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�e quantitative description of the impact damage of yellow peaches is an essential basis for evaluating their quality and guiding
their postharvest handling. In this study, the combined hyperspectral technology andmechanical parameters method were used to
quantitatively investigate the impact damage of yellow peaches. Firstly, the mechanical parameters, which are damaged area,
absorbed energy, maximum contact force, and maximum stress of yellow peaches, were obtained by the impact device. �e
statistical regression models between mechanical parameters and damage area were established, and the results showed that the
absorbed energy and maximum contact force are the optimal parameters to characterize the impact damage of yellow peaches.
�en, the raw spectra were preprocessed by three spectral pretreatment methods, which are standard normal variate (SNV),
multiplicative scatter correction (MSC), and SG smoothing, respectively, and the feature wavelengths were selected by the
competitive adaptive reweighted sampling (CARS), and the quantitative relationships between spectra andmechanical parameters
were successfully modeled based on partial least squares regression (PLSR). �e results showed that there is a strong linear
correlation between the spectral data and the mechanical parameters, and the prediction performance of the SNV-CARS-PLSR
model is best, and the RP and RMSEP of the damaged area, absorbed energy, maximum contact force, and maximum stress of it
were 0.920 and 86.452mm2, 0.845 and 1.303 J, 0.943 and 49.666 N, 0.660 and 0.146MPa, respectively. In a word, this study shows
that the combined hyperspectral technology and mechanical parameters method can be used to quantitatively assess the impact
damage of yellow peaches, and guide the postharvest handling of fruits.

1. Introduction

Yellow peaches are rich in nutrition and can be consumed
regularly to improve immunity, and the risk of chronic
diseases can be reduced by it. However, yellow peaches are
inevitably subjected to mechanical damage during har-
vesting, processing, packaging, and transporting [1, 2].
According to the relevant literature, the impact damage
caused by the impact forces between fruits or between fruits
and equipment during harvest, transporting, and processing
is the most common type of mechanical damage to fresh
fruits [3, 4]. �e bruising of fresh fruit dramatically reduces
its quality, which leads to economic losses for farmers.

Although fruit bruises can be detected by advanced ma-
chines and the damaged fruit can be discovered and it can be
picked out in time, the incidence of impact damage is not
reduced by this method. �us, preventive measures should
be taken during packing, transporting, and processing to
reduce the incidence of fruit bruises [5, 6]. �erefore, it is
critical to analyse the mechanical properties of fruits.

Mechanical parameters such as maximum force, maxi-
mum stress, average pressure, absorbed energy, restitution
coe¢cient, impact velocity, and acceleration are the main
parameters in characterizing the degree of impact damage of
fruits [7–9]. Strope and Gołacki [10] designed a fruit col-
lision device based on the principle of the single pendulum
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to record the maximum force, maximum stress, and per-
manent deformation of apples when they were impacted. It
was discovered that permanent deformation and maximum
stress were the optimum parameters for assessing impact
damage to apples. An et al. [11] investigated the damage
mechanism of the internal structure of strawberries. -ey
found that the absorbed energy was an appropriate and
easily measurable mechanical parameter for evaluating the
damage degree of strawberries. However, these research
studies only analyzed the correlation between the different
mechanical parameters and the degree of impact damage of
fruits, and the quantitative prediction of the impact damage
degree of fruits has not been achieved. Hence, it is essential
to find a method to quantitatively evaluate and predict the
degree of impact damage on fruits.

In recent years, with the emergence and development of
hyperspectral technology, more and more researchers have
used hyperspectral technology to detect the internal quality
and external damage of fresh fruits [12]. Hyperspectral is a
fast and nondestructive technique that integrates spectro-
scopic and imaging technologies to provide spectral and
spatial information about the object being detected simul-
taneously [13, 14]. Tan et al. [15] used spectral data to es-
tablish a classification model of different damage levels of
apples. Zhao et al. [16] used combined hyperspectral
technology and finite element analysis to build a visuali-
zation model of bruised Goji berries. -e hyperspectral
technology can also be used to detect the fungal contami-
nation in strawberries [17], the hollowness classification of
white radish [18], common defects in citrus [19], and black
spots on potatoes [20]. To detect fruit bruises, many re-
searchers have established bruise classification models for
various fruits by associating hyperspectral information with
the physicochemical properties of fruits (e.g., soluble solids,
titratable acids, flesh color, and hardness) [21–24]. But these
models only distinguish whether the fruit was damaged.
Meanwhile, Zhang et al. [25] used the hyperspectral imaging
technique within the wavelength range of 900–1700 nm to
quantitatively investigate the impact damage of apples, and
the PLSR model was established. Xu et al. [26] used a
pressure-sensitive film technique to measure the mechanical
parameters and collected hyperspectral data of apples in the
range of 900–1700 nm to establish a quantitative prediction
model of the mechanical parameters for apples. However, on
the one hand, they use a collision device based on the free fall
principle to measure the mechanical parameters of apples,
the impact area of apples is not always located at its
equatorial zone during free fall, and the pressure-sensitive
film has a buffering effect on the apple impact process, which
lead to increasing the measurement error of the mechanical
parameters; on the other hand, using hyperspectral imaging
to quantify the impact damage to yellow peaches is rarely
reported.

