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Convolutional neural networks (CNNs) are widely used for image recognition and text analysis and have been suggested for
application on one-dimensional data as a way to reduce the need for preprocessing steps. In this study, the performance of one-
dimensional convolutional neural network (1DCNN)machine learning algorithmwas investigated for regression analysis of Antai
pills spectral data. Tis algorithm was compared with other chemometric methods, including support vector machine regression
(SVR) and partial least-square regression (PLSR) methods. Te results showed that the 1DCNN model outperformed the PLSR
and SVR models with similar data preprocessing for the three analytes (wogonoside, scutellarin, and ferulic acid) in Antai pills.
Taking wogonoside as an example, the indices such as the correction coefcient of determination (R2

v), the root mean-squared
error of cross validation (RMSECV) for calibration set, the prediction coefcient of determination (R2

p), and the root mean-
squared error of prediction (RMSEP) obtained by PLSRmodeling were 0.9340, 0.5568, 0.9491, and 0.5088; the indices obtained by
SVRmodeling were 0.9520, 0.4816, 0.9667, and 0.4117; and the indices obtained by 1DCNNmodeling were 0.9683, 0.3397, 0.9845,
and 0.2807, respectively. Te evaluation metrics of 1DCNN are better than those of PLSR and SVR, and the prediction efect is the
best, proving that 1DCNN has a good generalization ability. Especially with outliers of spectra, PLSR’s R2

p decreased by 0.0181,
SVR’s R2

v decreased by 0.01, and 1DCNN’s R2
v increased by 0.0009 and R2

p decreased by 0.0057. Te evaluation indices of 1DCNN
have no signifcant change in comparison with no outliers and can still show good performance, which refects the inclusiveness of
the 1DCNN model for outliers. Simultaneously, the feasibility and robustness of the 1DCNN model in the application of near-
infrared spectroscopy was verifed, which has a certain application value.

1. Introduction

Pharmaceuticals are special commodities directly related to
the health and safety of each citizen, and each link in its life
cycle requires strict quality control [1]. In recent years,
counterfeit drugs mainly adding chemicals to the capsule
shells of Chinese patent medicines or health foods to make
their manufacturing and marketing methods more hidden. A
survey published on the PSI’s website in 2021 showed that the
number of reported counterfeit drug incidents worldwide had
risen 20-fold from 196 in 2002 to 4,334 in 2020. Quick and
efective screening of drug quality has become an urgent
problem to be solved. Common drug content analysis

methods include thin-layer chromatography (TLC), gas
chromatography (GC), high-performance liquid chroma-
tography (HPLC), and DNA molecular markers [2, 3]. Tese
methods typically require the use of various instruments and
chemical reagents for destructive pretreatment of drugs,
which is time-consuming and costly. Near-infrared spec-
troscopy (NIRS) is an alternative method for identifying
pharmaceutical products and is a fast, simple, contamination-
free, sample-free, and holistic analysis technology [4, 5].

Near-infrared spectroscopy technology has been widely
used in the pharmaceutical industry, for it has abundant
frequency doubling and frequency vibration information in
molecular groups [6]. Since NIRS is an indirect analysis
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technique, it is imperative to fnd a suitable method for
analyzing spectral data. Traditional quantitative analysis
methods include multiple linear regression, principal
component regression, partial least-square regression, arti-
fcial neural networks, and support vector machine re-
gression [7]. However, in the actual spectrum acquisition
process, it is inevitably afected by environmental factors,
human error, setting noise interference, etc., resulting in the
acquisition of outliers of spectra. Under normal circum-
stances, if there are outliers of spectra, the artifcial eye can
judge the large diference between the normal spectra, and
outliers can be easily distinguished from inliers and man-
ually eliminated. However, in the actual situation, many
outliers often require professionals to fnd a suitable outliers
discovery algorithm that is programmed to eliminate it. If
outliers of spectra cannot be efectively eliminated in the
modeling process, it will greatly impact the prediction efect
of regression modeling. Tis study attempts to establish
a more inclusive model of outliers by using the modeling
algorithm of one-dimensional convolutional neural net-
works, conducting quantitative analysis, and applying it to
the regression modeling and prediction of the active in-
gredients of Antai pills.

