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Due to its high spatial and spectral information content, hyperspectral imaging opens up new possibilities for a better un-
derstanding of data and scenes in a wide variety of applications. An essential part of this process of understanding is the
classification part. However, the high spatial and spectral resolution also leads to enormous amounts of data. %e effective
handling and use of such datasets for classification requires processing steps (dimensionality reduction through feature selection
or feature extraction) that are not always goal-oriented. In this article, a new general classification approach is presented that uses
the geometric shape of spectral signatures instead of purely statistical methods. In contrast to classical classification approaches
(e.g., SVM, KNN), not only are reflectance values taken into account, but also parameters such as curvature points, curvature
values, and the curvature behavior of spectral signatures are used to develop shape-describing rules in order to use them for
classification by a rule-based procedure with IF-THEN queries.%e flexibility and efficiency of the methodology are demonstrated
on datasets from two different application domains and lead to convincing results with good performance.

1. Introduction

Optical technology developments are extending the possi-
bilities to better understand the world and its resources.
Starting with images consisting of three color channels
covering the visual electromagnetic spectrum, the devel-
opments since the late 1960s opened up the possibility of
using spectral properties for identification of materials by
using multispectral images with tens of channels. Especially
with the developments in the last two decades, another
enormous step forward was made and the low spectral
resolution of multispectral images was overcome. With
several hundred narrow channels, hyperspectral imaging
(HSI) opens up completely new possibilities for analysis in a
wide variety of application fields [1]. As examples, [2–4] use
HSI to maintain and increase crop yields in precision ag-
riculture. %e evaluation of food quality and safety through
the use of HSI is part of the research of [5–7]. Other ap-
plications of HSI can be found in medicine to diagnose

diseases or to monitor wound healing [8–10], in the art
market to verify the authenticity of artworks [11–13], and in
forensics to analyze crime scenes [14–16].

%e key technology behind those applications is the HSI
with detailed spectral and spatial information, which makes
the HSI a powerful information source for advanced clas-
sification methods like k-nearest neighbor, support vector
machines, random forests, neural networks, and deep
learning approaches. A comparison of these mentioned
classification methods is conducted in [17] and shows that
there is no classifier that consistently provides the best
performance and that the quality of the classification result
mainly depends on factors such as the availability of training
samples, processing requirements, tuning parameters, and
speed of the algorithm. Another aspect to be considered in
the context of mentioned classifiers is the Curse of Di-
mensionality. If high dimensional HSI are directly used as
input, the classification accuracy decreases, while the
computational effort of the model tends to increase
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exponentially. To avoid this problem, a dimensionality re-
duction is essential [18]. %e reduction of dimensions implies
that algorithms automatically have to extract a set of char-
acteristic spectral values, which have to represent the deciding
features of the objects in question, from the entire course of a
spectral signature. %e automatic determination of the op-
timal number of relevant features [19] or the time required for
example in the case of graph-basedmethods [20] is among the
main problems. %e amount of advanced existing studies
(e.g., [19–27]) proves that there is no existing satisfactory,
robust, and reliable methodology and that this topic is one of
the main open issues in spectral imaging. As a consequence,
this recommended step leads to loss of information in the
spectral space, because the selected bands do not give an
accurate description of the original spectral signature.

Other classification approaches based on indices [28–30]
also arbitrarily select a subset of spectral values. One of the
most popular is the Normalized Difference Vegetation Index
(NDVI) from the field of remote sensing [31], which allows
the classification of vegetation covered areas on the Earth’s
surface by combining only a few bands of NIR and Red
wavelengths. Another example of such an index is the
Normalized Difference Plastic Index (NDPI), which com-
bines shortwave infrared bands for the classification of
plastic materials in urban areas [32]. By limiting to a small
number of spectral bands in a restricted spectral range,
broad classifications such as separation between plants,
water, or urbanized areas can be made, but finer separation
(e.g., between plant species or plastic materials) would be
difficult due to the reduced number of spectral bands and
contradicts the use of HSI, which offers the enormous ad-
vantage of high-resolution spectral information.

Both band selection methods and indices consider only a
small set of characteristic values, while the shape of the
spectra is not taken into account. A consideration of the
shape of spectral curves as important information source can
be found in [33–35].

