahertz pulse pass through the
ZnTe crystal, a quarter-wave plate (QWP), and a polariza-
tion-beam-splitter (PBS) and then irradiate on the detector.
+e beam path of the terahertz time-domain spectrometer is
placed in a closed box and injected with dry air. To ensure
the accuracy of the experiment, the terahertz spectrum of the
samples was collected only when the humidity in the box was
less than 1% and the indoor temperature was 25°C.

2.3. Data Acquisition. +e dry air is tested to obtain the
reference signal and the samples are tested to obtain the
sample signals. +e signals are calculated by fast Fourier
transform (FFT), and the reference spectrumEref(ω) and the
sample signal spectrum Es(ω) are obtained, respectively. ω is
the sample frequency. Finally, the terahertz absorption
spectrum can be calculated, which can reflect the absorption
level of the sample. +e calculation formula is shown in the
following formula:

absorbance(ω) � − log10
Es(ω)

Eref(ω)





2

. (1)

3. Modeling Approach

3.1. Principal Component Analysis (PCA). +e terahertz
absorption spectrum of the samples contains a wealth of
information, which also contains redundant useless infor-
mation. +erefore, an algorithm that retains effective in-
formation as much as possible and can simplify the data is
needed. PCA is the most widely used dimensionality re-
duction algorithm. By transforming the coordinate system,
the algorithm projects the high-dimensional original data
into the low-dimensional data space and ensures the
maximum variance of the reserved data. Generally speaking,
the first few important principal components already con-
tain most of the information. PCA simplifies the original
data, which helps reduce the computational complexity of
the model, and the accuracy of the model is almost unaf-
fected [26].

Ni et al. studied the selection basis of principal com-
ponents (PCs) [27]. Firstly, the standard deviation (SD) is
calculated as follows:
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where εij is the squared residual of an object i on principal
component j, n is the number of objects, p is the number of
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data in the detection band, andm is the number of principal
components.

+en, the noise level (NL) of the instrument is calculated.
It can be calculated using the following formula by mea-
suring the sample q times:

NL �
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k�1 
p

l�1 xkl − xl( 
2

p(q − 1)



, (3)

where xkl is the absorption spectrum, k is the number of
scans, l is the wavelength, and xl is the average absorption
spectrum at the wavelength l, which is calculated as
follows:

xl �
1
q



q

k�1
xkl. (4)

In order to determine the upper limit on the number of
principal components, the cut off to determine maximum
number of PCs is defined as

r �
S.D.

NL
. (5)

When the r value is 1.5, the corresponding number of
PCs is considered ideal.

3.2. PLSR. Owing to its good analytical performance and
robustness, partial least squares regression PLSR has become
very popular in multiple regression analysis applications
[28, 29]. +is multiple regression analysis methods con-
structs the relationship between the predicted concentration
and the spectral matrix, as shown below

y � Xb + e, (6)

where y is the concentration matrix, X is the spectrum
matrix, b is the regression coefficient vector, and e is the
error vector [30].

PLSR can perform regression analysis on multiple var-
iables, with low computational complexity and fast data
processing speed. +e algorithm has more advantages when
the data features are relatively linear. For the nonlinear
situation, the partition and variable selection should be
optimized; otherwise, the prediction accuracy will be
affected.

3.3. Monte Carlo Uninformative Variable Elimination
(MCUVE). +e UVE (uninformative variable elimination)
algorithm is a typical variable screening method, which can
eliminate uninformative variables and reduce errors caused
by these variables. Based on the PLS model, the UVE al-
gorithm adds a certain number of random variable matrices
and obtains a regression coefficient matrix B by using leave-
one-out cross-validation. +e stability Cj of the coefficient B
is defined as

Cj �
mean Bj 

std Bj 
, for j � 1, . . . , P, (7)

where mean(Bj) is the average value of the regression co-
efficient Bj and std(Bj) is the variance of the regression
coefficient Bj. Let Cartif be the maximum value obtained by
the artificial variable. When ABS(Cj) is less than
ABS(Cartif ), the variable is eliminated [31].

Monte Carlo cross-validation can be used in the original
UVE algorithm to replace leave-one-out cross-validation.
+is requires multiple training and verification of the model,
and each time the data is randomly divided into a training set
and a verification set. Finally, all the results are averaged as
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Figure 1: Schematic diagram of THz-TDS spectrometer.
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the verification error of the model. Making such changes
reduces data dependence and improves the stability of the
model [32].

3.4. SVR. SVR is also a very common regression analysis
model. Different from the SVM classification method, SVR
constructs the optimal hyperplane and then adds the vari-
able ε to form the upper and lower planes parallel to the
hyperplane. +e two planes sandwich the sample points in
the middle while minimizing the distance between the two
planes. With the help of kernel functions, the algorithm
maps low-dimensional spatial data to high-dimensional
spatial data, which can solve the nonlinear problem between
independent variables and dependent variables. Due to its
powerful linear and nonlinear regression analysis capabil-
ities, SVR regression methods have been successfully used in
some applications [33, 34].