Kinds of machine learning algorithms have been com-
bined with spectroscopic techniques to be used for classi-
fcation or regression tasks in recent years [8]. Convolutional
neural networks (CNNs) are a key concept in deep learning.
Unlike traditional feature extraction methods [9–11], CNN
does not require manual feature extraction and uses large
amounts of data to achieve the desired results. Specifcally,
CNNs have demonstrated that deep learning can discover
intricate patterns in high-dimensional data, reducing the
need for manual efort in preprocessing and feature engi-
neering [12]. CNN is useful for both one-dimensional and
multidimensional scenes [13]. Compared with previous
artifcial networks, CNN does not consider the entire dataset
but obtains the features of the data by considering local
information. CNN trains faster and with fewer parameters,
thus reducing the computational cost and power con-
sumption. Recently, CNNs have been used for classifcation
tasks in infrared (IR) [14], NIR [14], Raman [14–16], and
laser-induced fuorescence (LIF) [17] spectral analyses and
have been used for regression tasks in IR [18, 19] and NIR
[18–23] spectral analyses. Tese studies indicated that, in
some cases, the CNN model outperformed some traditional
methods, such as PLS [20, 21, 23], SVR [20], and extreme
learning machine (ELM) [23]. PLSR is one of the most
commonly used multivariate analysis methods in spec-
troscopy [24], and SVR has been combined with spectro-
scopic since 2004 [25]. Zhang et al. proposed a new 1DCNN
inception model and studied the performance of CNNs
through classifcation analysis of spectral data. Experimental
results show that this model outperformed previous
methods such as PCA-ANN, SVR, and PLS while it predicts
better results on four diferent raw datasets than the pre-
processed version of those NIR spectra data [20].

Tis study proposes a quantitative analysis method based
on near-infrared technology combined with 1DCNN and
constructs a general and robust spectral data analysis model.

Te analysis results of this model were compared with those
of PLSR and SVR, which verifed the feasibility of the
1DCNNmodel in near-infrared technology.Te tolerance of
1DCNN to outliers of spectra was verifed by observing the
diferences in the prediction results of 1DCNN, PLSR, and
SVR to outliers and inliers, which provides a new idea for
solving the problem of outliers.

2. Materials and Methods

2.1. Experimental Environment. Te hardware of the ex-
perimental environment was an Intel Xeon (R) Platinum
8124M CPU 3.00GHz, 64GB memory, and the GPU model
was Nividia GeForce RTX 3060. Te operating system
version was Windows 10, and all experiments were com-
pleted using Python.Te deep learning model uses the Keras
2.8.0 framework, and the back-end uses TensorFlow 2.8.0 to
support the GPU. Te PLSR and SVR algorithm codes are
based on the scikit-learn 1.0.2 software package.

2.2. Sample Collection and Preparation. We used reference
[26] for data collection. Te data selected in this study were
101 from 21 batches of Antai pills produced in 2013, 2014,
and 2015. Tese spectral data were measured in 2015 using
a SupNIR1500 near-infrared spectrometer in the range of
1000-1800 nm with a 1 nm interval in difuse refection
mode, and the contents of the three chemical components
wogonoside, scutellarin, and ferulic acid in 21 batches of
Antai pills were determined by high-performance liquid
chromatography (HPLC) gradient elution. We observed
outliers during the data acquisition process and conducted
on inliers and outliers of spectra. Two datasets were pro-
vided, one of which contains fve outliers and 96 inliers, 80
samples were used for the training set, and 21 samples for the
prediction set. Te other datasets have 96 inliers, which were
split into training set of 76 samples and prediction set of 20
samples. Te method of identifying outliers of spectra is
described in Section 2.3.