%e work of [34] consists of a classification approach that
fully utilizes the shape of spectral curves by using a code to
parameterize the spectral curve shape. %e research of [35]
deals with the definition of analysis rules based on spectral
features like band position, band depth, band width, and
band asymmetry. %ese key parameters are used to describe
the absorption features of spectra. Disadvantage of both
works is the time required to develop the description pa-
rameters of the curve shapes. Both approaches use tables to
store the parameters and a subsequent matching process
between the parameters of the reference data and the spectra
that need to be classified, which also makes the classification
process a time-consuming task. %e advantage of consid-
ering shapes, especially in combination with high-resolution
spectral data, is clear: spectra express the mixed reflectivity
of the elements that make up an object (e.g., molecules,
pigments, cell structure, and water content), which is why
each individual component has only a proportional influ-
ence on a spectrum. Changes in the composition of the
elements then mainly change the mixture of all spectral
contributions, resulting in local or regional variations and
changing the shape of a spectrum.

In this article we follow the shape-based works of
[33–35] and propose a new rule-based classification method
using shape-based properties of spectral curves like curva-
ture points, curvature values, curvature direction, and
spectral values.

Particular attention should be paid to the following
points:

(i) %e formulation of the rules should not become
complex

(ii) %e classification process should not be time-
consuming

Keeping these points in mind, an approach was devel-
oped that allows establishing rules, using any kind of logical
elements, in a straightforward manner. %e establishment of
rules implies existing knowledge. A prior analysis of the data
and the acquisition of knowledge enable a better under-
standing of the data and allow structuring and simplifying a
problem. Research papers from the field of remote sensing
that use the advantage of knowledge can be found in [36–41].
%e experimental part for the evaluation of the method was
performed on two different datasets. A detailed description
of the method and the used datasets are part of the following
section.

2. Materials and Methods

2.1. Spectral Data Set Acquisition. %e hyperspectral systems
used in this work are two pushbroom cameras from Specim
Ltd. (Oulu, Finland). %e Specim FX10 captures the spectral
signature from 400 nm to 1000 nm (233 bands), while the
Specim FX17 captures the spectral signature from 900 nm to
1700 nm (229 bands). All spectral images acquired by these
cameras are radiometrically normalized by using dark ref-
erence images for dark-current (closed shutter) and a white
reference image to reduce the influence of the intensity
variability. For the white calibration a 99% reflectance tile
was used. As shown in Figure 1, a set of different HSI
consisting of two different object types are used to dem-
onstrate the proposed method.

%e first dataset was captured with the Specim FX17 and
shows an image of seven classes of different plastic types. It
has a resolution of 661× 500 pixels and 229 bands with a
spectral range from 900 nm to 1700 nm. %e second scene
was captured with the Specim FX10 and the Specim FX17
and shows ten classes of different plant types. %e HSI of
both cameras were combined and have a resolution of
1220× 640 pixels and 462 bands covering the spectral range
from 400 nm to 1700 nm.

%e HSI with different plastic types is used to demon-
strate the basic functionality of the approach and gets more
attention due to existing ground truth (the datasets can be
found on https://doi.org/10.5281/zenodo.5068201). As part
of a waste sorting application, the demonstration also covers
experiments with real waste consisting of plastics and
electronic waste like printed circuit boards (PCB).%e plant-
based dataset, on the other hand, is used to demonstrate the
potential and flexibility of the approach regarding different
kind of applications.
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2.2. Methodology. Spectral signatures offer the ability to
distinguish between materials and are the result of reflected
light from the surface, which is captured within a broad
electromagnetic spectrum.%e reason for different signatures
is a combination of molecules in materials and the mor-
phological structure. Different molecules result in different
spectral signatures.%emorphological structure, on the other
hand, is important because of the resulting light path that is
created by reflection, absorption, transmission, and deflection
from the different components of an object.%at is why plants
show different spectra when the cell structure changes, e.g.,
due to stress or aging. Both differences in molecules and
structure result in different shaped spectral curves.%e idea of
our work is to describe the spectral curve shape by a com-
bination of spectral values and shape-based parameters, to use
this knowledge for the formation of rules.