In this paper, radial basis function (RBF) was used as the
kernel function of the SVR model and is expressed as
follows:

κ xi, yi(  � exp −
xi − yi

����
����
2

c
2

⎛⎝ ⎞⎠, (8)

where xi is the point in space and yi is the center of the
kernel function. +e genetic algorithm, an excellent opti-
mization algorithm commonly used in SVR, was used to
search the optimal penalty factor C of the SVRmodel and the
optimal parameter c of RBF.

3.5.ModelValidation. +eperformance of model prediction
is generally determined by the correlation coefficient (R), the
root mean square deviation (RMSD), the Bias, and the ratio
of prediction to deviation (RPD). +eir definitions are as
follows:
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Here, N is the number of samples, yi is the reference
concentration of the i-th sample, y is the average of the
reference concentration, yi is the predicted concentration of
the i-th sample, and y is the average of the predicted
concentration.

We used 10-fold cross-validation to obtain the vali-
dation set from the training set, whose correlation coeffi-
cient and the root mean square error indicate the
performance of the model and are expressed as Rv and

RMSDV, respectively. Correspondingly, the correlation
coefficient and root mean square error of the testing set
indicate the generalization ability of the model and are
expressed as Rp and RMSDP, respectively. +e closer the R
value less than 1 and the smaller the root mean square
error, the better the model.

In the final evaluation of the model, in addition to R and
RMSE, Bias and RPD will also be combined. Bias indicates
the overall deviation between the predicted value and the
actual value, so the smaller the number, the better. RPD
indicates the predictive ability of the model. When the RPD
is greater than 3.5, the model is considered ideal. If the value
of RPD is greater, the model is considered better.

4. Results and Discussion

4.1. Spectral Analysis. +e time-domain spectra of red
ginseng and sucrose samples are obtained by THz-TDS and
are shown in Figure 2. +e corresponding absorbance
spectra in the band of 0.3–1.6 THz were calculated from the
time-domain spectra and are presented in Figure 3. It could
be seen that four chief absorption peaks of red ginseng could
be found at 1.03, 1.17, 1.13 and 1.45 THz, while the chief
absorption peak of sucrose was at 1.47 THz. According to
Lambert–Beer’s law, absorbance is proportional to the
concentration and thickness of the sample. In the case of our
quantitative analysis, the thickness is fixed, so what we are
interested in are the changes in the absorbance curves. As
shown in Figure 4, when red ginseng and sucrose are mixed
in different ratios, the main absorption peaks can also be
observed and change according to the content. However, a
large number of curves and the mutual interference between
curves make it impossible to find the change law through
observation. In order to obtain the content ratios, pattern
recognition methods are usually used to establish an analysis
model.

4.2. Feature Selection. In order to deal with redundant
information and computation, it is necessary to reduce the
dimension of spectral data. Before dimensionality reduc-
tion, in order to eliminate the influence of dimension and
value range differences between indexes, the Z-score was
used for the standardization of spectral data. +en, the
spectral curves were transformed into sets of linearly un-
correlated variables by PCA, and the results are shown in
Figure 5. According to Ni et al. [27], in order to achieve a
balance between reducing interference and information
loss, the value of r in formula (5) is set to 1.5, and the
calculated number of PCs is 30.

Another dimension reduction method used in this paper
is MCUVE. +is method tries to remove the invalid in-
formation carried in the spectral data, reduces the data scale
within a reasonable limit, and does not affect the amount of
effective information carried by the data. Figure 6 shows the
results of the stability of subsets of spectral bands selected by
MCUVE. In order to compare with PCA, we selected the first
30-dimensional data with the highest stability to establish
the model.
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4.3. Quantitative Determination. +e quantitative analysis
results of different models are shown in Table 1. +e rela-
tionship between the observed sucrose content and the
results predicted by each regression model is shown in
Figure 7.+e accuracy of the models is judged by comparing
RMSDV, Rv, RMSDP, and Rp.

According to Beer–Lambert’s Law, it can be considered
that the spectrum of the mixture is the linear superposition
of the spectra of each component. However, Beer-
–Lambert’s Law is a limited law, and there are some factors,
such as interaction between components of the mixture and
the disturbance of stray light, that invalidate it in the actual
spectrum acquisition process. As a result, the nonlinear
factors of the herbs’ terahertz spectra are often not

negligible. +eoretically, SVR, a method with strong
nonlinear analysis ability, can predict the sucrose content
in red ginseng more accurately than PLSR, a linear re-
gression method. +e results show that SVR obtains better
prediction results than PLSR, which is manifested in larger
Rp and smaller RMSDP. Meanwhile, PLSR has a larger Rv
and a smaller RMSDV than SVR. Better training set
analysis results and worse testing set analysis results mean
that PLSR has less fit.