2.3. Anomaly Spectral Identifcation. Tis study uses the
Mahalanobis distance (MD) method based on principal
component analysis (PCA) to detect outliers. First, nor-
malize the original spectral data, and the data of diferent
orders of magnitude are transformed into the same order of
magnitude for comparison, which improves the data
comparability. PCA is used for dimension reduction of the
data, and the data are linearly mapped to the low-
dimensional space to maximize the data diference in the
low-dimensional representation. Finally, MD is used to fnd
outliers, and samples over MD are necessarily outliers. Te
MD formula is as follows:

D(X) �

�����������������

(X − μ)
T
S

− 1
(X − μ)



, (1)

where X vector represents a spectrum, S represents a co-
variance matrix, and μ represents a vector composed of the
mean values of all X columns. Te obtained MD results are
shown in Figure 1.
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It can be observed from Figure 1 that the values of the
last fve points are signifcantly higher than the other values
so the last fve spectra are judged as outliers.

2.4. Data Preprocessing. In data preprocessing, the data are
imported frst, and two classical methods, Savitzky–Golay
smoothing (S-G) and Standard Normal Variate (SNV), are
used to preprocess the near-infrared spectral data. Te SG
method for smoothing fltering improves the spectral
smoothness and reduces noise interference; SNV is used to
eliminate the infuence of solid particle size, surface scat-
tering, and optical path change on NIR difuse refectance
spectra. Te data were then preprocessed using the data
standardization method. Standardize features by removing
the mean and scaling to unit variance.

As shown in Figure 2, Figure 2(a) is the original spectra
without outliers, Figure 2(b) is the spectra treated with SG
and SNV, and Figure 2(c) is the spectra obtained after data
standardization. Similarly, Figures 3 and 3(a) show the
original spectra with outliers, Figure 3(b) is the spectra
treated with SG and SNV, and Figure 3(c) is the spectra after
data standardization.

2.5. Data Augmentation. Data augmentation is a common
method for improving the image training of convolutional
neural networks, which can be understood as simulating the
changes of images, such as rotating the image 90° and
zooming and shrinking the image. Tis change is easily
understood by humans, but it confuses machine learning
algorithms. By simulating various changes in the training set
data, it may expand from a limited training set to generate
training samples to prevent overftting, which is suitable for
small datasets. Data augmentation methods commonly used
in the feld of images are fipping, random rotation, scaling,
clipping, shifting, and increasing Gaussian noise.

Data augmentation is also exceedingly signifcant for
spectroscopy applications, where several translations of the
spectrum may occur between measurements, such as

frequency shifts, peak broadening, and intensity changes.
We divided the samples into training and validation sets for
this experiment. Among them, 80% of the samples were used
as the training set, 20% of samples were used as the veri-
fcation set, and data augmentation was used to increase the
number of training sets. By randomly shifting the data by
0.1 times the mean, that is, to enlarge or reduce the mean by
0.1 times, and then shifting the slope by 0.05 times, that is, to
randomly adjust the slope between 0.95 and 1.05 to increase
the spectrum.

For the training set with outliers, this augmentation was
repeated 15 times for each sample and an example output,
and the sample size was expanded to 1200 samples.Te other
training set was enhanced 16 times to ensure the same
sample size, and the sample size was expanded to 1216
samples.

2.6. One-Dimensional Convolutional Neural Networks.
1DCNNs are generally composed of input layers, con-
volutional layers, BN layers, fully connected layers, output
layers, and other parts.

2.6.1. Convolutional Layer. Te convolutional layer was
composed of several convolution kernels. Using a convolu-
tion kernel to convolve the original data is equivalent to
extracting the features of the original data that contain
convolutional kernel features. Te convolutional kernel size
represents the size of each convolution of data, and the
convolution kernel of size S has S weights. Te convolution
result is to multiply each data by the sum of weights, and the
output result called feature mapping. Another parameter,
the step size, represents the step size of the convolution
kernel moving after a convolution. Figure 4 illustrates the
execution process of the convolution kernel. Te execution
process of each convolution kernel is similar, only the weight
changes. Set two convolution kernels, the input one-
dimensional data size is 4, the convolution kernel size is
2, and the step size is 2. Formula (2) is the calculation
method for the output size, where y is the output size, x is
the input spectra, s is the convolution kernel size, and i is the
step size.