-erefore, the combined hyperspectral technology
within the wavelength range of 397.5–1014 nm and me-
chanical parameters method is proposed to quantitatively
investigate the impact damage of yellow peaches. Firstly, in
order to reduce the measurement error of mechanical pa-
rameters of fruits, the new collision device, which contains a

single pendulum mechanism, a high-speed camera, and an
intelligent data acquisition system (DASP-V11), is designed,
and the mechanical parameters of yellow peach impact
damage are obtained by it. -en, the statistical regression
models between mechanical parameters and damage area
are established to find the optimal mechanical parameters
characterizing the impact damage of yellow peaches. Finally,
the PLSR model between spectral variables and mechanical
parameters is established to quantify and predict the impact
damage of yellow peaches.

2. Material and Methods

2.1. Yellow Peach Samples. All samples in this study are
“Dangshang” yellow peach and they were stored at 4°C for
less than 2 weeks after their harvest. A total of 180 fresh,
undamaged, and regularly shaped yellow peaches were used
in this experiment. To reduce the influence of the weight and
curvature radius of the yellow peaches on the bruise size, the
average weight of samples was about 248± 5 g, and the
equatorial diameter was about 78mm. Before the collision
experiments, all yellow peaches were cleaned and numbered.
-ey were placed in a room with 20°C and 40% relative
humidity for 24 hours to minimize the effect of fruit tem-
perature on impact damage. All samples were randomly
divided into 6 groups. In order to obtain different degrees of
impact damage, 6 groups of samples were released from
angles of 30°, 40°, 50°, 60° 70°, and 80°.

2.2. Collision Device andMeasurement Instrument. -e fruit
impact device used in this paper is designed based on the
single pendulum principle, and its structure is shown in
Figure 1. -e device consists of a support frame and a base,
on which there is a removable flat plate underneath the base,
and the pressure sensor (Cheng Ying Sensor Co., Bengbu,
China) is mounted on the flat plate. -e pendulum arm was
made of 80 cm of nonextendable fishing line, and the fruit jig
was made of a new material, polylactic acid (PLA), by a 3D
printer. -e weight of both the fruit jig and fish line is so
small that it can be negligible; therefore, the effect of the
mass of the jig and rotational inertia generated by the swing
arm can be ignored. When the pendulum arm was moved to
the lowest point, the pendulum arm was parallel to the
support frame in the vertical direction, which ensured that
the impact force was perpendicular to the impact surface and
the center collision condition of the force sensor was met.
-e device also has a fixed protractor, and the controlled
angle of the pendulum armwas from 5° to 85°. After each test
sample impacts the pressure transducer, the sample was
grabbed by hand to prevent a second impaction. -e force
response during the collision can be measured by means of a
pressure sensor, model HZC-H1, with a sensitivity of
2.00mV/N and a measurement range of 0–100 kg.

Two systems were used to collect the mechanical pa-
rameters of the experiment. -e intelligent data acquisition
apparatus (DASP-V11, Coinv, China) was connected to the
force transducer, and it could record the force response
process in time; the collected data were calculated and
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analyzed by relevant software of DASP-V11, and the me-
chanical parameters such as maximum contact force and
average force can be obtained; -e sampling frequency of
force was 51.2 kHz, and the calibration value was 0.02mV/N,
and the measurement was triggered when the contact force
was greater than 0.5N. -e high-speed digital camera
(HXC20NIR, Hamamatsu, Japan) and a lens with a constant
focal length of 35mm were used to capture the entire col-
lision and bounce process, and the picture acquisition speed
was set to 1000 frames/s. Due to the high shooting speed, the
whole experiment needs to be illuminated by the high
brightness and strobe-free LED lamp (Opple, Shanghai,
China). In this experiment, the high-speed camera was
placed on the lifting platform, which can be adjusted with an
accuracy of 1mm in both directions to reduce the mea-
surement error caused by inaccurate camera positioning. In
this impact test, the conversion from pixels to millimeters of
image size was 0.130mm/pixel.

