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Compressed hyperspectral imaging is a powerful technique for satellite-borne and airborne sensors that can e�ectively shift the
complex computational burden from the resource-constrained encoding side to a presumably more capable base-station decoder.
Reconstruction algorithms play a pivotal role in compressive imaging systems. Traditional model-based reconstruction ap-
proaches are computationally burdensome and achieve limited success. Deep learning-based approaches, while improving in
reconstruction accuracy and speed, depend heavily on data, which is a major challenge for satellite-borne hyperspectral
compressed imaging. In this article, we combine the respective advantages of model-based and learning-based approaches in a
distributed compressed hyperspectral sensing framework, employing linear mixed model assumptions and spectral library
learning to simultaneously improve the reconstruction speed and accuracy without using a large amount of additional
hyperspectral data. First, the relationship between the CS band and the key band is learned from the spectral library to ensure that
the key band endmembers can be accurately predicted. en, the joint horizontal and vertical di�erence operators are proposed to
enhance the estimation of the initial values of abundance. Finally, the CS band endmembers and residuals are updated in the
reconstruction module to deal with the endmember and abundance mismatch. Extensive experimental results on �ve real
hyperspectral datasets demonstrate that the proposed spectral library learning, abundance initialization, and reconstruction
strategy can e�ectively improve the compressed sensing reconstruction accuracy, outperforming the existing state-of-the-
art methods.

1. Introduction

Rich detail information endows hyperspectral images (HSIs)
with a wide range of applications, such as mineral explo-
ration, agriculture, military, etc. However, the huge volume
of data puts great pressure on the storage and transmission
of the onboard hyperspectral imaging system. Compressed
sensing (CS) [1] theory is one of the key technologies to
address massive data imaging.

CS theory points out that if the signal is compressible, we
can collect the signal at a rate much lower than Nyquist and

restore the original signal with high probability. CS tech-
nology perfectly realizes the combination of compression
and sampling and e�ectively reduces the computational
burden at the sampling end. Two key issues are inevitable in
the application of CS technology. One is the sampling mode,
which can optically collect data with compression.  e other
is how to reconstruct the original data accurately from a
small number of observations.

Hyperspectral images have a variety of sampling modes
due to their special 3D data structure, that is 2D spatial
information and 1D spectral information. For example, we
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can sample the compressed hyperspectral images of each
band using the same observation matrix as the gray image,
which is usually called spatial compressed sampling [2]. Of
course, we can also perform spectral compressed sampling
for each pixel [3, 4]. Spatial and spectral compressed
sampling alone is not conducive to data reconstruction.
,erefore, a variety of spatial-spectral joint sampling modes
is proposed. Coded aperture snapshot spectral imaging
(CASSI) [5] captured a compressed 2D measurement on the
detector by multiplexing spatial and spectral information
from the scene and modulating each spectral channel with
different masks. In the spectral domain, however, the
multiplexer of CASSI undergoes a deterministic uniform
transformation. 3DCS approach [6], consisting of optical
random convolution, random permutation, and spectral-
varying subsampling on a sensor, was proposed to reduce the
required sampling rate. Paired with an effective decoding
algorithm, 3DCS enables the recovery of large-scale HSIs
and videos. Compressive hyperspectral imaging by separable
spatial and spectral operators (CHISSS) [7] employed ran-
domly encoding both the spatial and the spectral domains.
Separable sensing architecture not only improves the
compression efficiency but also reduces the computational
complexity, making it especially suitable for large-scale
hyperspectral imaging. In recent years, random permuted
Hadamard transform as the compressive operator is often
used for theoretical reconstruction algorithm development
[8–12]. However, random permuted Hadamard transform is
difficult to implement with optical hardware, especially for
onboard imaging spectrometers.

Image reconstruction has always been a key issue in
hyperspectral compressed imaging. Traditional model-based
reconstructionmethods exploit HSI structures by employing
structure-inducing regularizers through handcrafting.
Sparsity in some orthogonal transformation domains and
total variation (TV) minimization of images are the two
most commonly used prior knowledge [6, 8, 9, 13–17].
Typically, the cost functions of such model-based recon-
struction methods consist of a data fidelity term and a single
constraint or combination of multiple regularization terms
capturing various assumed objection properties. Due to the
3D data structure of HSIs, a priori constraints on the
multidimensional tensor space have been widely exploited in
recent years. For example, sparse tensor and nonlinear
compressed sensing (STNCS) [8] extended the sparse
constraint on orthogonal transformation to the sparse
constraint on a nonlinear mapping of tensor space. How-
ever, it is difficult to effectively constrain the optimal sub-
space for data recovery with a single prior. ,erefore, hybrid
spatio-spectral total variation (HSSTV) [17] constructed a
TV regularization item containing various difference op-
erators of HSIs, such as spatial difference operators in
horizontal and vertical directions, spatial difference opera-
tor, and spatial-spectral difference operator. Although ex-
cellent reconstruction performance was achieved,
determining the proportion of each difference in the reg-
ularization item for different data is very difficult. For HSIs,
the low-rank (LR) constraint is also an important and ex-
tensive handcrafting regularization [10–12, 18–21]. Joint

tensor/reweight 3DTV norm minimization (JT-3DTV) [9]
proposed a regularization by jointing a reweight 3DTV
norm and LRmatrix factorizations by Tucker decomposition
to exploit TV and LR priories. Enhanced 3DTV (E-3DTV)
[12], on the other hand, interprets the LR properties of HSIs
from the perspective of matrix factorization and then adds
sparse and orthogonal constraints to the submatrices for
reconstruction. However, the reconstruction accuracy of
E-3DTV needs to be further improved. LR matrix factor-
ization is an important tool in HSI processing. ,e famous
linear and nonlinear mixing model was developed. How to
effectively use the linear mixing model (LMM) in com-
pressed reconstruction is the main focus.

In recent years, with the continuous improvement in
deep learning technology, data-driven or deep learning-
based methods have gained much interest for compressed
reconstruction. Classical deep networks, such as autoen-
coders [22], convolutional neural networks (CNNs) [23],
and generative adversarial networks (GANs) [24, 25], were
employed for end-to-end learning of CS. To integrate the
prior knowledge and the structure of the operators, deep
unfolding maps motivated by the iterative algorithm put
iterative restoration algorithms onto deep neural networks
[26–28]. Deep learning-based methods are also extended to
the compressed reconstruction of HSIs [29–32]. Although
the learning-based methods have surpassed the traditional
model-based methods in terms of reconstruction speed and
accuracy, the learning-based approach is heavily dependent
on data, which is a major challenge for onboard hyper-
spectral compressed imaging. On the one hand, collecting
large amounts of airborne hyperspectral data is costly. On
the other hand, different imaging spectrometers may lead to
inconsistent data structures due to the different spectral
resolutions. In addition, since the huge size of HSIs, the
computational complexity of reconstruction training on
large datasets is very high.

In this article, a distributed compressed sensing (DCS)
framework suitable for pushbroom and whiskbroom remote
sensing imaging [7, 33] of onboard hyperspectral imaging
spectrometer is built.With the help of the spectral library, we
can more conveniently mine the LR priors of HSIs by
spectral unmixing. For convenience, the proposed com-
pressed imaging scheme is dubbed DCHI_SUL. In sum-
mary, the main contributions of this article include the
following three aspects:

(1) A distributed compressed sampling and reconstruc-
tion framework is proposed, which utilizes the LMM
of HSIs to effectively exploit the LR prior. ,e
framework incorporates model-based and learning-
based CS reconstruction methods. With the aid of a
small number of collected spectral libraries, the sig-
natures of key bands can be accurately learned
without large amounts of data and heavy calculations.