y �
x − s + 1

i
. (2)

2.6.2. Activation Layer. Convolutional neural networks can
exploit diferent activation functions to express complex
features. Each neuron accepts the previous layer of neurons
as input and then passes the processed value to the next
layer. In a multilayer neural network, there is an activation
function for every pair of layers. Te output of a neural
network without an activation function is a linear combi-
nation of inputs with limited learning ability. Teoretically,
a deep neural network with a nonlinear activation function
can approximate any function, signifcantly improving the
data-ftting ability of the neural network. Commonly used
activation functions include the sigmoid, tanh, and ReLU
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Figure 1: Mahalanobis distance.
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functions.Te rectifed linear unit (ReLU) function was used
as the activation function in this experiment. A signifcant
advantage of using the ReLU function is that it speeds up
learning compared to sigmoid and tanh functions.Te ReLU
function sets all the negative data in the convoluted feature
map to 0, and the non-negative numbers keep the gradient
unchanged, alleviating the problem of gradient disappear-
ance. In deep learning, ReLU is the most widely used ac-
tivation function, and its formula is as follows:

y �
x, x≥ 0,

0, x < 0.
 (3)

2.6.3. BN Layers (Batch Normalization). Batch normaliza-
tion allows us to use much higher learning rates and be less
careful about initialization [27]. Te BN layer tries to
overcome the difculty of model training caused by the
deepening of neural network layers. Neural network
structures are typically divided into input, output, and
hidden layers. Te hidden layer comprises all network layers
between the input and output layers. When training a neural
network, normalization is often used on the input data to
improve the network training speed. For the hidden layer, it
is necessary to use the BN layer to standardize the data
passed by the previous layer to the current hidden layer,
which maintains the input of each layer of the neural net-
work the same distribution. Te use of a BN layer often
achieves better results.

2.6.4. Dropout Layer. Te dropout layer temporarily drops
the neural network unit of each fully connected layer ran-
domly from the network, according to a certain probability
during the training process of the deep neural network.
Terefore, each batch trains a diferent network, which
simplifes the structure of the neural network, thereby in-
creasing the robustness of the network and reducing
overftting.
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Figure 2: Normal spectra and the spectra after pretreatment of Antai pill samples: (a) original spectra, (b) spectra after SG and SNV
treatment, and (c) spectra after data standardization.
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Figure 3: Original spectra with outliers and the spectra after pretreatment of Antai pill samples: (a) original spectra, (b) spectra after SG and
SNV treatment, and (c) spectra after data standardization.
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Figure 4: Convolutional layer execution process.
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2.6.5. Flatten Layer. Te fatten layer fattens the input data
without afecting batch size and is usually followed by fully
connected (FC) layers. Because multiple feature maps are
output after the convolutional layer, these feature maps need
to be converted into vector sequences to correspond to the
FC layer.

2.6.6. Fully Connected Layer. Each node in the FC layer is
connected to all the nodes in the previous layer to establish
the mapping between extracted features and the output to
play the role of a regression. Te purpose of the convolu-
tional and activation layers is to map the original data to the
hidden layer, whereas the fully connected layer maps learned
features to the sample label space.

2.6.7. Optimization. Te training process of the neural
network is the process of constantly updating the weight
parameters, and the optimization algorithms are used to
calculate this group of parameters. Te neural network
method is to initialize the weight parameters of each layer frst
and then calculate the loss function by forward calculating the
output value of the network in the training process. If the loss
is close to 0, the network is trained and no further weight
update is required. Otherwise, the weight parameters are
updated using back propagation. Te best optimizer is se-
lected for fast convergence and correct learning while
adjusting the internal parameters to minimize the loss
function. Te commonly used optimization algorithms are
SGD, Adam, AdaGrad, and RMSProp. Tis study uses
a stochastic gradient descent (SGD) optimization algorithm.
SGD randomly selects one sample at a time to update the
parameters, which is fast. Te SGD formula is as follows:

gSGD � ∇θL x
(i)

, y
(i)

, θt , (4)

θt+1 � θt − ηgSGD, (5)

θ represents the weight, t represents the t-th iteration, L(·)

represents the loss function, ∇θ denotes the partial derivative
of loss function L, and η is the learning rate, which de-
termines the amplitude of parameter change when updating
the parameters. Equation (4) is the process of updating the
weight parameters; each time selecting one sample to update
the parameters can quickly update the gradient.