Changes in the material composition of objects lead to
local or regional changes in the course of spectral signatures.
%ese changes inevitably lead to changes in the curvature
behavior, what makes the curvature κ to a significant pa-
rameter for the shape description and the modelling of
spectral changes.

Mathematically, the curvature is the change of a curve
that occurs when the curve is traversed and can be expressed
in parametric form for each point P(x(t), y(t)) using
equation (1), where points refer to derivatives.
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While the curvature of a straight line is zero everywhere
and the curvature of a circle is equal at all points, the
curvature for all other curves changes from point to point
and indicates how strongly the curve at a point P deviates
from a straight line. %us, for the description of spectral
shapes, we use the following properties of curvature:

(i) %e dimension of the current rate of change of the
direction of a point moving on the curve: the greater
the curvature, the greater the dimension of change

(ii) %e behavior of the curvature: if the curvature value
is positive, it is called a convex curve, and in the case
of a negative curvature value, it is considered a
concave curve.

As shown in Figure 2, extreme values of the second
derivative are used to select significant parameters. %e
combination of these parameters with selected spectral
values allows a precise description of the shape of spectral
curves using a few selective spectral bands. %e base for the
calculation of the curvatures is preprocessed spectral curves.
%e preprocessing consists of a smoothing and a subsequent
step of Continuum Removal. A schematic representation of
all essential steps can be found in Figure 3.

Continuum removal is a normalization procedure which
allows a better quantification of absorption peaks after re-
moving the overall concave shape of spectral curves [42, 43]
and is illustrated in Figure 4. Due to the particularly
highlighted absorption bands, rules based on curvature
values can be developed much more efficiently. An example
for continuum removed spectra and the calculated curva-
tures is shown in Figure 5. Depicted are continuum removed
spectra for two different plastic types (PE, PS). In addition to
the course of the spectral signature, the calculated curvature
values are shown as positive and negative vertical lines in
green and red color. %e longer the line, the stronger the
curvature at the respective band.

%e curve behavior is represented by red and magenta
colored dots. %ese points are maximum and minimum
points and are automatically determined by the local
maxima and minima of the second derivative. It helps to
distinguish between concave and convex curve behavior,
providing an important source of information for describing
the shape. For the subsequent formation of rules, mainly the
red lines are used, since these reflect both the concave and
convex behavior and a significant change in curvature. All
other curvature values (green lines) are not considered in the
rule formation. To ensure that only significant changes in the
curve are captured, a threshold is set for the selection of the
relevant curvatures (red lines). %e setting of the threshold
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Figure 1: Images of the captured scenes. (a) Seven classes of different plastics (plastic samples were kindly provided by PlasticsEurope
Deutschland e.V (https://www.plasticseurope.org/de)) consisting of phenolic resin (PF), polyamide (PA), polyvinylchloride (PVC),
polyethylene (PE), polymethylmethacrylate (PMMA), polyester resins (UP), and polystyrene (PS); (b) ten classes of different vegetation
types consisting of Taraxacum (1), Inula conyza (2), Campanula rotundifolia (3), moss (4), Geranium robertianum (5), Asplenium tri-
chomanes (6), green sedum (7), moss and red sedum (8), moss (9), moss and lichen (10).
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mainly depends on the curve shape. %e smaller the
threshold the more detailed the description of the curves.
However, for highly variant spectra (Figure 6) higher

threshold is sufficient. %e examples in Figure 5 show the
result of selected red lines for a threshold of 0.1. Building on
these extracted parameters regarding the spectra for each
material, a collection of conditions is formulated and used
for the classification. It should be mentioned here that, in
addition to the used local shaped values, other rules can also
be integrated. For example, rules are describing global shape
effects (e.g., the expressivity of the green peak for plants) or
adding relations of averaged reflectivity in different regions
as indices like NDVI do.

One of the main advantages of rule-based classifier is the
simplicity. Once the knowledge on which rules are based has
been worked out, conditions can be easily set up. Further
advantages are the performance, the ability to handle re-
dundant and irrelevant attributes, and the flexible extensi-
bility of rule sets [44]. Acquiring knowledge can seem
effortful, but in view of the resulting advantages, it should be
seen as a clear benefit which allows structuring and simpli-
fying problems by using expert knowledge. A comparison of
deep learning and a knowledge-basedmethod can be found in
[45] and show that a rule-based method can even be better as
machine learning-based methods. For better illustration of
rule formation, we refer to the spectral curves of PE and PS
from Figure 5 and express them as shown in Table 1.