(2) A novel joint horizontal and vertical difference
operator for abundance TV constraint is proposed,
coupled with a well-designed initialization scheme,
which effectively improves the reconstruction
quality.
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(3) ,e alternating direction method of multipliers
(ADMM) [34] algorithms used for initialization and
reconstruction are readily designed and imple-
mented efficiently to solve the abundance optimi-
zation and HSI reconstruction problem.
Comprehensive experiments compared with other
state-of-the-art methods substantiate the superiority
of the proposed framework.

,e rest of the article is organized as follows: Section 2
introduces our DCS framework. In Section 3, we compre-
hensively describe the reconstruction of compressed data,
including endmember estimation, initialization strategy,
ADMM-based reconstruction algorithm, etc. Extensive ex-
periments compared with other state-of-the-art methods are
reported in Section 4, where we also discuss some ablation
studies in our proposed CS framework. Section 7 concludes
the article.

2. Distributed Compressed Sensing
Imaging Framework

Distributed compressed sensing originated from distributed
source coding [35], a solution for distributed video coding
(DVS) [36] in video compression and coding to reduce
encoding complexity and preserve coding efficiency. In-
corporating CS technology into the DVS framework, dis-
tributed compressed video sensing (DCVS) [37, 38] first
grouped video frames, called group-of-pictures (GOP). ,e
keyframe and CS frame are selected from each frame and
compressed sampled with different sampling rates. In our
previous work, we followed the framework of DCVS and
proposed distributed compressed hyperspectral sensing
(DCHS) [39]. DCHS grouped equal parts according to the
spectrum of HSIs. However, the GOP is grouped differently
for different sample rates and is also not applicable to higher
sample rates. ,erefore, DCS according to spectral library
matching (DCS_SLM) [40] proposed the strategy of ran-
domly extracting key bands, but it also brought difficulties to
reconstruction. DCS_SLM assumed that all endmembers
contained in the specified scene correspond to some sig-
natures in the spectral library. ,en the closest endmember
is matched from the spectrum library. However, due to
environmental conditions and instrumental configurations
during data collecting, the real spectrummay be inconsistent
with the spectrum library. ,is inconsistency is fatal to
DCS_SLM.

In this article, we follow the compressed sampling
scheme of DCS_SLM, that is, a small number of key band
images are randomly selected from hyperspectral data.
During reconstruction, however, instead of directly
matching the corresponding spectrum, we learn the rela-
tionship between key bands and CS bands through the
spectrum library. Figure 1 shows the proposed DCHI_SUL
sampling and reconstruction process. At the sampling end,
we abandon the GOP of DCVS and instead randomly extract
some images from the hyperspectral data as key bands. Let
X ∈ RN×L denotes HSIs, where N is the number of pixels
and L is the number of bands. XK ∈ RN×LK is the randomly

selected key band images. LK denotes the number of images
in the key band. ,e remaining images are used as CS bands
XC ∈ RN×LC , where LC is the number of CS band images and
LK + LC � L.

,e CS bands’ compressed sampling realized by optical
hardware can be mathematically expressed as folows:

YC � ACXC � ACXIC, (1)

where YC ∈ RM×LC is the observed data, AC ∈ RM×N is the
spatial compressed measurement matrix, IC ∈ RL×L achieves
the extraction of CS bands, and M≪N denotes the number
of a small number of spatial observations. So that the ob-
served data still meet the requirements of spectral unmixing,
the measurement matrix AC adopts the structure of [41], that
is, 1 is the only non-zero element in each row of AC, and the
other elements are 0. Fortunately, this structure is more
conducive to the coding of digital micromirror devices
(DMD) [42]. IC is similar to the identity matrix, but only the
diagonal position corresponding to the extracted band is 1.

Equation (1) is a typical spatial-spectral compressed
sampling mode, which can be easily implemented by
CHISSS [7]. Similarly, the transmission of key bands can be
expressed as

YK � AKXK � AKXIK. (2)

In order to improve the reconstruction performance as
much as possible, the sampling of key bands is not com-
pressed. ,is means that the measurement matrix
AK ∈ RN×N is a square matrix with full rank. ,erefore, the
observation data YK andXK are equivalent. We can consider
that XK is transmitted directly from the sampling end to the
reconstruction end. IK is used to extract key bands, which is
complementary to ICS, IK + IC � I, where I is an identity
matrix.

Now let us analyze the sampling rate of the proposed
distributed compressed sampling. First, the key band images
are not compressed and only LK bands are extracted from
the original L bands, so its sampling rate cK is LK/L. For the
CS band, the sampling rate cC is MLC/NL due to the
spatially compressed sampling. ,erefore, the total equiv-
alent sampling rate of distributed compressed sampling
satisfies c � cK + cC � (NLK + MLC)/NL. In our experi-
ments, we find that only a very small amount of spatial
observations YC can achieve excellent reconstruction per-
formance.,erefore, in the following experiments, we fix the
value of M/N to 0.01.

From the reconstruction end of Figure 2, the task of the
proposed scheme is to recover CS band data given the key
band and the spectral library. Spectral unmixing and
ADMM [34] algorithm are used to solve this problem (please
refer Section 3 for details).

3. Recovery of CS Band

In this section, we will describe the reconstructionmethod of
CS band images in detail. Recovering CS band images XC

directly from spatially compressed data YC is an under-
determined inverse problem, which is inherently ill-posed.
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Especially when the sampling rate is low and AC is a binary
matrix, achieving competitive reconstruction is practically
impossible. ,erefore, we expect to improve reconstruction
accuracy by means of the LMM of HSIs.

3.1. LMM. LMM is a single and popular prior model in HSI
processing. According to LMM, HSIs can be decomposed
into endmembers and their corresponding abundances. In
short, LMM can be formulated as follows:

X � SE, (3)

where E ∈ Rp×L is defined as an endmember matrix con-
taining various spectral signatures, S ∈ RN×p is the abun-
dance distribution matrix corresponding to the endmember,

and p is the number of endmembers contained in a par-
ticular scene.

According to the LMM, equations (1) and (2) can be
rewritten as

YC � ACSEC,

XK � SEK,
(4)

where we directly replace YK with XK for convenience, since
the key bands are not compressed. Of course AK has also
been eliminated. Noting thatYC andXK in equation (4) have
the same S. Because the key bands and CS bands correspond
to the same ground truth, they have the same signatures and
the same distribution. However, the spectral range of sig-
natures is different, so we denote them by EC and EK.
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Figure 1: Illustration of the proposed framework. On the left side is the compressed sampling part, which is realized by optical hardware. On
the right side is the reconstruction end with the support of a spectral library.

4 Journal of Spectroscopy



We can easily utilize the endmember extraction algo-
rithm in the spectral unmixing domain, thanks to the special
measurement matrix AC, which does not change the non-
negativity and sum-to-one constraint of abundance in YC

[41]. In this article, we employ vertex component analysis
(VCA) [43] algorithm to extract endmember from com-
pressed observation YC.

EC � vca YC( , (5)

where vca(·) denotes the VCA algorithm.
Now, the reconstruction of the CS bands is transformed

into an abundance estimation problem for a given YC, AC,
and EC.