2.6.8. Huber Loss Function. Te loss function is usually used
as a learning criterion for optimization problems, and the
distance between the predicted and real values is calculated
using the loss function. When dealing with regression
problems in neural networks, the average absolute error
(MAE) or mean square error (MSE) is typically used. Tis
study uses the Huber loss function to account for outliers,
which is less sensitive than the MSE [28]. Tat is, compared
with the MSE, it is more robust to outliers. It is based on the
absolute error but becomes the mean square error when the
error is small. It combines the advantages of mean absolute
error (MAE) and mean-squared error (MSE). Te formula
for the Huber loss is as follows:

Lδ (y, f(x)) �

1
2
(y − f(x))

2
, for|y − f(x)|≤ δ,

δ|y − f(x)| −
1
2
δ2, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

Te use of Huber loss for training causes outliers to have
a linear function, thus a much greater impact on the gra-
dient. In the case that the sample is not an outlier, the
function becomes a quadratic (this tolerance being the
parameter, δ), at which point it essentially becomes the MSE
[29]. Tus, it may potentially reach the minimum faster than
MSE when handling outliers.

2.6.9. 1DCNN Modeling. 1DCNN training process of con-
volutional neural network consists of two stages. Te frst
stage is the stage of data propagation, and the second stage is
back propagation.

In the process of forward propagation, feature vectors
are extracted from the input graphic data through multiple
convolutional layers and transferred to the fully connected
layer to obtain the recognition result. When the output result
matches the expected value, the output result is generated.
Otherwise, the back propagation process is performed. Te
error is calculated between the result and the expected value
and then it is returned layer by layer to update the weight
(see Algorithm 1).

Te 1DCNN model structure proposed in this study is
shown in Figure 5. It consists of 13 layers: an input layer, one
Gaussian noise layer, one reshape layer, three convolutional
layers, three batch normalization (BN) layers, one dropout
layer, one fattening layer, one fully connected (FC) layer,
and one output layer.

Te parameters of the 1DCNNmodel structure are listed
in Table 1. Te unmarked parameters were the default pa-
rameters in TensorFlow. A brief description of each layer is
as follows:

(1) Te Gaussian noise layer. Regularization of the
model is assisted by the infuence of the Gaussian
noise flter on the noise of the data, which is only
efective in training. Te standard deviation of the
Gaussian noise is expressed by t.

(2) Te reshape layer. For deep neural network,
through a network layer to change the dimension of
input data, NIRS data from two-dimensional ad-
justment to three-dimensional, the value of the
third dimension is fxed to 1.

(3) Te convolutional layer 1. Convolution is per-
formed by one-dimensional convolution. Tree 1D
convolutional layers are used, and each layer with
a ReLU activation. Te number of convolution
kernels is represented by k, the convolution kernel
size by s, and the activation function by a. Con-
volutional layer 1 uses 8 convolution kernels, each
of which is 32 in size.
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Output Layer

Input Layer

GaussianNoise Layer

Reshape Layer

Flatten Layer

Dropout Layer

BatchNormalization Layer 3

Convolutional Layer 3

Convolutional Layer 2

Convolutional Layer 1

BatchNormalization Layer 2

BatchNormalization Layer 1

Fully Connected Layer

Figure 5: 1DCNN model structure.

INPUT: samples: number of samples
epochs: the training times of all training samples.
b: the number of samples selected in one training session.