2.3. Calculation and Measurement of Mechanical Parameters

2.3.1. Damage Area. After the impact experiment, in order
to easily identify and measure the damaged areas of yellow
peach, the samples were stored at 20°C for 24 hours [27]. In
this experiment, the damaged region of all samples can be
approximated as a circle. -us, the diameters in two mu-
tually perpendicular directions of the damaged area were
measured by a digital vernier calliper (accuracy 0.01mm)
and the average of the two diameters was used as the di-
ameter of the damaged yellow peach. -e damaged area was
calculated by formula (1)

A �
πD

2

4
, (1)

where A is the damaged area (mm2),D is the bruise diameter
(mm).

2.3.2. Absorbed Energy. Due to the plastic deformation of
yellow peaches, some of the impact energy will be absorbed
by the yellow peaches in the impact collision test. Ignoring
the energy loss, the absorbed energy of the yellow peach is
equivalent to the difference between the impact energy and
the rebound energy; the higher the absorbed energy, the

higher the damage caused to the fruits. Since the high-speed
camera can acquire 1000 images in 1 s, the speed of the
yellow peach was low at the time of impact and bounce.
-erefore, the movement of the spatial position of the yellow
peach in two consecutive frames of images was the dis-
placement of the yellow peach in ∆t time (in this experiment,
∆t� 1× 10−3·s). -e two connected frames of images before
and after the collision were selected. -e distance of the
yellow peach moving in the picture was solved by the
impixelinfo function in MATLAB R2018b [28, 29]. Hence,
the impact velocity and rebound velocity of yellow peaches
can be calculated by formula (2):

v �
s

t
, (2)

where S is the actual displacement of the yellow peach and t
is the time difference between the two connected frames of
images (t� 1/1000 s). For the accuracy of the results, the
velocity values of several points were solved in this study,
and then they were averaged. After computing the velocity
values of each yellow peach before and after the collision, the
absorbed energy of the yellow peach can be calculated by
formula (3).

ΔE �
1
2

m v
2
1 − v

2
2 , (3)

where v1 is the velocity of yellow peach before the collision,
v2 is the velocity of yellow peach after the rebound, and m is
the mass of yellow peach.

2.3.3. Maximum Contact Force and Maximum Stress.
-e DASP-V11 was connected with the force sensor to
record the force response process in real time. -en, the
collected data were analyzed in the time domain by relevant
software, and the maximum contact force at the time of
collision of each yellow peach can be obtained. -e whole
collision process of the yellow peach was recorded by the
high-speed camera. When the impact force reaches its
maximum value, the contact width between the yellow
peach collision surface and the force sensor could be de-
termined by the photos taken by the high-speed camera,
and the contact area at this time could be calculated by
formula (4): [30].
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Figure 1: Structure diagram of the impact device: 1-protractor, 2-pendulum arm, 3-fruit fixture, 4-dynamic bumper plate, 5-pressure
sensor, 6-intelligent data acquisition and signal processing, 7-high-speed camera, 8-light source, 9-PC, 10-release angle.
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Acont �
πw

2
cont
4

, (4)

where Acont is the contact area, wcont is the contact width.
-e maximum stress is calculated by formula (5):

σmax �
Fmax

Acont
, (5)

where σmax is the maximum stress, Fmax is the maximum
force, and Acont is the contact area.

2.4. Hyperspectral Images Acquisition and Extraction.
After the damaged peaches were left at a room temperature
of 20°C for 24 hours, the hyperspectral images of the
damaged surface of yellow peaches were acquired by the
hyperspectral imaging system. -e hyperspectral imaging
acquisition system is shown in Figure 2. -e system consists
of an imaging spectrometer, a charged coupled device
(CCD) camera, four halogen headlamps, and a moving
platform. In this study, the wavelength range was
397.5–1014 nm, and the spectral resolution was 3.5 nm with
176 bands. -e relevant parameters were set as follows: the
distance between the camera lens and the sample was 48 cm,
the exposure time was 6ms, and the advancing speed of the
moving platform was 3 cm/s.

Before data processing and analysis of the acquired
hyperspectral images of yellow peaches, the reflectance of all
raw spectral images needs to be calibrated in black and white
due to dark currents and light inhomogeneities in the CCD
camera. -e white reference image was acquired by the
camera capturing the white calibration plate, and the image
when the lens was obscured entirely was captured as the
black reference image. -e calibration images were calcu-
lated by formula (6):

Ι �
Ιr − Ιd
Ιw − Ιd

, (6)

where Ir is the original hyperspectral image, Id is the dark
reflection image, and Iw is the white reflection image. A
rectangular region of interest (ROI) was selected in the
yellow peach damage area and the average spectral value of
the ROI region was calculated using ENVI4.5 software.