S � argmin
S

R(S),

s.t. YC � ACSEC,
(6)

where R(S) is the prior constraint term of abundance. Ob-
viously, the appropriate abundance prior constraint is helpful
to improve the reconstruction accuracy. However, when M/N
is very small, the estimate of S in equation (6) tends to fall into a
local optimum. ,ere are usually two ways to solve the local
optimization problem in the optimization process: one is the
initialization scheme, which makes the starting point of the
optimization process around the global optimal point, and the
other is a more appropriate constraint regularization term.,e
next part of this article focuses on these two issues.

3.2. InitializationModule. Compared with the large number
of hyperspectral training samples required by deep learning-
based methods [29–31], the collection of spectral libraries is
much easier. Many spectral libraries have been established in
successions, such as the United States Geological Survey
(USGS)1 and Jet Propulsion Laboratory (JPL)2. In this
subsection, the initial value of abundance is estimated
mainly through the key band data and spectral library, as
well as the joint difference operator for abundance TV
constraints.

3.2.1. Endmember Prediction of Key Bands by Spectral Li-
brary Learning. For key band data XK, if we want to get the
abundance, we must first estimate the endmember matrix
EK. Since a small number of key bands were collected,
accurately extracting EK by the VCA algorithm is very
difficult. Now that the CS band endmember has been
extracted, it is very reasonable to assume that there is some
relationship between the endmembers of the key bands and
the endmembers of the CS bands. Next, we focus on how to
predict this relationship. ,erefore, our next main focus is
on how to predict the relationship.

First, we assume that any point in a spectral signature
can be a linear combination of all or part of other points, that
is

r
(i)
k � θ0 + θ1w

(i)
1 + θ2w

(i)
2 + · · · + θLCS

w
(i)
LCS

� 

LCS

l�0
θlw

(i)
l � θT

w
(i)

, (7)

where r
(i)
k refers to the kth point in the ith endmember

signature of the key bands; w
(i)
l refers to the lth point in the

ith endmember signature of the CS bands, and w
(i)
0 � 1 can

be achieved by adding the first column of all 1 to EC; θ is the
weighting coefficient, which is obtained through spectral
library training; and superscript T indicates transpose
operation.

For a spectral curve in a given spectral library G, we
define the following cost function to calculate the optimal
value of θ:

J(θ) �
1
2



m

i�1
θT

w
(i)

− r
(i)

 
2
, (8)

where w(i) and r(i) correspond to the values of the CS
bands and key bands of the ith spectral curve g(i) in the
spectral library, respectively, and m is the total number of
spectral curves in the spectral library. θ can be calculated
by minimizing J(θ), and the gradient descent method is
applied to iteratively update and obtain the optimal so-
lution of θ.

After learning the relationship between the key bands
and CS bands from the spectral library, the results of using
the relationship to predict the key band endmembers from
the CS bands are presented in Figure 2.,e testing process is

as follows: first, the VCA algorithm is applied to extract the
endmembers (shown in Figure 2 by solid lines) from the
Yellowstone 0 hyperspectral dataset, then 43 bands (cor-
responding to an equivalent sampling rate of about 0.2 for
our method) are randomly selected as the real key band
endmembers and the other 181 bands as real CS band
endmembers. ,at is, these 181 band endmembers are the
inputs of the neural network during testing. In the training
phase, the spectral library is divided into CS band signatures
and key band signatures according to the same rules to form
training sample pairs. After successfully training the pa-
rameter θ, equation (7) is applied to predict the key band
endmembers by the real CS band endmembers. ,e pre-
dicted values of 1st and 2nd endmembers are labeled with
“x” and “o,” respectively, in Figure 2. It can be seen that the
proposed prediction method can effectively predict the key
band endmembers through the CS bands with the aid of a
spectral library.

3.2.2. Joint Horizontal and Vertical for Initial Abundance
Estimation. After successfully predicting the endmember
matrix EK with the assistance of a spectral library, the initial
abundance value can be easily estimated from the key band
data XK by the least square method.
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S0 � XKE
T
K EKE

T
K 

− 1
, (9)

where the superscript (·)− 1 denotes the inverse operation of
the matrix.

However, when the sampling rate is low, such as below
0.1, the number of endmembers may exceed the number of
key bands, that is, p> LK. At this point, estimating the initial
value of abundance from the key band is still an under-
determined problem, and the introduction of suitable prior
information is necessary to improve the estimation accuracy.
TV minimization is a widely used abundance smoothing
constraint in hyperspectral unmixing [2, 44, 45]. However,
previous works usually calculate the horizontal and vertical
differences independently and pay little attention to their
correlation in the abundance TV constraints. In the ex-
periments, we found that the vertical difference of the
horizontal gradient map (defined as DvDhS) has stronger
sparsity than the gradient map in a single direction (DhS or
DvS), where Dh and Dv denote the difference operator along
the horizontal and vertical directions, respectively. Figure 3
shows the abundance corresponding to the first endmember
of Yellowstone 0 data, the horizontal gradient map of
abundance, the vertical gradient map, the vertical difference
of the horizontal gradient map, and the sparsity comparison
of various TVs.

For clarity, the abundance difference maps in Figure 3
are magnified by a factor of 5 in magnitude. Dhx, Dvx, and
DvDhS can describe spatial local smooth prior of abundance.
However, the DvDhS map is sparser and more efficient, as
shown in Figure 3(e). Although the simultaneous employ-
ment of multiple TV operators is beneficial to improve the
optimization performance, the increase of operators leads to
the increase of weight hyperparameters, which affects the
practicality of the algorithm. In this article, only DvDhS is
employed as the constraint term of the objective function.
,e initial estimate of the abundance can be described as
S0 � argmin

S0

DvDhS0
����

����1,1, s.t. XK � S0EK, YC � ACS0EC,

(10)

where ‖C‖1,1 ≡ 
p

i�1 ‖ci‖1 (ci is the ith column vector of C,
and ‖ci‖1 denotes the ℓ1 norm of vector ci). Problem (10) can
be rewritten as the following objective function

min
S0

1
2

XK − S0EK

����
����
2
F

+
λ1
2

YC − ACS0EC

����
����
2
F

+ λ2 DS0
����

����1,1,

(11)

where ‖C‖F ≡
���������
trace CCT{ }


is referred to the Frobenius

norm of matrix C, λ1 and λ2 are regularization parameters
that can trade-off between fidelity terms and prior constraint
term. We employ ADMM to solve the optimization problem
given by (11), which is detailed in Algorithm 1, and the
solution to each subproblem is given in Appendix A.

3.3. Reconstruction Module. With the endmember extrac-
tion in Subsection 3.1 and the initial abundance estimation
in Subsection 3.2, we can obtain better reconstructed HSIs
based on LMM. In this subsection, in addition to the pro-
posed horizontal and vertical joint gradient of abundance,
the LMM residual term is added to further improve the
reconstruction performance. For the CS band, it is not easy
to improve the reconstruction accuracy through a small
amount of observation data. More appropriate regulariza-
tion terms should be explored.