(1) Initialize(net)
(2) for epoch� 1; epoch≤ epochs; epoch++
(3) for size� 1; size≤math.ceil(samples/b); size++
(4) spectral data⟵ uniformly random sample b spectral data
(5) analytes← uniformly random sample b analytes
(6) z⟵ forward(net, spectral data)
(7) l⟵ loss(z, analytes)
(8) grad⟵ backward(l)
(9) update(net, grad)
(10) end for
(11) end for

ALGORITHM 1: train the one-dimensional convolutional neural network with stochastic gradient descent.
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(4) Te BN layer 1. After each convolution, the BN
layer was used to normalize the output features to
a mean value of 0 and variance of 1. Data stan-
dardization was realized, the training speed was
improved, the convergence process was accelerated,
and a large learning rate was allowed. BN layer 1 is
the normalization of the data processed by con-
volutional layer 1.

(5) Te convolutional layer 2. Convolutional layer 2
uses 16 convolution kernels, each of which is 32
in size.

(6) Te BN layer 2. BN layer 2 is the normalization of
the data processed by convolutional layer 2.

(7) Te convolutional layer 3. Convolutional layer 3
uses 32 convolution kernels, each of which is 32
in size.

(8) Te BN layer 3. BN layer 3 is the normalization of
the data processed by convolutional layer 3.

(9) Te fattening layer fattens the features extracted
after convolution and readjusts the 3D input to the
2D data.

(10) Te dropout layer. By randomly discarding neurons
to improve the generalization ability of the model to
prevent overftting, the ratio rate of the input unit to
be deleted is expressed by r.

(11) Te FC layer is activated by the linear activation
function and further compresses the nodes in the
network. Te spatial dimensions of the output are
represented by d.

(12) Te output layer maps the learned features to the
sample markup space using the full connection
layer of output node 1.

Te preprocessed data were trained using a convolu-
tional neural network with an SGD optimizer. Te initial
learning rates of the three chemical components were 0.01
(learning_rate� 0.01), 100 iterations (epoch� 100), and
batch size was set to 16 (batch_size� 16).

Figure 6 shows the decline curve of loss of training set
and validation set of analyte wogonoside in the training
process of the 1DCNN model. a is the loss curve of normal
spectra training; b is the loss curve with outlier training.
Observe from the fgure that in the loss curves, the loss of the
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Figure 6: Loss curves of the training set and validation set: (a) loss curves of normal spectra, and (b) loss curves with outliers of spectra.

Table 1: Network structure parameters of 1DCNN.

Network layer
Antai pills

Input Output Parameter
Gaussian noise (None, 800) (None, 800) t� 0.05Reshape (None, 800) (None, 800, 1)
Conv1 (None, 800, 1) (None, 769, 8) k� 8, s� 32, a� “relu”BN1 (None, 769, 8) (None, 769, 8)
Conv2 (None, 769, 8) (None, 738, 16) k� 16, s� 32, a� “relu”BN2 (None, 738, 16) (None, 738, 16)
Conv3 (None, 738, 16) (None, 707, 32)

k� 32, s� 32, a� “relu”BN3 (None, 707, 32) (None, 707, 32)
Flatten (None, 22624) (None, 22624)
Dropout (None, 34944) (None, 34944) r� 0.5
FC (None, 128) (None, 128) d� 128, a� “relu”
Output (None, 1) (None, 1) d� 1, a� “linear”
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training set and the loss of the verifcation set have con-
verged, the diference between the two is small, and the ft is
successful.

3. Results and Discussion

3.1. Evaluating Indices. Te evaluation indices are as follows:

3.1.1. Root Mean-Square Error (RMSE).

RMSE �

������������

1
n



n

i�1
yi − yi( 

2




. (7)

3.1.2. Determinant Coefcient (R2).

R
2

� 1 −


n
i�1 yi − yi( 

2


n
i�1 yi − y( 

2 . (8)

RMSE refects the degree of deviation between the
predicted and real values of the regression model and is
sensitive to outliers. Te smaller the RMSE value, the better
is the accuracy of the prediction model for describing the
experimental data. R2 refers to the degree of ftting between
predicted value and real value of the regression. If R2 is close
to 1, values can be accurately predicted, and the regression
model fts better. Where n is the vector length, yi and yi are
the real and predicted values, respectively, and y is the
average value of the real value.