2.5. Spectral Pretreatment. -e quality of the information of
the damaged area is reflected by the raw spectra. But, in
collecting the raw spectra, the sample state, instrument
performance, and other external environmental distur-
bances may introduce information which is not relevant to
the quality of the damaged area, such as system noise and
ambient stray light. -ere is not a standard about which is
the best type of pretreatment for spectra [31]. -erefore, it is
necessary to use different methods to pretreat the original
spectra so that an appropriate preprocessing method can be
selected. In this study, the standard normal variate (SNV)
transformation, multiplicative scatter correction (MSC), and
SG smoothing are used to pretreat original spectra,
respectively.

2.6.CharacteristicWavelengthSelection. -edata processing
rate is slowed down by a large amount of full-spectrum
wavelength data.-e redundancy and covariance of adjacent
wavelength data points and the online application of
hyperspectral imaging technology are limited.-erefore, the
feature extraction algorithm is needed to select the most
representative feature wavelengths from the full-band
spectrum to meet the requirements of fast detection. In this
study, the competitive adaptive reweighted sampling
(CARS) method was used to select the characteristic
wavelengths.

-e CARS is a feature wavelength selection method
based on Monte Carlo sampling with PLS model regression
coefficients [32]. -e variables with larger absolute values of
regression coefficients in the PLS model are selected by the
adaptive reweighting technique (ARS) and exponential
decay function (EDF).-en the variables in the subset of PLS
models with the smallest RMSECV are selected as the
characteristic wavelengths by cross-validation. -e main
steps for selecting the characteristic wavelengths are de-
scribed in detail in subsequent sections of this paper.

2.7. Partial Least Squares Regression (PLSR). -e method of
partial least squares regression (PLSR) is one of the most
commonly used methods in quantitative analysis. -e
method incorporates principal component analysis and
typical correlation on the basis of ordinary multiple re-
gression, and the problem of multicollinearity of indepen-
dent variables can be solved by it [33]. -e choice of the
number of principal components is very important in the
modelling process, where PLSR model performance is
strongly affected. Underfitting will occur if the number of
principal components is too small. If too many principal
components are selected, overfitting will occur. -erefore,
the optimal number of principal components can be selected
by cross-validation.

It is difficult to obtain an ideal sample set from a ran-
domly selected sample. Currently, the most commonly used
sample selection method is the Kennard-Stone (KS) method.
-e KS method can uniformly select samples in the feature
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Figure 2: Schematic illustration of the hyperspectral imaging
system.
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space based on the Euclidean distance between variables.
-erefore, the KS method is used to select 20 samples from
each release angle, with a total of 120 samples selected as the
modelling set and the remaining 60 samples selected as the
prediction set in this study. -e PLSR models of damage
area, absorbed energy, maximum contact force, and maxi-
mum stress were built, respectively.

-e main metrics used to evaluate the performance of
the PLSR model are the modelling set correlation coefficient
(RC), the root mean square error of the modelling set
(RMSEC), the prediction set correlation coefficient (RP), and
the root mean square error of the prediction set (RMSEP).
-e closer the correlation coefficient (R) is to 1, the more
stable the model is, and the smaller the root mean square
error (RMSE) is, the more accurate the model is. In addition,
the results are compared based on RPD values, a greater
value of RPD can be considered as a good prediction.

3. Results and Discussion

3.1. Measurement Results and Statistical Analysis of Me-
chanical Parameters. Figure 3 shows the measured results of
the mechanical parameters of yellow peaches at 6 different
release angles. As can be seen from Figures 3(a) and 3(b), the
damage area, absorbed energy, maximum contact force, and
maximum stress all gradually increase with the angle of
release of yellow peach increasing. -e greater the angle of
release is, the more severe the impact damage to the yellow
peach is. As can be seen from the error bars in the graph, the
values of mechanical parameters show some volatility. After
analysis, there are two main factors: on the one hand, the
values of mechanical parameters are influenced by the
physiological characteristics of the yellow peaches them-
selves, such as the hardness of the flesh, the radius of
curvature, and the heterogeneity of the internal structure; on
the other hand, they are influenced by external factors such
as the oscillating attitude of the yellow peaches in the air, the
position of the collision, the vibration of the support frame,
and the system error. However, each mechanical parameter

shows a certain linear variation with the release angle in-
creasing, which indicates that it is feasible and reasonable to
characterize yellow peaches’ degree of impact damage by
mechanical parameters.