Now, our task is to recover the CS band images, not just
reconstruct the abundance. In contrast to problem (6),
several changes are made in the minimization of the ob-
jective function as follows. First, the goal now is to recon-
struct the CS band images. Considering that both the CS
band endmember estimated by the VCA algorithm and the
key band endmember learned from the spectral library may
be deviated, the endmember matrix is also updated together
during the minimization of the objective function. Spectral
variabilities caused by environmental conditions and in-
strumental configurations, as well as material nonlinear
mixing effects, are inevitable. ,erefore, this subsection
introduces the residual term of LMM to describe the spectral
variability. ,en, rewrite the compressed sampling of the CS
band as follows:

YC � ACXC � ACSEC + ACR, (12)

where R ∈ RN×LC denotes the residual caused by spectral
variability. Finally, ‖R‖2F is added to the objective function to
constrain the optimal solution of the residuals. In summary,
the reconstruction objective function of the component in
CS band images is constructed as follows:

min
XC,EC,S,R

1
2

YC − ACXC

����
����
2
F

+ λS‖DS‖1,1 +
λR

2
‖R‖

2
F, s.t. XC � SEC + R, (13)

where λS and λR are regularization parameters, which adjust
the proportion of abundance TV regularization term and
residual constraint term. Similarly, the ADMM algorithm is
employed to solve the problem (13). For algorithm details,
please refer Algorithm 2 in Appendix B.

To sum up, the pseudo-code of the proposed recon-
struction scheme for recovering the CS band images from
the observed values is described in Algorithm 3.

In this section, we report the performance of the pro-
posed DCHI_SUL framework compared with 6 recently
developed conventional and state-of-the-art hyperspectral
compressed imaging methods, including STNCS [8], JT-
3DTV [9], E-3DTV [12], HSSTV [17], DCHS [39], and
DCS_SLM [40]. DCHS and DCS_SLM are the DCS
framework. However, DCHS requires GOP processing
during compressed sampling of HSIs. DCS_SLM roughly
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matches endmembers directly through the spectrum library,
resulting in low prediction accuracy of endmembers in key
bands. To ensure the fairness of the comparison, involved
parameters are set according to the rules in their papers or
fine-tuned using default settings.

Experimental results are reported in terms of sampling
rates, mean peak signal-to-noise ratio (MPSNR), mean
structure similarity (MSSIM), mean spectral angle mapper
(MSAM), and runtime. MPSNR and MSSIM are two
conventional and effective evaluation metrics for spatial
information reconstruction quality, while MSAM is a
spectral-based evaluation measure. MPSNR evaluates the
average peak signal-to-noise ratio of the reconstructed
image, and a larger value indicates that the reconstructed
image is closer to the original image in terms of peak
signal-to-noise ratio. MSSIM evaluates the structural
similarity of the reconstructed image to the original
image. ,e closer the reconstructed image to the original
image in structure, the higher the value of MSSIM is.
MSAM evaluates the distance between the reconstructed
and the original spectral curve. When the reconstructed

spectrum is closer to the original spectrum, the MSAM
value is smaller. In short, higher MPSNR and MSSIM and
lower MSAM indicate better reconstruction performance
of the algorithm. MPSNR, MSSIM, andMSAM are defined
as follows:

MPSNR �
1
L



L

i�1
20 log

10

max Xi( 
�����������

Xi − Xi

����
����
2
2/N

 ,

MSSIM �
1
L



L

i�1
SSIM Xi,

Xi ,

MSAM �
1
N



N

j�1
arccos

X
T
j · Xj

Xj

�����

�����2
· Xj

�����

�����2

,

(14)

where Xi and Xi are the ith band image vectors of original
and reconstructed hyperspectral data, respectively; Xj and
Xj corresponding to the original and reconstructed spectral
signature vectors, respectively. max(Xi) is the peak value of
Xi. SSIM(Xi,

Xi) is defined as the structure similarity of
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Figure 3: Original abundance map and maps obtained by difference operation. (a) Abundance map; (b) horizontal gradient map (DhS);
(c) vertical gradient map (DvS); (d) vertical difference on (b) (DvDhS); and (e) comparison of three various TVs.
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between Xi and Xi. ,e details of SSIM function can be
found in [46].

In this article, to evaluate the performance of the al-
gorithm objectively, all tested data are the raw data that were
acquired by airborne or spaceborne hyperspectral imaging

platforms without any preprocessing. ,e five tested data
employed for performance evaluation are referred to Yel-
lowstone 0, Yellowstone 3, Yellowstone 18, Hawaii 1, and
Low altitude acquired by airborne visible infrared imaging
spectrometer (AVIRIS)3. Yellowstone and Hawaii

Yellowstone 0 Yellowstone 3 Yellowstone 18 Hawaii 1 Low altitude

Figure 4: Original and reconstructed pseudo color images under the 0.2 sampling rate of all competitive algorithms; from top to bottom:
Original, STNCS, JT-3DTV, E-3DTV, HSSTV, DCHS, DCS_SLM, and DCHI_SUL.
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hyperspectral datasets were collected by the AVIRIS sensor
over Yellowstone, WY, and Mt. St. Helens, Hawaii in 2006,
with a spatial resolution of 20m. ,e datasets have a spatial
size of 512× 614 with 224 spectral bands ranging from 0.4 to
2.5 μm with a 10 nm bandwidth. ,e subsequent numbers 0,
1, 3, and 18 indicate the 0th, 1st, 3rd, and 18th scene of the
dataset, respectively. Low altitude scenes containing mainly
agricultural areas are the free standard data products
downloadable from the AVIRIS website. ,e spatial size of
all tested images was cropped to 256× 256, with 224 spectral
bands, where the pseudo color images composed of 40, 30,
and 10 bands are shown in Figure 4. In our experiments,
USGS digital spectral library was selected to assist in re-
construction. Spectral signatures cover 224 bands without
removing water absorption and noise channels.

All algorithms were performed with MATLAB (R2021a)
on a mobile workstation and Windows 10 OS with a dual-
core Inter 2.6-GHz CPU and 32-GB RAM.

3.4. Quantitative Comparison. ,e performance evaluation
of the proposed DCHI_SUL framework is reflected by the
sampling rates ranging from 0.1 to 0.5 with a step size of 0.1.
Table 1 compares the reconstruction MPSNR by all the
compared methods, over all the spectral bands in five
hyperspectral datasets. We highlight the best results for each
case in bold in the current and following tables. ,eMPSNR
of the proposed DCHI_SUL framework outperforms that of
all other competing approaches, in particular the MPSNRs
are higher than the DCHS method. DCHS, DCS_SLM, and
DCHI_SUL all use the DCS framework. However, DCHS
can predict the key band endmembers more accurately
according to GOP, with the disadvantage that it does not
apply to higher sampling rates. Although DCS_SLM also
predicts key band endmember by the spectral library, the
rough direct selecting spectral signatures from the spectral
library as the real endmember in the scene has slightly lower
matching accuracy. ,is is because the standard spectrums
of different objects provided by the spectral library are
obviously different from the spectrum in the actual HSI due
to the weather influence, imaging conditions, etc. However,
the relationship between bands remains unchanged.
DCHI_SUL employs the neural network to predict this
relationship, so as to accurately predict the key band end-
member. ,erefore, the reconstructed MPSNR of DCHS is
higher than that of DCS_SLM.,e reason for the superiority

of DCHI_SUL over DCHS is mainly due to the refining
strategies such as accurate initialization and spectral vari-
ability introduction during the reconstruction process.

