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Bruise may cause spoilage, reduce commodity economic value, and give rise to food quality and safety concerns. �erefore, it is
crucial to detect whether a loquat is bruised and when it is bruised to save storage and transportation costs. At present, the bruise
of loquats is mainly discriminated by the operator’s naked eye, which is a�ected by personal habits, light intensity, and subjective
psychological factors.�e detection method is time-consuming, inaccurate, ine�cient, and di�cult to identify the bruise’s time of
loquats. Due to the fact that the color features can be used to perform the conditions of the darkened and brownish regions in
bruise’s loquats, the combined spectral information and the color features method is proposed to accurately detect the storage
time of mild bruise’s loquats in this study. In order to reduce economic losses, di�erent methods are used to deal with the loquats
at the corresponding bruise’s time. Loquats with four types of bruise’s time, including 6, 12, 24, and 36 h, are studied. Models with
four types of characteristics, including spectral information, RGB features combined with spectral information, HSI features
combined with spectral information, and mixed color features combined with spectral information (mixed-spectral), are
established based on linear discriminant analysis (LDA), support vector machine (SVM), and least-squares support vector
machine (LS-SVM). �e investigated 400 independent samples with four bruise’s time conditions are utilized to assess the
classi�cation ability of the proposed methods. �e results indicate that the Mixed-RBF-LS-SVMmodel has the lowest errors, and
the accuracies of storage time of mild bruise’s loquats at 6, 12, 24, and 36 h are 100%, 92%, 92%, and 100%, respectively.�e overall
accuracy of the LS-SVM model based on mixed-spectral is 96%, and it demonstrates that the combined spectral information and
color features method can be used to accurately detect the bruise’s time of loquats. Finally, the LS-SVM model based on mixed-
spectral is optimized by UVE, SPA, CARS, and GA, respectively; it is found that the UVE-LS-SVMmodel based onmixed-spectral
is the best, and the overall accuracy is 92%. It also lays a foundation for future studies about detecting the bruise’s time of fruits
with a high-precision, rapid, and nondestructive measurement.

1. Introduction

Bruise is de�ned as damage to fruit tissue due to the external
forces which cause physical changes in texture or chemical
changes in color, smell, and taste [1]. Bruise means that the
fruit is more likely to be decayed, which not only a�ects
other intact fruits [2] but also causes a serious economic loss
during storage and distribution. �erefore, it is necessary to
distinguish bruised fruit from undamaged fruit to improve
fruit quality and prevent food contamination. Loquat is
native to China, which is an economical fruit for both

medicine and food [3]. From ripening to �nal sale, loquat
needs to go through a series of picking, storage, packaging,
and transportation processes. Consequently, it is crucial to
detect whether a loquat is bruised and when it is bruised to
save storage and transportation costs.

In the process of loquat picking and postharvest han-
dling, bruised loquats are identi�ed through the operator’s
naked eye that it is a�ected by personal habits, light intensity,
and subjective psychological factors, resulting in misclas-
si�cation that mild bruised loquat as normal loquat [4], so it
is crucial to �nd a method by which the high-precision,
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rapid, and nondestructive detection of the bruised loquats
can come true. In recent years, the spectroscopic techniques
have been used in agriculture, including preharvest and
postharvest product quality and safety detection and sorting
[5]. Xing et al. [6] used a Zeiss spectrometer to detect apple’s
fresh bruises in Vis/NIR regions (400–1700 nm); a classifi-
cation accuracy of more than 95% was obtained for both the
sound and freshly bruised spots on the selected apple cul-
tivars. Jiang et al. [7] combined short-wave and long-wave
Fourier-transform near-infrared spectroscopy (FT-NIRS) to
detect and grade sweetness levels of intact peaches and
nectarines, with a classification rate of 66.7% and 86.6%.
-ese studies demonstrate that the spectroscopic techniques
hold great promise for the nondestructive evaluation of
bruise susceptibility because they are generally rapid and
nondestructive or noninvasive, and more importantly, a
large amount of information about the internal conditions of
fruit is provided by them [8].

Hyperspectral imaging, which integrates conventional
imaging and spectroscopy, is an emerging technique, and the
spatial and spectral information of the object is provided by
it. -e spectrum of each spatial pixel contains the signatures
of the sample substances, which are presented at the cor-
responding spots on the hyperspectral image [9]. Munera
et al. [10] used hyperspectral imaging in the spectral region
(450 nm–1040 nm) to detect skin defects of loquats, with a
correct classification rate of 95.9%. Li et al. [9] used
hyperspectral imaging in the NIR region (782 nm–1000 nm)
to detect skin defects of bicolored peaches, with a correct
classification rate of 96.6%. Although the techniques de-
scribed above have shown promised detection results, the
defect detection is still mostly limited to determining
whether the fruit is sound.