In the case of combination with PCA, Rv and Rp of
PLSR remain at 0.988 and 0.985, respectively. RMSDV
increased by 0.015%, and RMSDP decreased slightly. +is
shows that compared with a single PLSR, the overfitting of
PCA-PLSR is not improved and the prediction ability is
also not enhanced. Combined with the same feature
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extraction method, Rv of SVR increased from 0.987 to
0.989 and Rp remains at 0.987. RMSDV and RMSDP
decreased in varying degrees. It can be seen that the noise
reduction effect on the terahertz spectrum of red ginseng
samples is not obvious, and the improvement brought by
PCA-SVR is very limited.

While PCA reduces noise, effective information will also
be reduced. When the advantages brought by noise re-
duction cannot fill the loss brought by effective information
reduction, it will have an adverse impact on the prediction
ability of the model. After replacing PCA with MCUVE,
both PLSR and SVR achieved better performance. Especially,
with the combination of SVR and MCUVE, RMSDV and
RMSDP are also reduced to the lowest error values of these
models Rv increased from 0.989 to 0.993, and Rp increased
from 0.987 to 0.990; RMSDV decreased from 1.272% to
0.999%, and RMSDP decreased from 1.412% to 1.172%.+is
shows that the effective information extraction of red gin-
seng terahertz spectrum by MCUVE is better than PCA,
which is due to the fact that MCUVE can remove the noise
signal without affecting the amount of effective information
carried by the data.

In order to visualize the evaluation of the model, ob-
served (in the y-axis) vs. predicted (in the x-axis) (OP)
regressions were used, and slope and intercept parameters
were compared against the 1:1 line [35]. +e evaluation
graphs are shown in Figure 7. From the prediction of each

sucrose content, the prediction result of MCUVE- SVR is
closer to the observed value, and the distribution is more
concentrated, especially at the content of 15%, 20%, and
30%.

From the comparison of Bias, smaller absolute Bias
values mean higher overall prediction accuracy. Arranged in
descending order of absolute values of Bias, the models of
the validation set are in the order PCA-PLSR, SVR, PLSR,
MCUVE-PLSR, PCA-SVR, and MCUVE-SVR, while the
models of the testing set are in the order PLSR, PCA-PLSR,
MCUVE-PLSR, SVR, PCA-SVR, and MCUVE-SVR. It ba-
sically meets the expectation that SVR is more suitable than
PLSR and MCUVE is more suitable than PCA in the de-
tection application of this paper, and MCUVE-SVR ob-
tained the best result. It is consistent with the evaluation
results of R and RMSE.

From the comparison of RPD, the values of all models
are greater than 5, which indicates that these models have
reached a reliable level. +e RPD values of the validation set
and the testing set of MCUVE-SVR are 8.5 and 7.5, which
are significantly larger than the corresponding values of
other models, indicating that MCUVE-SVR has the highest
reliability.

By comparing the values of R, RMSE, Bias, and RPD of
each model, MCUVE-SVR is more suitable than the other
five commonmodels for the detection of adulterated sucrose
in red ginseng.
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Table 1: Performance of the models.

Model Rv RMSDV (%) Rp RMSDP (%)
PLSR 0.988 1.323 0.985 1.500
SVR 0.987 1.402 0.987 1.494
PCA-PLSR 0.988 1.338 0.985 1.499
PCA-SVR 0.989 1.272 0.987 1.412
MCUVE-PLSR 0.987 1.388 0.986 1.422
MCUVE-SVR 0.993 0.999 0.991 1.172
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Figure 7: Continued.
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Figure 7: Correlation statistics between the observed values and predicted values: (a) validation set of PLSR, (b) testing set of PLSR,
(c) validation set of SVR, (d) testing set of SVR, (e) validation set of PCA-PLSR, (f ) testing set of PCA-PLSR, (g) validation set of PCA-SVR,
(h) testing set of PCA-SVR, (i) validation set of MCUVE-PLSR, (j) testing set of MCUVE-PLSR, (k) validation set of MCUVE-SVR, and
(l) testing set of MCUVE-SVR.
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5. Conclusions

In order to improve the measurement accuracy of the su-
crose content incorporated into red ginseng, we studied the
quantitative analysis model of terahertz spectral character-
istics. +e experimental results show that the quantitative
analysis model of sucrose based on terahertz spectroscopy
can be more accurate by combining it with an effective
information extraction algorithm. MCUVE is an effective
information extraction algorithm commonly used in PLSR,
which can improve the prediction accuracy of PLSR. In this
paper, we try to use MCUVE in an SVR model and get more
accurate prediction results. +e RPD values of the validation
set and the testing set of MCUVE-SVR reached 8.5 and 7.5,
indicating that the model is ideal and better than other
compared models. +erefore, MCUVE-SVR is a suitable
quantitative regression model for the detection of adulter-
ated sucrose in red ginseng. +is paper has reference value
and great meaning for the content detection of components
in food and drug safety.
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