Another issue revealed by the results in Table 1 is that the
joint optimization of multiple prior constraints is usually
better than a single prior. For example, a single sparse prior,
even for tensor space sparsity, gives the worst reconstruction
performance of STNCS among all methods. ,e HSSTV has
also been able to achieve a very high MPSNR by combining
multiple TVs. E-3DTV is similar to spectral unmixing,
which adds constraints in subspace for reconstruction.
However, due to the improper reconstruction framework, its
accuracy is not high. Overall, the subspace reconstruction
scheme based on spectral unmixing outperforms the direct
reconstruction of the entire HSI.

Table 2 provides the MSSIM comparison of all com-
peting methods. SSIM is an index to measure the similarity
between the reconstructed image and the original image.
DCHI_SUL also largely outperforms other algorithms on
MSSIM, except for three cases that are slightly below DCHS,
but the difference is also very small. Comparing HSSTV and
DCS_SLM in Tables 1 and 2, the MPSNR of DCS_SLM is
sometimes higher than that of HSSTV, but the MSSIM is
lower instead, which indicates that HSSTV can protect the
structure of the image better than DCS.

One worth mentioning is that DCS has a low number of
key bands at low sampling rates and high endmember
prediction accuracy, but poor abundance estimation.
Conversely, the endmember prediction accuracy decreases
at high sampling rates, while the abundance estimation
depends on the endmember prediction, resulting in no
significant improvement in estimation performance.
,erefore, the MPSNR andMSSIM of DCS_SLM sometimes
decrease after the sampling rate exceeds 0.3. However, the
accuracy of DCHI_SUL does not decay or decays little due to
a series of refining strategies.

We also provide the MSAM comparison results of all
methods in Table 3. In most cases, DCHI_SUL still ac-
complishes the best reconstructing performance. Com-
pared to the results of MPSNR, however, the minimum
MSAM cases outside of DCHI_SUL are more frequent, and
the relative advantage is also a little weaker. ,is indicates
that DCHI_SUL is better at maintaining spatial rather than
spectral information for HSI. It is worth mentioning that
the MSAM of the HSSTV algorithm at high sampling rates
reaches or is even lower than the optimal value obtained by

Inputs: YC, XK, G, AC

Output: XC

(1) Extract EC from YC by VCA algorithm in (5)
(2) Learning coefficient θ from spectral libraries G
(3) Predict EK by (7)
(4) Estimate initial abundance S0 by Algorithm 1
(5) Reconstruct CS band images XC by Algorithm 2
(6) Experimental Results and Discussion

ALGORITHM 3: Pseudo-code of the reconstruction scheme.
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the DCS framework, which may benefit from the appli-
cation of its multi-TV constrained prior consisting of
spectral difference and spatial-spectral difference
operators.

,e last one of the quantitative experiments compares
the reconstruction speed of all algorithms. Table 4 shows the
reconstruction times for all methods under different sam-
pling rates on the Yellowstone 0 dataset. Obviously, the

Table 1: MPSNR (dB) comparison of all competing methods under different sampling rates on five datasets.

Dataset SR STNCS JT-3DTV E-3DTV HSSTV DCHS DCS_SLM DCHI_SUL

Yellowstone 0

0.1 33.706 39.628 37.253 42.634 54.244 51.823 55.84
0.2 36.451 42.389 40.358 47.898 55.749 53.211 58.305
0.3 38.444 44.434 42.947 51.477 56.492 52.042 59.14
0.4 40.158 46.108 45.117 54.114 — 54.235 59.091
0.5 41.858 47.589 47.048 56.381 — 53.316 59.234

Yellowstone 3

0.1 35.255 40.261 37.755 43.31 54.702 54.455 55.797
0.2 38.145 42.932 41.071 48.372 56.534 56.883 57.475
0.3 39.919 44.668 43.601 51.777 57.176 56.659 58.534
0.4 41.533 46.415 45.826 54.323 — 56.253 59.274
0.5 43.118 47.913 47.703 56.542 — 58.269 59.7

Yellowstone 18

0.1 39.656 44.547 40.461 46.875 56.648 56.695 58.898
0.2 42.629 47.005 43.441 52.635 57.876 55.564 61.401
0.3 44.717 49.414 45.773 56.144 57.798 58.246 59.431
0.4 46.582 51.438 47.724 58.823 — 57.296 61.058
0.5 48.382 53.126 49.681 61.043 — 57.593 61.333

Hawaii 1

0.1 39.369 41.941 41.159 46.608 53.893 53.343 54.5
0.2 42.097 45.394 44.259 50.322 54.963 53.992 56.139
0.3 43.813 46.938 46.426 52.486 55.699 52.274 56.118
0.4 45.313 48.279 48.381 54.149 — 54.858 56.199
0.5 46.834 49.47 50.17 55.629 — 52.729 56.207

Low altitude

0.1 43.149 47.658 44.047 52.893 58.377 56.778 59.523
0.2 46.228 50.357 47.379 57.504 59.998 57.318 62.727
0.3 48.258 52.181 49.895 60.216 60.943 56.917 64.199
0.4 49.927 53.767 51.849 62.103 — 58.607 64.684
0.5 51.602 55.328 53.557 63.728 — 55.149 64.829

Table 2: MSSIM comparison of all competing methods under different sampling rates on five datasets.

Dataset SR STNCS JT-3DTV E-3DTV HSSTV DCHS DCS_SLM DCHI_SUL

Yellowstone 0

0.1 0.4124 0.6433 0.6013 0.8343 0.9969 0.9072 0.9974
0.2 0.5658 0.7605 0.733 0.8957 0.9974 0.8951 0.9979
0.3 0.6657 0.829 0.7993 0.9241 0.9976 0.9147 0.9979
0.4 0.737 0.8721 0.8371 0.9417 — 0.9142 0.9994
0.5 0.7944 0.9035 0.8646 0.9544 — 0.894 0.9993

Yellowstone 3

0.1 0.4257 0.6019 0.5464 0.818 0.9967 0.912 0.9959
0.2 0.581 0.7357 0.7092 0.8824 0.9973 0.9041 0.9969
0.3 0.6742 0.803 0.7865 0.9132 0.9973 0.9278 0.9974
0.4 0.7452 0.856 0.8339 0.9328 — 0.9165 0.9974
0.5 0.8024 0.8932 0.8649 0.947 — 0.9047 0.997

Yellowstone 18

0.1 0.3578 0.5052 0.3803 0.787 0.998 0.8936 0.9985
0.2 0.512 0.6301 0.5285 0.8919 0.9983 0.8566 0.9988
0.3 0.6058 0.7303 0.6211 0.9233 0.9983 0.9038 0.9987
0.4 0.6792 0.7984 0.6865 0.9405 — 0.8972 0.9996
0.5 0.7409 0.8441 0.74 0.9523 — 0.8757 0.9986

Hawaii 1

0.1 0.3911 0.4757 0.5031 0.7854 0.997 0.8599 0.9971
0.2 0.5679 0.6537 0.6868 0.848 0.9976 0.845 0.9983
0.3 0.6766 0.748 0.7748 0.8811 0.998 0.8449 0.9983
0.4 0.7524 0.8081 0.8305 0.904 — 0.8617 0.9985
0.5 0.8124 0.8439 0.8687 0.9222 — 0.8146 0.9985

Low altitude

0.1 0.4494 0.5531 0.4457 0.8405 0.9967 0.871 0.9983
0.2 0.5909 0.6922 0.6151 0.8855 0.9982 0.8636 0.9966
0.3 0.6827 0.7651 0.7189 0.9074 0.9986 0.8724 0.9988
0.4 0.7476 0.8165 0.786 0.923 — 0.8851 0.9989
0.5 0.8027 0.8631 0.8357 0.9358 — 0.8513 0.9989
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reconstruction methods based on spectral unmixing sig-
nificantly reduce the computational complexity. For ex-
ample, DCS_SLM improves the reconstruction time by 2
orders of magnitude over JT-3DTV, and also by nearly 5
times over STNCS, which is the fastest of the conventional
algorithms in our experiments. Spectral unmixing converts
the reconstruction of hyperspectral data into endmember
and abundance estimates rather than directly recovering the
original data. ,e optimization of two small matrices during
the iterative process is certainly much less computationally
complex than the direct optimization of the entire dataset.
,e reconstruction time of DCHI_SUL is about 2–3 times
longer than that of DCS_SLM, mainly due to the initiali-
zation and reconstruction modules performed.