Figure 4 shows the results of linear regression analysis
of the mechanical parameters of yellow peaches. Damage
area is the most intuitive parameter to characterize the
extent of impact damage to yellow peaches. In this study, a
statistical regression model was developed to investigate
the quantitative relationship between mechanical param-
eters and the damaged area of yellow peaches, the damaged
area is used as the dependent variable and mechanical
parameters are used as the independent variables, so as to
indirectly identify the optimal mechanical parameters
characterizing the degree of impact damage to yellow
peaches. From Figures 4(a) and 4(b), it can be seen that the
absorbed energy and maximum contact force of samples
have well linear correlations with the damaged area, and
the R2 is 0.83 and 0.90, respectively, which indicates that the
absorbed energy and maximum contact force are the op-
timal mechanical parameters to characterize the impact
damage of yellow peaches.

Figure 4(c) shows that the linear fit between the maxi-
mum stress and the damage area is not satisfactory. -is is
consistent with the findings of Lewis et al. [1] and Lu et al.
[34]. After analysis, there are two possible reasons for this:
firstly, there are certain differences in the firmness, radius of
curvature, and mass of each yellow peach itself, which leads
to a large error in the contact area of the yellow peach when
the contact force reaches its maximum during the collision,
resulting in an inaccurate calculation of themaximum stress.
Secondly, from amaterial science perspective, the location of
the maximum stress is randomly distributed, and it can only
represent the stress value at a certain location on the
damaged surface of the yellow peach, and the changing
pattern of the whole damaged area cannot be reflected by it.
-erefore, the use of maximum stress alone does not provide
a satisfactory evaluation of the impact damage degree. In
future work, the influence of the properties of the fruit itself

D
am

ag
ed

 A
re

a (
m

m
2 )

0

100

200

300

400

500

600

700

M
ax

im
um

 C
on

ta
ct

 F
or

ce
 (N

)

0
100
200
300
400
500
600
700
800
900

40 ° 50 ° 60 ° 70 ° 80 °30 °
Collision Angle

Damaged Area
Maximum Contact Force

(a)

40 ° 50 ° 60 ° 70 ° 80 °30 °
Collision Angle

0

2

4

6

8

10

Ab
so

rb
ed

 E
ne

rg
y 

(J
)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

M
ax

im
um

 S
tre

ss
 (M

Pa
)

Absorbed Energy
Maximum Stress

(b)

Figure 3: Changes in mechanical parameters of yellow peach at different collision angles: (a) Damage area and maximum contact force; (b)
Absorbed energy and maximum stress.
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on the experimental or the combination of the maximum
stress with other mechanical parameters will be further
controlled to assess the impact damage of the fruit.

3.2. Spectral Characteristics Analysis. Figure 5 shows the
average spectra of yellow peach samples at six different
collision angles. As can be seen from Figure 6, all the average
spectral curves show distinct troughs at 704 nm and 995 nm,
where the trough at 704 nm is due to the vibrational con-
traction of the C-H bond in the carbohydrate, and the trough
at 995 nm is due to the O-H bond in the water molecule [35].
Specifically, impact damage can cause tissue damage and cell
rupture in yellow peaches. After cell rupture, enzymes and
water molecules are released, resulting in the light scattering
in the damaged fruit tissue changing. Hence, the reflectivity
of damaged yellow peaches displays differences. -e average
spectral reflectance of the damaged yellow peaches is sig-
nificantly lower than the average spectral reflectance of the
healthy yellow peaches. -is is consistent with the finding
that the water content of damaged areas of fruits is usually
higher than that of normal tissues [36]. In addition, the
samples of different degrees have similar spectral curve
trends, but their spectral reflectance is obviously different in
the same band; the more severely damaged the yellow
peaches are, the lower the spectral reflectance is. -is in-
dicates the degree of damage of yellow peaches can be

reflected by the average spectral curve. -erefore, this study
will establish a prediction model between the spectral data
and the mechanical parameters to quantitatively assess the
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extent of impact damage to yellow peaches. However, the
average spectral curves of yellow peaches with different
damage levels overlapped severely. Spectral data processing
is needed to improve the modelling accuracy between the
spectral data and the mechanical parameters.