3.2. Comparison between 1DCNN Model and Classical Re-
gression Method. In this study, the 1DCNN model was
trained for concentration prediction of three diferent
analytes using Huber error loss function and 10-fold cross
validation. Te 1DCNN model predicted real-predicted
curves for the three analytes without outliers which are
shown in Figure 7. Figures 7(a)-7(c) represent the prediction
results for wogonoside, scutellarin, and ferulic acid,

respectively. Te closer the two lines overlap, the smaller the
prediction deviation.Te results showed that the R2 of above
0.965 was obtained for all analytes.

Tables 2 and 3 list the results of the 1DCNN model with
and without outliers compared to the classical regression
methods of PLSR and SVR. PLSR and SVR use similar
preprocessing methods for data and the 1DCNN model.
PLSR and SVR algorithms were implemented using the
scikit-learn library in Python. Te PLSR algorithm de-
termines the optimal number of principal components
through cross validation on training data. Finally, the
number of principal components was ten, and the other
parameters were used by the default parameters of the PLS
regression method of the scikit-learn library. Te SVR al-
gorithm selects the Gaussian kernel function (ker-
nel� “rbf”), penalty factor C was 1.0, and other parameters
used the default parameters of the scikit-learn library SVR
method. R2

v and RMSECV are the correction determination
coefcient and correction root mean-squared error after the
10-fold cross validation of the calibration set, and R2

p and
RMSEP are prediction decision coefcient and root mean-
square error of the prediction set, respectively. As it can be
seen from Tables 2 and 3, the prediction accuracy of the
1DCNN model is greatly improved for all analytes. When
there were no outliers, RMSEP is reduced to 0.2807, 0.7129,
and 0.0453, respectively. R2

p value is, respectively, increased
to 0.9845, 0.9489, and 0.9663. Tis 1DCNN model applied
here exhibits promising regression capabilities compared
with PLSR and SVR models.

Te 1DCNN model can also perform well when there
are outliers. Taking analyte scutellarin as an example,
compared with inliers, the PLSR model showed that R2

v

decreased by 0.0222 and RMSECV increased by 0.0645; the
SVR model showed a 0.0132 decrease in R2

v and 0.0531
increase in RMSECV; while the 1DCNN model showed
a 0.0025 decrease in R2

v and 0.0382 increase in RMSECV.
Tese results indicate that the 1DCNN model has high
inclusiveness for outliers of spectra and maintains high
prediction accuracy for a small number of outliers,
demonstrating the sound performance of the
1DCNN model.
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Figure 7: Real-predicted value curves: (a) real-predicted value curves of analyte wogonoside, (b) real-predicted value curves of analyte
scutellarin, and (c) real-predicted value curves of analyte ferulic acid.
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4. Conclusions

Tis study proposes using one-dimensional convolution
neural networks to process near-infrared spectral data, and
the quantitative analysis technology of chemical composi-
tion was explored with Antai pills as the research object. We
drew the following conclusions:

(1) Because the small number of prediction samples, it is
easy to have the problem of overftting or weak
generalization ability, the data augmentation strategy
is adopted to increase the sample size, and the data
augmentation is realized by 0.1 times the mean of the
random ofset and 0.05 times the slope of the random
ofset.Tis method replicates the systematic errors in
the spectral method and is suitable for training
convolutional neural networks.

(2) Te experimental results show that the performance
of the 1DCNN method is good, and the prediction
accuracy is superior to classical regression methods.
It is feasible to quantitatively analyze the chemical
composition of drugs using near-infrared spectros-
copy combined with convolutional neural networks,
which is suitable for large-scale, multi-variety, and
multi-manufacturer drug tasks.

(3) Te 1DCNNmodel maintains excellent performance
with a few outliers, whereas the traditional regression
algorithm is not as good as 1DCNN. Tis model
provides a new approach to addressing the problem
of spectra with outliers.

In the next study, massive near-infrared spectra will be
used to build a more broaden and robust model. Meanwhile,

although CNN has little concern on preprocessing and is
time-saving, the parameters in network will be manually
adjusted. Te following novelty is to fnd a solution to
optimize parameters automatically and widen the applica-
tion of CNN in drug quality management.

Data Availability
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