3.5. Visual Quality Comparison. To visually demonstrate the
DCHI_SUL performances of the proposed method, we build
the pseudo color images composed of 40, 30, and 10 bands
corresponding to the five reconstructed HSIs obtained by all
methods under SR� 0.2 in Figure 4. We observe that all the
competing methods can complete relatively excellent re-
construction results, with little visual discrimination

between the superior and inferior. Only the reconstructed
images of the STNCS algorithm are slightly blurred.

In order to clearly distinguish the reconstruction results
of different methods visually, the comparison of residual
images between the original images and the reconstructed
images achieved by all the competing methods with a 0.2
sampling rate is provided in Figure 5. For the convenience of
observation, the residuals of different methods are scaled by
the same degree. For example, the Low altitude dataset was
scaled up by a factor of 100, and the other datasets were
scaled up by a factor of 50 for the higher reconstruction
accuracy of the low altitude dataset. ,e better the recon-
struction performance of the algorithm, the smaller the
residuals and the darker the residual images; conversely, the
brighter the residual images. We can clearly observe in
Figure 5 that the residual images of STNCS and E-3DTV are
brighter, implying that the reconstruction quality of these
two methods is poor. Next is the JT-3DTV algorithm. ,e
image brightness of HSSTV and DCS_SLM are similar.
Although the DCS_SLM achieves a reconstructedMPSNR of
57.318 on the Low altitude dataset under 0.2 sampling rate,
its reconstructed residuals are large from the image in
Figure 5. ,is may be related to the low accuracy of the

Table 3: MSAM comparison of all competing methods under different sampling rates on five datasets.

Dataset SR STNCS JT-3DTV E-3DTV HSSTV DCHS DCS_SLM DCHI_SUL

Yellowstone 0

0.1 0.0927 0.0476 0.0597 0.033 0.0101 0.0157 0.0093
0.2 0.0777 0.0371 0.0439 0.0212 0.0083 0.0127 0.0083
0.3 0.0659 0.0318 0.0338 0.0156 0.0082 0.0114 0.0081
0.4 0.0561 0.0277 0.0269 0.0121 — 0.0112 0.0045
0.5 0.0474 0.0243 0.0218 0.0097 — 0.0088 0.0043

Yellowstone 3

0.1 0.0822 0.0468 0.0585 0.0325 0.011 0.0141 0.0125
0.2 0.0697 0.037 0.0423 0.0212 0.0093 0.0106 0.0102
0.3 0.0597 0.0315 0.0324 0.0156 0.0093 0.0078 0.0093
0.4 0.0512 0.0275 0.0257 0.0122 — 0.0112 0.0094
0.5 0.0437 0.0241 0.0212 0.0097 — 0.0054 0.01

Yellowstone 18

0.1 0.1161 0.0586 0.0836 0.0374 0.0117 0.0212 0.0114
0.2 0.0877 0.0465 0.066 0.0235 0.0106 0.0178 0.0097
0.3 0.0716 0.0416 0.053 0.0174 0.0103 0.0113 0.0099
0.4 0.0588 0.0361 0.0436 0.0137 — 0.0134 0.0058
0.5 0.0484 0.0313 0.0362 0.011 — 0.01 0.0098

Hawaii 1

0.1 0.036 0.0941 0.0249 0.0161 0.0055 0.0071 0.0063
0.2 0.0303 0.0176 0.0199 0.0116 0.0049 0.0064 0.0046
0.3 0.026 0.0155 0.0164 0.0092 0.0046 0.0079 0.0046
0.4 0.0224 0.0138 0.0136 0.0075 — 0.0055 0.0043
0.5 0.0192 0.0123 0.0112 0.0063 — 0.0071 0.0045

Low altitude

0.1 0.0903 0.0689 0.0718 0.0261 0.0191 0.029 0.0163
0.2 0.0671 0.0365 0.052 0.0179 0.013 0.0273 0.0231
0.3 0.0544 0.0308 0.041 0.0141 0.0118 0.02 0.0113
0.4 0.0459 0.0264 0.0337 0.0117 — 0.0148 0.011
0.5 0.0377 0.0225 0.0284 0.0099 — 0.0256 0.0107

Table 4: Runtime (s) comparison of all competing methods on Yellowstone 0 dataset.

SR STNCS JT-3DTV E-3DTV HSSTV DCHS DCS_SLM DCHI_SUL
0.1 164 3103 2392 2181 46 32 99
0.2 147 3433 2454 2207 43 31 91
0.3 143 3170 1979 2147 41 32 84
0.4 156 3446 2291 2137 — 31 75
0.5 141 3193 2181 2145 — 33 68
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Yellowstone 0 Yellowstone 3 Yellowstone 18 Hawaii 1 Low altitude

Figure 5: Residual images of band 30 under the 0.2 sampling rate of all competitive algorithms; from top to bottom: STNCS, JT-3DTV, E-
3DTV, HSSTV, DCHS, DCS_SLM, and DCHI_SUL.
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endmember prediction in band 30. DCHI_SUL is slightly
darker than DCHS and better than the other methods.
However, we observe a strange phenomenon where two
bright spots appear on the reconstructed residual images of
the DCHI_SUL on the Yellowstone 3 and Yellowstone 18
datasets, respectively. By observing the corresponding posi-
tion of the original image, we found that there is a small
anomalous target at that position. ,is means that the pro-
posed DCHI_SUL algorithm cannot handle the small
anomalous targets contained in the scene. In the DCHI_SUL

CS framework, on the one hand, spatial random observation
and low sampling rate may lead to the ignoring of small
anomalous targets; on the other hand, when the number of
endmembers is small, the endmember extraction algorithm
preferentially extracts the main component endmembers and
ignores the small anomalous targets. However, due to the low
percentage of anomalous targets in the whole scene, the CS
reconstruction performance (MPSNR, MSSIM, and MSAM)
is hardly unaffected. Yellowstone 18 outperforms other al-
gorithms in all metrics.
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Figure 6: Original and reconstructed spectral curve at pixel (100,100) by all methods under the 0.2 sampling rate for the five HSI datasets;
from top to bottom: Yellowstone 0, Yellowstone 3, Yellowstone 18, Hawaii 1, and Low altitude.
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To further illustrate the superiority of the proposed
DCHI_SUL on spectrum reconstruction, reconstructed and
original spectral curves across all bands are compared from
the pixel (100, 100) of all the five datasets. We provide the
comparisons of the spectral curves in Figure 6 and enlarge
the local area for facilitating observation. ,e MSAM in
Table 3 is the average measurement of all pixels. Here, only
one pixel is used to visualize the difference between the
original and the reconstructed spectral curves. ,e rela-
tionship between Figure 6 and Table 3 is similar to Figure 4
and Table 1. ,e comparison of spectral curves shows that
DCS frameworks reconstruct the spectral curve closer to the
original one. While DCS_SLM performs somewhat poorly
than the other two DCS methods, it still significantly out-
performs the other four conventional algorithms. STNCS,
JT-3DTV, and E-3DTV performed poorly on all datasets,
especially the Yellowstone 18 and Low altitude datasets. ,is
is consistent with the results in Table 3. Visual comparison
experiments show that the DCS framework can perfectly
recover the spatial and spectral details of the original images.