%e parameter CV stands for the curvature value at a
specific spectral band and a positive or negative threshold is
used to distinguish between convex and concave curve
behavior. All conditions with a negative threshold will
capture the downward red lines (concave behavior), while all
conditions with a positive threshold will capture upward red
lines (convex behavior). As already mentioned, for rule
formation mainly the bands with high curvature are taken
into account (red lines). Nevertheless, this does not mean
that all bands are really necessary for the rule formation. By
analyzing the data in advance, it is possible to achieve a clean
classification even with a smaller number of selected bands.
%erefore, only six conditions are defined for sample PS in
Table 1, while in Figure 5 a total of seven red lines are
present. %e continuum removed spectra and rules for all
other existing plastic types in the used dataset are listed in
the Appendix (Figures 7–15). %e corresponding spectral
signatures are also shown in Figure 6. As an additional
condition the continuum removed reflectance value (CRRV)
could be used, if it is not possible to sufficiently distinguish
the shape. For instance, to separate PF-black from all other
available plastic types.

3. Results and Discussion

Once the rules are established, the next step is to apply them.
%is involves a pixel-by-pixel processing of the corre-
sponding dataset and a check of the rule conditions for each
individual pixel. If a condition applies, this pixel will be
assigned to the appropriate class.

3.1. Classification Results for Plastic Samples. Applying the
developed rules in the Appendix to the dataset consisting of
plastic samples in Figure 1, results shown in Figure 16 were
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obtained. %e result of the classification shows that the
individual samples were classified correctly. A closer look at
the border areas of the samples shows that a shadow effect
occurs and that this effect can influence the quality of the
classification. %is shadow effect occurs especially with
samples (e.g., PS) that do not lie in a planar position.

Another point to consider here is the classification of PF
samples. %e continuum removed reflectance spectrum il-
lustrated in the Appendix does not correspond to the real
spectrum of the material PF. %e PF samples used here are
composed of black colorants. A well-known problem is the
strong absorption of black colorants like carbon black. Due
to the strong absorption of light from the UV to the NIR
there is no reflected light that can be detected by the sensor
and thus no spectral information that can be used for a
classification [46, 47]. %e rule-based approach presented
here offers the advantage that even in the absence of

reflectance rules can be established based on the existing
limited information, which permit such a classification. In
the case of these samples, it means all black plastics will be
classified as PF-black. It must also be noted in this example
that the samples used have clean, homogeneous surfaces and
the resulting spectra have a correspondingly high degree of
shape similarity. However, considering applications in the
field of waste sorting, it is more common to work with dirty
and damaged materials.

%erefore, for the evaluation of the methodology, a
dataset (1253× 578 pixels and 229 bands) with real waste
consisting of plastic parts (objects 1–19) and circuit boards
(objects 20–27) was processed additionally. %e classifica-
tion result for the real waste dataset is shown in Figure 17.
%e objects in the dataset were chosen randomly from a
collection of different plastic parts. %erefore, it is not
surprising that certain materials (e.g., PMMA, PVC, PE, and
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(left), setting the convex hull to 100%, and subtracting the original spectra (right).
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Table 1: Shape-based rule for PS and PE.

IF CV1108 < − 0.1 AND IF CV1139 < − 0.1 AND
CV1174 < − 0.1 AND CV1253 < − 0.1 AND
CV1608 < − 0.1 AND CV1357 < − 0.1 AND
CV1143 > + 0.1 AND CV1215 > + 0.1 AND
CV1204 > + 0.1 AND CV1394 > + 0.1 AND
CV1677 > + 0.1 THEN class⟶ PE