3.3. Results of Spectral Preprocessing. Figure 6 shows the
spectral curve after pretreatment by different methods. As it
can be seen from Figure 6, although the pretreatment
methods are different, the trend of the spectral curve is not
basically changed. -e position of the absorption peaks in
the spectra is different, which is due to the different chemical
content of each yellow peach damage region. As shown in
Figure 6(c), there is no significant difference between the SG
preprocessed spectra and the original spectra, it indicates
that the SG preprocessing method does not filter out the
noise information in the original spectra.-e spectral curves
in Figures 6(b) and 6(d) are more convergent and compact,
indicating that after preprocessing by the SNV and MSC
methods, small variations in the original spectral curves are
amplified, while partially overlapping spectral signals are
also separated. Overall, both the SNV and MSC methods are
effective in removing the influence of scattering on spectral
reflectance, and the spectral signal-to-noise ratio is im-
proved. However, it is not straightforward to determine

which pretreatment method is more effective from the
spectral curve alone. -erefore, further analysis in con-
junction with the modelling results is required.

-e PLSR models are established based on raw spectral
and preprocessed spectral data, respectively, and the results
are shown in Table 1. -e comparative analysis reveals that
the different pretreatment methods have different effects on
the performance of PLSR models with different mechanical
parameters. Although the spectral curves after SNV and
MSC pretreatment are basically same, for the prediction of
damage area, absorbed energy, maximum contact force, and
maximum stress, the RP and RMSEP of the SNV-PLSR
model are 0.891 and 102.021mm2, 0.838 and 1.337 J, 0.907
and 70.319 N, and 0.664 and 0.145MPa, respectively, and the
values of RPD are 2.111, 1.521, 2.225, and 1.121, respectively.
-e RP and RMCEP of the MSC-PLSR model are 0.878 and
105.599mm2, 0.829 and 1.317 J, 0.901 and 69.961 N, and
0.641 and 0.148MPa, respectively. -e values of RPD are
1.923, 1.512, 2.224, and 0.966, respectively. -e results show
that the SNV-PLSRmodel’s prediction performance is better
than the MSC-PLSR model. It is worth noting that for the
prediction of damage area, the RP and RMSEP of the Raw-
PLSRmodel are 0.923 and 88.664mm2,, respectively, and the
value of RPD is 2.583. It can be seen that the results of Raw-
PLSR are better than those of SNV-PLSR in the prediction of
the damaged area, but the prediction values of them are
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similar. In general, the raw spectra preprocessed by SNV is
better.-erefore, the SNV preprocessed spectral data is used
for the subsequent data analyses.

3.4. Characteristic Wavelength Selection. In this paper, the
characteristic wavelengths of spectral data by SNV are
extracted by CARS. In screening the characteristic wave-
length of the mechanical parameters, the number of Monte
Carlo samples is set to 100. Figure 7 shows the selection
process of the characteristic wavelength of the damaged area.
Figure 7(a) shows that the number of variables decrease as
the number of samples increase, and the speed of variable
reduction decreases from fast to slow due to the exponential
decay function, indicating the selection process of variables
is from “rough selection” to “exquisite selection.” Figure 7(b)
shows that the cross-validated values of RMSECV of PLS
models decrease and then increase with the number of
sampling operations as the number of sampling operations
increase. -e RMSECV value reaches the minimum value at

the 48th sampling time, which indicates that the information
is not related to the damaged area or the covariance has been
removed in the 1–48th sampling operations. -e RMSECV
value increases after the 49th sampling operation, which
indicates that the information related to the damaged area
has been removed. Figure 7(c) represents the path of change
in regression coefficients for 176 variables in the sample.-e
value of RMSECV based on the subset of variables obtained
in the 48th sampling is minimized; thus, the variables ob-
tained in the 48th sampling are designated as the charac-
teristic wavelengths, which contain 21 variables, 441.3, 458.3,
468.3, 478.7, 533.4, 774.9, 792.7, 799.9, 803.4, 807, 810.6,
821.3, 828.5, 860.9, 864.5, 875.3, 889.8, 897.1, 904.3, 929.8,
and 944.3 nm. In the latter study, these 21 wavelengths are
used to predict further the damaged area of yellow peach
instead of the full waveband.

-e results of the characteristic wavelength selection for
all mechanical parameters are shown in Table 2. As shown in
Table 2, the number of characteristic wavelengths for

Table 1: PLSR model prediction results of spectra after preprocessing with different methods.