3.6. Ablation Studies and Discussion. As noted above, the
proposed DCHI_SUL framework achieves higher recon-
struction quality. In this subsection, we mainly discuss the
contribution of the initialization module and reconstruction

module of the proposed framework. For easy reference,
DCHI_SUL_E is named as DCHI_SUL only with the end-
member predictionmodule.,at is, the least square solution of
equation (9) estimates the abundance after the key band
endmembers are predicted by the spectral library, and then the
product of the extracted CS band endmember matrix and the
estimated abundance matrix recovers the HSI. DCHI_SUL_EI
is DCHI_SUL with the abundance initialization module
replacing the least square solution of equation (9) after the
endmember prediction. DCHI_SUL_EIR is DCHI_SUL with
the endmember prediction module, the abundance initializa-
tion module, and the reconstruction module. Figure 7 shows
the reconstructed MPSNR with different modules.

Overall, with the enhancement of the 3 modules,
DCHI_SUL_EIR significantly improves the reconstruction
accuracy. Moreover, the MPSNR curves of DCHI_SUL_E and
DCHI_SUL_EI fluctuate severely, which may be caused by
random sampling of key bands. All the data used in our ex-
periments are raw hyperspectral data without removing water
absorption and noise bands. ,e quality of randomly selected
bands with different sampling rates varies, which leads to
fluctuating accuracy of endmember prediction in key bands. By
adopting appropriate regularization terms, however, DCHI_-
SUL_EIR gradually increases MPSNR with increasing sam-
pling rate, except for the Yellowstone 18 dataset, which also
further validates the robustness of the proposed method.
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Figure 7: ,e contribution of the different modules in the proposed DCHI_SUL reconstruction method.
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At 0.1 sampling rate, the key band endmembers can be
predicted more accurately with the aid of the spectral library,
which has been confirmed in Figure 2 in the previous section.
However, it is difficult to reconstruct only by the endmember
predictionmodule, for example, theMPSNRofDCHI_SUL_Eon
the Yellowstone 3 dataset is only 1.28dB. When the abundance
initialization module was added, the MPSNR increased to
37.62dB, which confirmed the effectiveness of the initialization
module.Onother datasets,DCHI_SUL_EI can also be boosted by
15–20dB at 0.1 sampling rate. Nevertheless, when the sampling
rate is large, the initialization module can only marginally im-
prove the accuracy, sometimes by less than 1dB. ,is is because
when the sampling rate is below 0.1, the endmember numberp is
greater than the key band number LK, and the abundance es-
timation is an underdetermined optimization problem. A proper
prior constraint has a pivotal role in the reconstruction. As the
sampling rate increases, the abundance estimation transforms
from an underdetermined to an overdetermined problem. ,e
least square method then yields excellent exact solutions.

On the Yellowstone 0, Yellowstone 3, and Yellowstone 18
datasets, the MPSNR of both DCHI_SUL_E and DCHI_-
SUL_EI have a clearly decreasing trend under 0.5 sampling
rate, while DCHI_SUL_EIR can still maintain a slight in-
crease. As the sampling rate increases, the number of key
bands increases, leading to a decrease in the accuracy of end
element prediction. Furthermore, the deviation of abundance
estimation depending on endmember prediction increases.
,en the match between the estimated abundance and the
endmembers of the CS band will be broken and the LMM
formed by their product is not applicable. ,erefore, iterative
updating of endmember EC and residual R in the recon-
struction module of DCHI_SUL_EIR plays a prominent role.

Finally, we discuss the training dataset of the proposed
DCHI_SUL framework. In our framework, we need to learn
the endmember projection relationship from CS band to key
band. Spectral library is a convenient learning data. On the
one hand, the spectral library contains the endmembers in
the real scene. On the other hand, compared with HSIs, the
amount of data in the spectral library is much smaller. For
example, the USGS digital spectral library used in this article
contains spectral curves for 498 materials, each with 224
bands, and occupies less than 500KB of total storage space.

,is means that the amount of training data for DCHI_SUL
is even less than a HSI, which is hardly different from the
traditional model-based reconstruction methods. However,
deep learning-based reconstruction usually requires training
on hundreds or even thousands of HSIs. For example, deep
compressed sensing network (DCSN) [32] applied a total of
2537 HSIs sized of 256× 256 with 172 bands and randomly
selected 90% as the training sets.

4. Conclusions

In this article, we propose a novel DCS framework with an
auxiliary prediction by the spectral library for HSIs, which
utilizes spectral learning, fine initialization, and strategic
reconstruction to improve the reconstruction quality. Spe-
cifically, in the endmember estimation, the relationship
between the key band and CS band endmembers is efficiently
learned by the spectral library, so that the key band end-
members can be effectively predicted from the CS band
endmembers. In the initialization module, ATV difference
operator combining horizontal and vertical directions is
proposed to improve the estimation of initial abundance
under the low sampling rate. Analogically, in the final re-
construction iteration, the CS band endmembers and re-
siduals are updated to compensate for themismatch between
endmember and abundance. Experimental results demon-
strate that the proposed DCS framework achieves much
higher reconstruction performance and better perceptual
image quality than other state-of-the-art CS methods.

In the future, applying spectral unmixing and spectral
library learning to process the CS of HSIs containing small
anomalous targets will be the focus of our research.

Appendix

A. Algorithm to Estimate Initial Abundance

In Appendix A, we provide a detailed solution to the un-
constrained optimization problem (11) in the main text. By
introducing the auxiliary variables Z1, Z2, and Z3, problem
(11) can be rewritten as the following constrained optimi-
zation problem:

min
S0 ,Z1 ,Z2 ,Z3

1
2
XK − S0EK

����
����
2
F

+
λ1
2

YC − ACZ3
����

����
2
F

+ λ2 Z2
����

����1,1 s.t.Z1 � S0, Z2 � DZ1, Z3 � S0EC. (A.1)

,e augmented Lagrangian function for the problem
(A.1) is as follows:

L S0, Z1, Z2, Z3(  �
1
2

XK − S0EK

����
����
2
F

+
λ1
2

YC − ACZ3
����

����
2
F

+ λ2 Z2
����

����1,1

+
μ
2

S0 − Z1 − V1
����

����
2
F

+
μ
2

DZ1 − Z2 − V2
����

����
2
F

+
μ
2

S0EC − Z3 − V3
����

����
2
F
,

(A.2)
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where V1, V2, and V3 denote the Lagrange multipliers and
μ> 0 is a positive penalty constant.