THEN class⟶ PS
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Figure 6: Reflectance spectra of available plastics. Each category of
plastic material corresponds with a specific spectral shape; likewise
the shapes of Continuum Removed Reflectance Spectra are different.
%is means the rule defined for a category is specific to this category
and there is no possible confusion as the shapes are distinct enough.
So, such rules can be used only if spectral curve shapes are all
sufficiently distinct.
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UP) are not present. In addition to the plastic types men-
tioned so far, polypropylene (PP) and acrylonitrile butadiene
styrene (ABS) were identified on the basis of spectra from
[48, 49] and formulated as rules. Furthermore, an additional
rule was established for the classification of printed circuit
boards. A look at the classified plastic parts shows that the
nonhomogeneity of the surfaces is partly reflected in the
results in form of unclassified or misclassified pixels. Nev-
ertheless, it can be stated that the classification was generally
successful by using the developed ten rules. %e black plastic
parts (objects 1 and 17 in Figure 17) that are missing were
not modelled in this example, because the used background
also consists of black plastic and a separation in this special
case proves to be difficult. Also, since the spectra of object
number 5 in Figure 17 could not be assigned to any material,
no rule for classification was established.

An important step in the recycling process is the sep-
aration of plastics and electronic waste. In particular, the
high variation of different material compositions from
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Figure 13: Continuum removed reflectance spectra and shape-
based rule for UP.
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Figure 11: Continuum removed reflectance spectra and shape-
based rule for PVC.
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Figure 14: Continuum removed reflectance spectra and shape-
based rule for PP.
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Figure 15: Continuum removed reflectance spectra and shape-
based rule for ABS.

PS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
on

tin
uu

m
 R

em
ov

ed
 R

efl
ec

ta
nc

e

95
0

90
0

15
00

11
00

14
50

14
00

13
00

16
00

16
50

12
50

12
00

11
50

15
50

10
50

13
50

17
00

10
00

Wavelength (nm)

Figure 12: Continuum removed reflectance spectra and shape-
based rule for PS.

Journal of Spectroscopy 7



UP

PVC

PS

PMMA

PF-Black

PE

PA

Background

Figure 16: Classification result using developed rules.
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which PCBs are made makes separation difficult. However,
the example shown here also demonstrates that prior
analysis of data and the use of rules based on acquired
knowledge can lead to a more efficient recycling process.
Due to the alreadymentioned high variation of PCBs and the
composition of different materials (e.g., board, conductors,
solder joints, resistors, and capacitors), a holistic assessment
of a PCB is difficult to implement.

Nevertheless, it is evident in this example that the board
has been identified in all cases and, as expected, only the
areas with conductive tracks and metallic or electronic
components have not been assigned and consequently ended
up in a category with black plastics and the background. A
significant difference to the samples shown in Figure 16 is
the heterogeneity of the surfaces. Differences in depth,
shadow effects on the surface, and dirt lead to a very high
variability of spectral signatures. As an example, a region of
object number 12 in Figure 17 was selected. In this area,
differences in depth, shadow effects, and soiling can be
found. A representation of the high variability in form of
spectral shifts is shown in Figure 18. %e shape-based
classification result for object number 13, however, shows
that a satisfactory result was achieved despite the high
variability. %e reason for the robustness of the proposed
method is that even if the spectral values change and result in
spectral shifts due to certain factors like dirt or shadow, the
geometric shape remains stable.

%e processing time using MATLAB on a machine with
an Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz and 16GB
RAM was 136 seconds for the real waste dataset and 44
seconds for the plastic dataset from Figure 16.

In order to compare the quality of the proposed method
to standard methods, we decided to use one of the most
commonly used pixel-based classifiers.%erefore, the dataset
shown in Figure 16 (plastic samples) and the dataset shown
in Figure 17 (real waste samples) were processed using a
supervised multiclass SVM classifier (C-SVC, One-Versus-
All), which is based on the selection of a training set to
obtain a model and the subsequent application of this model
for the prediction of classes. %e dataset with the real waste
was limited to the plastic objects. As already described in
[17], the quality of the results strongly depends on the
chosen training samples and parameterization. For this
reason, three different kernels, namely, Radial Basis Func-
tion (RBF), linear, and polynomial, with different parame-
ters have been tested on the datasets. Due to the
multicategory classification, a classification threshold is
used, which is the maximum distance to the hypersurface for
conducted classification to a specific class. %e parameters
for the kernels and the classification threshold were obtained
by testing and checking the results. Because of the homo-
geneity of the plastic samples, one material sample of each
material class was manually labelled and used as training set.
A description of the datasets can be found in Table 2. %e
best results for the plastic dataset using different kernels and
classification thresholds are shown in Figure 19.