Spectral pretreat type Parameter PCs
Modeling set Prediction set

RMSEC RC RMSEP RP RPD

Raw

DA (mm2) 8 83.515 0.925 88.664 0.923 2.583
AE (J) 8 1.351 0.823 1.433 0.815 1.432

MCF (N) 9 64.096 0.904 71.455 0.879 1.969
MS (MPa) 8 0.162 0.699 0.147 0.642 0.954

SNV

DA (mm2) 7 94.885 0.903 102.021 0.891 2.111
AE (J) 13 1.271 0.849 1.337 0.838 1.521

MCF (N) 11 62.520 0.909 70.319 0.907 2.225
MS (MPa) 6 0.164 0.695 0.145 0.664 1.121

MSC

DA (mm2) 7 93.509 0.905 105.599 0.878 1.923
AE (J) 13 1.254 0.857 1.317 0.829 1.512

MCF (N) 11 61.955 0.911 69.961 0.901 2.224
MS (MPa) 7 0.162 0.695 0.148 0.641 0.966

SG

DA (mm2) 9 82.974 0.926 91.779 0.920 2.559
AE (J) 9 1.306 0.836 1.498 0.799 1.340

MCF (N) 9 65.504 0.900 70.723 0.881 1.980
MS (MPa) 8 0.161 0.696 0.155 0.614 0.887

DA: damaged area; AE: absorbed energy; MCF: maximum contact force; MS: maximum stress. PCs: the number of principal components. Bold values
indicates the optimal prediction results for each mechanical parameter.
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Figure 7: Variable selection based on CARS.
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damage area, absorbed energy, maximum contact force, and
maximum stress are 21, 9, 28, and 26, respectively. -e
number of selected bands accounts for 11.9%, 5.1%, 15.9%,
and 14.7% of the total bands, respectively. Most of the
characteristic wavebands for each mechanical parameter are
different, indicating that the corresponding characteristic
information of the spectral variables is different for different
mechanical parameters.

3.5. PLSRModel Results Based onCharacteristic Spectral Data
and Mechanical Parameters. In this research, the PLSR
models based on the characteristic wavelengths selected by
the CARS and the full-wavelength variables are built, re-
spectively. -e results are shown in Table 3. As it can be seen
from the table, for the prediction of damage area, absorbed
energy and maximum contact force, the RP and RMSEP of
the SNV-PLSR model are 0.891 and 102.021mm2, 0.838 and
1.337 J, and 0.907 and 70.319 N, respectively, and the values
of RPD are 2.111, 1.521, and 2.225, respectively. -e RP and
RMSEP of the SNV-CARS-PLSR model are 0.920 and
86.452mm2, 0.845 and 1.303 J, and 0.943 and 49.666 N,
respectively. -e values of RPD are 2.415, 1.622, and 2.947,
respectively. -e results show that the SNV-CARS-PLSR
model prediction performance based on characteristic
wavelengths is better than the SNV-PLSR model prediction
performance based on full wavelengths in predicting damage
area, absorbed energy, and maximum contact force. How-
ever, for the prediction of maximum stress, the SNV-PLSR
model prediction accuracy is slightly higher than that of the
SNV-CARS-PLSR model. -e possible reason for this is that
some of the spectral information associated with the max-
imum stress is removed when the characteristic wavelengths
are selected, resulting in the amount of characteristic

spectral information input to the model being reduced, thus
the prediction accuracy of the model is reduced. Overall, the
selection of the characteristic wavelengths affects the pre-
diction accuracy of the PLSR model, and the SNV-CARS-
PLSR model based on fewer variables achieves a high pre-
diction accuracy. -is indicates that the characteristic
wavelengths selected by CARS can replace the full wave-
lengths.-erefore, the selected characteristic spectral data by
CARS is used for the subsequent data analyses.

Figure 8 shows the correlation between the predicted
values and the true values of the mechanical parameters,
the X-axis is the actual measured value and the Y-axis is
the predicted value. As it can be seen from Figures 8(a)–
8(c), all sample points are evenly distributed around the
regression line and the sample points are relatively close to
the regression line, indicating that the characteristic
wavelengths selected based on the CARS method basically
cover the characteristic information of the yellow peach
damage region. -e damage area, absorbed energy, and
maximum contact force of yellow peach are well predicted
by the PLSR model, indicating there is a strong linear
correlation between the spectral data and the mechanical
parameters of yellow peach.-e RP and RMSEP of damage
area, absorbed energy, and maximum contact force are
0.920 and 86.452mm2, 0.845 and 1.303 J, and 0.943 and
49.666 N, respectively. It indicates that the mechanical
damage area, absorbed energy, and maximum contact
force of yellow peach parameters can be accurately pre-
dicted by the SNV-CARS-PLSR model. Comparing with
the full wavelengths, the 2.8%–8.5% variables of the full-
spectrum are used in this model, and the detection effi-
ciency is greatly improved, which is beneficial to practical
applications.

Table 2: -e characteristic wavelength of different mechanical parameters selected by CARS.