Each iteration of ADMM fixes the other variables and
updates only one variable. For the update of S0, the opti-
mality subproblem is as follows:

argmin
S0

1
2

XK − S0EK

����
����
2
F

+
μ
2

S0 − Z
k
1 − V

k
1

�����

�����
2

F
+
μ
2

S0EC − Z
k
3 − V

k
3

�����

�����
2

F
, (A.3)

where subscript k denotes the kth iteration. Problem (A.3)
has the analytical solution of

S
k+1
0 ← XKE

T
K + μ Z

k
1 + V

k
1  + μ Z

k
3 + V

k
3 E

T
C  EKE

T
K + μECE

T
C + μIp 

− 1
, (A.4)

where Ip is a p × p identity matrix.
,e subproblem of Z1 is as follows:

argmin
Z1

S
k+1
0 − Z1 − V

k
1

�����

�����
2

F
+ DZ1 − Z

k
2 − V

k
2

�����

�����
2

F
, (A.5)

which has the analytical solution of

Z
k+1
1 ← DD

∗
+ IN( 

− 1
S

k+1
0 − V

k
1 + D
∗

Z
k
2 + V

k
2  , (A.6)

where D∗ indicate the adjoint of D, and IN is an N × N

identity matrix.
Similarly, the objective function with respect to Z2

minimization subproblem is as follows:

argmin
Z2

λ2 Z2
����

����1,1 +
μ
2

DZ
k+1
1 − Z2 − V

k
2

�����

�����
2

F
, (A.7)

which is the well-known soft-threshold problem [47], and
the solution to the soft-threshold problem (A.7) is given
by:

Z
k+1
2 ← soft DZ

k+1
1 − V

k
2,
λ2
μ

 , (A.8)

where soft(·) denotes the component-wise application of the
soft-threshold function.

,e subproblem of Z3 is as follows:

argmin
Z3

λ1
2

YC − ACZ3
����

����
2
F

+
μ
2

S
k+1
0 EC − Z3 − V

k
3

�����

�����
2

F
. (A.9)

Whose optimization solution is

Z
k+1
3 ← λ1A

T
CAC + μIN 

− 1
λ1A

T
CYC + μ S

k+1
0 EC − V

k
3  .

(A.10)

At the end of each iteration, the Lagrange multipliers V1
and V2 are updated by the gradient descent method.

V
k+1
1 ← V

k
1 − S

k+1
0 − Z

k+1
1 ,

V
k+1
2 ← V

k
2 − DZ

k+1
1 − Z

k+1
2 ,

V
k+1
3 ← V

k
3 − S

k+1
0 EC − Z

k+1
3 .

(A.11)

After the kth iteration, the residual is defined as
follows:

res �
XK − S

k+1
0 EK

�����

�����F

XK

����
����F

+
YC − ACS

k+1
0 EC

�����

�����F

YC

����
����F

. (A.12)

,e iteration stopping criterion is defined as res< ε.
In summary, the initialization module to estimate S0 is

described in Algorithm 1.

B. Algorithm to Reconstruct CS Bands

Similarly, in Appendix B, we provide an ADMM solution
for the optimization problem (13). Introducing the aux-
iliary variables Z1 and Z2, problem (13) is transformed
into

min
XC,EC,S,R,D1 ,Z2

1
2

YC − ACXC

����
����
2
F

+ λS Z2
����

����1,1 +
λR

2
‖R‖

2
F, s.t. XC � SEC + R, Z1 � S, Z2 � DZ1. (B.1)

And its augmented Lagrangian function is as follows:
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L XC, EC, S, R, Z1, Z2(  �
1
2

YC − ACXC

����
����
2
F

+ λS Z2
����

����1,1 +
λR

2
‖R‖

2
F

+
μ
2

SEC + R − XC − U
����

����
2
F

+
μ
2

S − Z1 − V1
����

����
2
F

+
μ
2

DZ1 − Z2 − V2
����

����
2
F
,

(B.2)

where Z1, Z2, and U denote the Lagrange multipliers.
By minimizing the augmented Lagrangian function L

with respect to XC, we can obtain

X
k+1
C ← ACA

T
C + μIN 

− 1
A

T
CYC + μ SE

k
C + R

k
− U

k
  .

(B.3)

,e optimization problem to compute XC at kth iter-
ation is a typical least square problem with the solution

E
k+1
C ← S

k
 

T
S

k
 

− 1
S

k
 

T
X

k+1
C + U

k
− R

k
 . (B.4)

Similarly, the solution of S and R at the kth iteration can
be obtained by the following expressions:

S
k+1← X

k+1
C + U

k
− R

k
  E

k+1
C 

T
+ Z

k
1 + V

k
1  E

k+1
C E

k+1
C 

T
+ Ip 

−1
, (B.5)

R
k+1←

μ
μ + λR

X
k+1
C + U

k
− S

k+1
E

k+1
C . (B.6)

Inputs: XK, EK, YC, AC, EC

Output: Sk+1
0

(1) Set initial parameters: λ1 � 10− 6 λ2 � 10− 8, S00 � XKET
K, Z

0
1 � S00, Z

0
2 � DZ0

1, Z
0
3 � S00EC, V0

1 � 0, V0
2 � 0, V0

3 � 0, μ � 0.001, k � 1,
ε � 10− 6, maxiters � 100, and res �∞

(2) While k<maxiters and (res≥ ε)
(3) Compute Sk+1

0 by (A.4)
(4) Compute Zk+1

1 by (A.6)
(5) Compute Zk+1

2 by soft-threshold function according to (A.8)
(6) Compute Zk+1

3 by (A.10)
(7) Update Lagrange multipliers Vk+1

1 , Vk+1
2 , and Vk+1

3 by (A.11)
(8) Compute res by (A.12)
(9) k � k + 1

End while

ALGORITHM 1: Initialization module to estimate initial abundance S0.

Inputs: YC, AC, S0
Output: Xk+1

C

(1) Set initial values and parameters: λS � λR � 10− 6, S0 � S0, E0
C � [(ACS0)

TACS0]
− 1(ACS0)

TYC, R0 � 0, X0
C � S0E0

C + R0, Z0
1 � S00,

Z0
2 � DZ0

1, U
0 � 0, V0

1 � 0, V0
2 � 0 μ � 1, k � 1, ε � 10− 8, maxiters � 100, and res �∞

(2) While k<maxiters and (res≥ ε)
(3) Compute Xk+1

C by (B.3)
(4) Compute Ek+1

C by (B.4)
(5) Compute Sk+1 by (B.5)
(6) Compute Rk+1 by (B.6)
(7) Compute Zk+1

1 by (B.7)
(8) Compute Zk+1

2 by soft-threshold function according to (B.8)
(9) Update Lagrange multipliers Uk+1, Vk+1

1 , and Vk+1
2 by (B.9)

(10) res � ‖Xk+1
C − Xk

C‖F/‖Xk
C‖F

(11) k � k + 1
End while

ALGORITHM 2: Reconstruction module to obtain XC.
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,e auxiliary variables Z1 and Z2 are updated as follows:

Z
k+1
1 ← DD

∗
+ IN( 

− 1
S

k+1
− V

k
1 + D
∗

Z
k
2 + V

k
2  , (B.7)

Z
k+1
2 ← soft DZ

k+1
1 − V

k
2,
λS

μ
 . (B.8)

Finally, the Lagrange multiplier is updated.

Uk+1←Uk
− Sk+1Ek+1

C + Rk+1
− Xk+1

C 

Vk+1
1 ←Vk

1 − Sk+1
− Zk+1

1 

Vk+1
2 ←Vk

2 − DZk+1
1 − Zk+1

2 .

(B.9)

,e reconstruction module to obtain XC is described in
Algorithm 2.
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