%e accuracy of each classification method compared is
reported in Table 3. In principle, the results of this ho-
mogeneous and optimal dataset are comparable for most of

classification metrics used. Nevertheless, significant dif-
ferences can be seen in the resulting images, especially at
the edge of objects, in form of unclassified or misclassified
pixels. As already mentioned, this is due to a shadow effect
that locally occurs in some areas, which impacts mainly the
quality of the SVM methods. While the rule-based ap-
proach also classifies these edge areas and some shadow
parts as corresponding material, the SVM results in mis-
classifications, especially using linear and polynomial
kernels.

Compared to the plastic dataset, the real waste dataset
has a typical situation consisting of objects with a high
degree of variety. %is not only increases the effort required
to train the model, but also makes the training process more
difficult. Small subsets of the individual samples were
manually selected as training set. %is strategy was con-
sidered to be appropriate due to the strong differences
between the plastic samples. %us, when selecting the
subsets, special care was taken to ensure that particularly
critical areas, such as shadow areas caused by depth, dirty
areas, and damaged surfaces, were also covered in the
training set. %e best resulting class-labels are presented in
Figure 20 and show also the effect of different classification
thresholds. %e corresponding numerical values are listed in
Table 4.
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Figure 18: Spectral signature variability for object 12 of real waste
dataset (spectra of all pixels inside the red box).

Table 2: Number of samples and training samples for each class.

Class Number of
samples

Number of training
samples

Plastic dataset

PA 16276 3783
PE 16212 3659

PF-Black 11157 4930
PMMA 15779 4071
PS 16877 4123
PVC 16645 4869
UP 16098 4613

Real waste dataset

PA 13343 2114
PS 81238 10444
PP 116620 11936
ABS 11703 1638
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In principle, also for this dataset it can be stated that,
despite the challenging objects of the real waste dataset, a
high degree of accuracy can be achieved for both methods.
%e best SVM result was obtained with an RBF kernel
consisting of a C-Value of 0.2 and a classification threshold
of 0.3. In comparison, the rule-based method produces

slightly better values for the different metrics. Also no-
ticeable is the more homogeneous representation of objects
in the resulting class-labels in Figure 20. %e reason for this
is again the robustness against spectral shifts. While SVM is
based on pure reflectance values, the shape-based approach
only needs to consider the geometric shape of spectral

(a) (b)

(c) (d)

Figure 19: Classification results using the (a) proposed shape-based method; SVM with (b) RBF kernel, C-value of 1, and classification
threshold of 0.5; (c) linear kernel, C-value of 1, and classification threshold of 0.3; (d) polynomial kernel, C-value of 1, and classification
threshold of 0.3.
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signatures. One of the advantages of the shape-based ap-
proach is that, theoretically, only one spectrum per material
is required for the rule formation. When using an SVM, it is
necessary to ensure that, in case of high variability datasets,
all data representing the spectral variations of one material
class are included in the training set. Fulfilling this re-
quirement can be a challenging task.

3.2.ClassificationResults forPlants. Compared to the dataset
consisting of plastics and electronic waste, spectral signa-
tures of plants often show a very similar curve shape. %is
fact generally complicates the classification process.

To illustrate the ability of classifying even in such
difficult cases and the flexibility of the methodology pre-
sented in this work, rules were developed to distinguish
between plant species based on the spectral signatures
shown in Figure 21, which are coherent with spectral
signatures provided in [50]. Due to the similarity of the
shape, in this particular case, rules have been formulated
using mainly Continuum Removed Reflectance Values
(CRRV) as well as curvature parameters. %is involved
using the entire spectrum from 500 nm to 1700 nm to work
out fine differences regarding the water content, the cell
structure, and the pigments of used plants. In this context,
it must be taken into account that the spectral properties of
a plant species can also vary, as spectral signatures will be
affected by factors such as species, variety, age, internal cell
structure, environmental conditions, chemical composi-
tion, and nutrient content [51]. An example for such a
variation is given in Figure 22 for moss. Although not
implemented in this work, one possible way to deal with
such heterogeneous spectra could be the addition of rules
based on texture features or other local image features
[52–54].