Parameters Number of
wavelengths -e selected characteristic wavelengths (nm)

DA (mm2) 21 441.3, 458.3, 468.3, 478.7, 533.4, 774.9, 792.7, 799.9, 803.4, 807, 810.6, 821.3, 828.5, 860.9, 864.5, 875.3,
889.8, 897.1, 904.3, 929.8, 944.3

AE (J) 9 595.6, 602.5, 606, 792.7, 807, 835.7, 846.5, 875.3, 889.8

MCF (N) 28 397.5, 441.3, 588.6, 606, 647.8, 675.8, 689.9, 696.9, 774.9, 792.7, 799.9, 803.4, 807, 810.6, 821.3, 835.7,
868.1, 871.7, 879, 882.6, 889.8, 897.1, 904.3, 922.5, 929.8, 944.3, 999.3, 1010.3

MS (MPa) 26 397.5, 512.8, 516.3, 519.7, 554.1, 619.9, 623.4, 647.8, 661.8, 665.3, 672.3, 682.9, 696.9, 807, 810.6, 839.3,
853.7, 897, 882.6, 886.2, 897.1, 900.7, 904.3, 940.7, 944.3, 959

Table 3: Prediction results of the PLSR model with different mechanical parameters based on the full waveband the characteristic wave
band.

Model Parameter PCs
Modeling set Prediction set

RMSEC RC RMSEP RP RPD

SNV-PLSR

DA (mm2) 7 94.885 0.903 102.021 0.891 2.111
AE (J) 13 1.271 0.849 1.337 0.838 1.521

MCF (N) 11 62.520 0.909 70.319 0.907 2.225
MS (MPa) 6 0.164 0.695 0.145 0.664 1.121

SNV-CARS-PLSR

DA (mm2) 8 63.924 0.957 86.452 0.920 2.415
AE (J) 8 1.214 0.863 1.303 0.845 1.622

MCF (N) 14 46.646 0.950 49.666 0.943 2.947
MS (MPa) 5 0.159 0.714 0.146 0.660 1.118
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As shown in Figure 8(d), for the prediction of maximum
stress, the RP and RMSEP of the SNV-CARS-PLSR model are
0.660 and 0.146MPa, respectively, and the accuracy of the
prediction of maximum stress can be improved.-ere are two
main reasons for the unsatisfactory forecast results: on the one
hand, there are large errors in the calculation process of the
maximum stress, on the other hand, the linear correlation
between the maximum stress and the spectral data is weak.
-e PLSR model cannot accurately predict the maximum
stress. In future research, a better measurement method of the
contact area should be found to reduce the error in the
calculation of the maximum stress. Also, the best model for
predicting maximum stress is found, or the prediction per-
formance of the PLSR model for maximum stress by com-
bining spectral information with image features is improved.

4. Conclusions

In this study, hyperspectral imaging combined with me-
chanical parameters is used to quantitatively investigate the
impact damage of yellow peaches, and the PLSR models

between mechanical parameters and spectral variables are
established by chemometric methods. During the research,
the statistical regression models between the damaged area
and other mechanical parameters are established. -en,
the raw spectra are preprocessed by SNV, MSC, and SG
smoothing. Finally, the CARS is used to select the char-
acteristic wavelengths of the spectral data, and the PLSR
model is established based on the spectral data of char-
acteristic bands and full bands. After analysis and com-
parison, the main conclusions of this study are as follows:

(1) -e absorbed energy and maximum contact force of
yellow peaches have good linear correlations with the
damaged area, and their R2 are 0.83 and 0.90, re-
spectively, which indicates that the maximum con-
tact force and absorbed energy are the optimal
mechanical parameters to characterize the impact
damage of yellow peaches.

(2) Among the three preprocessing methods, the SNV
method has the best preprocessing effect on the
original spectral data.
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Figure 8: Scatter plot of the modeling set and prediction set: (a) Damaged area; (b) Absorbed energy; (c) Maximum contact force;
(d) Maximum stress.

10 Journal of Spectroscopy



(3) In the PLSR model, the SNV-CARS-PLSR model has
the highest prediction accuracy for damage area,
absorbed energy, maximum contact force, and
maximum stress. -e RP and RMSEP of this model
are 0.920 and 86.452mm2, 0.845 and 1.303 J, 0.943
and 49.666 N, and 0.660 and 0.146MPa, respectively.

In summary, the above research results confirm the
potential of NIR hyperspectral imaging technology to
quantitatively predict the mechanical parameters of yellow
peach. -is provides a theoretical basis for quantitatively
evaluating the quality and guiding the postharvest handling
of yellow peaches.
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