A total of six rules were developed to separate the ten
samples in groups of moss, lichen, red sedum, green sedum,
Geranium robertianum, and green leaves. %e results in
Figure 23 show that, in principle, a classification between
different plant species is possible. For example, it can be
clearly seen that red sedum is distinctly different from the
other plant species due to its coloring. Green sedum also
differs based on the cell structure, whereby the properties of
this plant seem also partially reflected in moss, which can be
relatively well distinguished from the other plants due to the
spectral signatures in the NIR and the low reflectance around

550 nm. Furthermore, it was possible to classify the lichens
in object 10.

%e very strong spectral similarity between the leaves
does not allow a clean separation between the individual
species. Only Geranium robertianum differs due to its low
reflectance in the range around 550 nm. In this context, it is
important to note that the spectral signatures shown in
Figure 21 only reflect the spectral signature of one pixel and
that the recognizable differences, which refer to reflectance
values or shape, are not consistently present due to the high
variability within a plant species. Nevertheless, it can be
stated also for this example that a rule-based approach is a
flexible method and, depending on prior analytical efforts,
has the potential to provide useful results.

4. Discussion

Results of a rule-based classification approach were presented,
based on the shape of spectral signatures. %e rules are
established in a supervised way and are based not only on
spectral values, but especially on parameters that describe the
geometric form of a spectral signature. %ese parameters
include the automatic determined curvature points (i.e.,
specific spectral values obtained through the 2nd derivative),
curvature values, and curvature behavior. %e effectiveness of
this method was demonstrated with different datasets from
completely different fields of application. In particular, the
separation of materials with significant geometric differences
in the course of the curve leads to convincing results, which is
reflected in the Overall Accuracy (OA) of the plastic dataset
with 96.94% and the real waste dataset with 98.42%.

An essential advantage over classical classification ap-
proaches is the possibility of describing the course of a
spectrum in detail on the basis of a few selective parameters.
Classic approaches do not require a previous analysis of the
data and offer the advantage of automated processing based
on the actual data. %e prerequisite for this is, on the one
hand, the availability of a large number of training data,
which is not always readily available and could be a very
time-consuming task (e.g., annotation), and preprocessing
in the form of a dimensional reduction. %is reduction is a
selection of informative bands and often leads to a loss of
information within the spectral signatures, because it is
based on pure statistical reduction. With the method pre-
sented here, the finest changes in the course of the curve can
be identified and modelled by using theoretically only one

Table 3: Classification accuracies for plastic dataset.

Metrics Rule-based
method

SVM
(a)

SVM
(b)

SVM
(c)

Overall accuracy 0.9694 0.9647 0.9641 0.9641
Precision 0.9604 0.9731 0.9403 0.9403
Sensitivity 0.9551 0.9272 0.9623 0.9623
False positive Rate 0.0077 0.0114 0.0076 0.0076
F1-score 0.9564 0.9487 0.9503 0.9503
Kappa 0.8603 0.8384 0.8358 0.8359
(a) Solver: C-SVC; Classification type: one-versus-all; kernel: RBF; C-value: 1; threshold: 0.5. (b) Solver: C-SVC; classification type: one-versus-all; kernel:
linear; C-value: 1; threshold: 0.3. (c) Solver: C-SVC; classification type: one-versus-all; kernel: polynomial; C-value: 1; threshold: 0.3.
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(a) (b) (c)

(d) (e) (f )

Figure 20: Classification results using (a) proposed shape-based method; SVM with (b) RBF kernel, C-value of 0.2, and classification
threshold of 0.2; (c) RBF kernel, C-value of 0.2, and classification threshold of 0.3; (d) RBF kernel, C-value of 0.2, and classification threshold
of 0.4; (e) RBF kernel, C-value of 0.2, and classification threshold of 0.5; (f ) RBF kernel, C-value of 0.2, and classification threshold of 0.6.
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spectrum instead of a large amount of training data. %e
prerequisite for this is a previous analysis of the spectral
signatures and the establishment of the rules based on expert
knowledge. %is process may be considered time-consum-
ing, but considering the parameters used, it does not require
a particularly high investment of time.

An automated generation of the rules would also be
conceivable, since the essentially used parameters such as
curvature value, curvature point, and curvature behavior are
determined by simple mathematical methods. A disadvan-
tage that can arise with the automatic formulation of rules is
that the number of rules increases with the number of
categories. %is can lead to complex rules that conflict with
each other. Modelling the rules based on expert knowledge
can avoid this by understanding the interaction of the
factors, which makes it possible to formulate the simplest
concept that gives the best results. Basically, when dealing

with spectral data, it can be stated that the number of
categories that can be classified from spectral bands is small
enough that a limited number of rules can be used. %e
analysis of spectral signatures in advance has the further
advantage that there is no need to use the entire spectrum for
classification. If significant shape differences are detected
within a limited spectral range, it is sufficient to consider
only this range in order to establish the rules based on it,
which leads to an increase in performance.

While spectral values can vary strongly depending on
different factors, differences in the shape of spectral signatures
are only due to differences in material composition. %is fact
is the reason for the promising results and confirm our ex-
pectations of the proposed analytical method, which is robust
to spectral variations and allows an unambiguous description
of the spectra based on the basic idea of using the shape of the
individual fingerprint of different materials or objects.

Table 4: Classification results for real waste dataset.

Metrics Rule-based method SVM (a) SVM (b) SVM (c) SVM (d) SVM (e)
Overall accuracy 0.9842 0.9770 0.9826 0.9805 0.9760 0.9586
Precision 0.9842 0.9398 0.9698 0.9807 0.9856 0.9854
Sensitivity 0.9498 0.9477 0.9434 0.9353 0.9208 0.8831
False positive Rate 0.0075 0.0093 0.0098 0.0119 0.0152 0.0267
F1-score 0.9661 0.9396 0.9540 0.9556 0.9504 0.9290
Kappa 0.9506 0.9283 0.9456 0.9392 0.9249 0.8707
(a) Solver: C-SVC; classification type: one-versus-all; kernel: RBF; C-value: 0.2; threshold: 0.2. (b) Solver: C-SVC; classification type: one-versus-all; kernel:
RBF; C-value: 0.2; threshold: 0.3. (c) Solver: C-SVC; classification type: one-versus-all; kernel: RBF; C-value: 0.2; threshold: 0.4. (d) Solver: C-SVC;
classification type: one-versus-all; kernel: RBF; C-value: 0.2; threshold: 0.5. (e) Solver: C-SVC; classification type: one-versus-all; kernel: RBF; C-value: 0.2;
threshold: 0.6.
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Figure 21: Spectra of measured plants. Two different cameras were used to acquire the spectra (Specim FX10 and Specim FX17). %e
discontinuities in the range of 900 nm and the greater noise in the VIS range can be explained by the differences in spectral sensitivity of the
cameras. In particular, the range below 500 nm exhibits strong noise effects and was not considered in the rule formation. Taraxacum (1),
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Furthermore, the processing time must be mentioned.
%e pixel-by-pixel processing and checking for conditions
usingMATLAB on amachine with an Intel(R) Core(TM) i7-
10700 CPU @ 2.90GHz and 16GB RAM takes 113.42
seconds for the plant dataset (1220× 640 pixels and 462
bands) shown in Figure 23. In comparison, the shape-based

classification in [34] for a dataset of 512× 512 pixels and 6
bands takes about 9 minutes (computer configuration: CPU
2.93GHz and installed memory 4.00GB). Another com-
parison with a research using a classic classification method
like SVM also shows a better performance. %e processing
time for a comparable dataset of 1168× 696 pixels and 520
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Figure 22: Spectral variations in VIS for one type of moss regarding all pixels in the red box.
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bands takes 2980.21 seconds using 30 bands and 9381.37
seconds using all bands of the dataset (computer configu-
ration: Intel Core i7-6800k 3.40-GHZ CPU and installed
memory 64GB) [55].

5. Conclusions

Considering the shape of spectral signatures and describing
them by curvature parameters and spectral values proves to
be a convincing supervised method for classifying diverse
groups of materials from different fields of application.
Further evaluation on publicly available datasets, e.g., from
the field of remote sensing, also with respect to other
classification methods, would be of interest. A possible
disadvantage of this methodology could be the necessary
prior analysis of the data. %is circumstance could be
eliminated by automation. Especially in the case of signif-
icantly different spectra, like the plastic samples, automation
is certainly feasible and would bring the benefit of an un-
supervised method.
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