Nevertheless, it is particularly difficult to distinguish fruit
bruises in the first days after damage occurrence due to the
fact that the softening and browning of the fruit are not
displayed immediately [11]. -erefore, it is essential to find a
rapid, nondestructive, and high-precision detection method
for the bruising time of the fruit. To quickly identify the
bruise’s time of fruit, different methods are used to deal with
the fruit at the corresponding bruising time, which prevents
bruised fruit from being decayed and affecting other intact
fruits and reduces economic loss during storage and distri-
bution. Nturambirwe et al. [12] used Ensemble Subspace
Discriminant (ESD) to classify apple bruise’s time at 1 h, 6 h,
18 h, 48 h, and 72 h with an accuracy of 85%. Zhu et al. [13]
used Extreme Learning Machine (ELM) to classify apple’s
bruising time at 1minute, 24 h, 48 h, 72 h, and 96 hwith 92.9%
classification accuracy. Li et al. [14] used hyperspectral im-
aging technology based on spectral information combined
with the image grayscale value of a single wavelength point to
classify bruise’s time of peach, and the classification accuracy
was 96.67% for more than 24 h. In the above studies, most
scholars use spectral information to determine whether the
fruit is sound, but the spectral information is easily affected by
external stray light resulting in losing some information.
Meanwhile, the image features also contain information about
the fruit, so it is necessary to combine spectral information
and image features to improve detection accuracy.

Due to the enzymatic or chemical oxidation of phenolic
compounds, damaged tissues become darkened and
brownish in a few hours [15], and the color features can
perform the conditions of the darkened and brownish region
in loquats. -erefore, the combined spectral information
and image color features method is proposed to achieve
high-precision, rapid, and nondestructive detection of the
bruise’s time of loquats in this paper.

2. Materials and Methods

2.1. Samples. In this study, the loquats are purchased from a
local orchard (Panzhihua, China). To avoid the influence of
other irrelevant factors, all loquats having similar size (major
axis diameter is 60mm and minor axis diameter is 40mm)
and weight (30 g) are selected for the experiment. Before the
test, the samples are chosen to remove surface damage and
deformities to ensure that the samples have no apparent
defects, mechanical damage, and so on.

-e surface bruising loquats are obtained by a free-fall
collision device (as shown in Figure 1). To simulate the realistic
loquat bruising, a metal ball with a diameter of 30mm and a
mass of 100 g is used to perform free-fall motion at 30 cm on
the surface of the loquat, and the equatorial region of the loquat
is impacted to simulate the realistic loquat bruising. When the
switch is closed, the injured area of the loquat sample is located
by the electromagnetic induction device with infrared light.
When the button is opened, electromagnetic induction occurs
at the end of the electromagnetic induction device, and the
collision metal ball is fixed. Finally, the switch is closed, the
magnetic field disappears, and themetal ball carries out free-fall
motion to bruise loquats.-e loquat samples for (a) sound and
(b) bruised are shown in Figure 2.

2.2. Hyperspectral Imaging Acquisition System. -e experi-
mental image data are acquired by Gaia hyperspectral sorter. As
shown in Figure 3, the hyperspectral imaging acquisition system
consists of a computer, an imaging system, a light source
system, and an electronically controlled displacement platform.
-e imaging system consists of a camera (Hamamatsu C8484-
05G) and a spectrometer (ImSpector, V10E, Finland). -e light
source system consists of four 20W halogen lamps (OSRAM,
DECOSTAR51, MR16). -e electronically controlled dis-
placement platform consists of a carrier table and a stepper
motor. All devices are installed in a dark box with
790mm× 1024mm× 1800mm to eliminate the impact of stray
light on the external environment. All of the acquired hyper-
spectral images with a size of 960 × 488 pixels, including 176
bands at 3.4nm intervals within the region of 397.5 nm1014
nm. All acquired spectral images are processed and analyzed by
the Environment for Visualizing Images software program
(ENVI 4.5, Research System Inc., Boulder, CO., USA) and the
image processing toolbox of MATLAB 2021a (-eMathWorks
Inc., Natick, USA).

2.3. Reflectivity Correction. -e hyperspectral system needs
to be preheated for 30 minutes before data acquisition to
eliminate the effect of baseline drift and avoid the errors
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caused by the image acquisition process. �e parameters of
the hyperspectral imaging system are adjusted by SpecView
software; in order to acquire the sample image accurately,
the camera exposure time is set as 6ms, the displacement
stage advance speed of displacement stage advance is set as
1 cm·s−1, and the displacement stage retreat time is set as
2.5 cm·s−1 to save the sample acquisition time. Only one
loquat sample is collected in each test, the stepper motor is
used to drive the displacement platform to move the sample,
and the experimental sample image is acquired by the
camera continuously scanning.

Due to the interference of dark current in the CCD
camera and the uneven intensity distribution of the light
source under each band, the hyperspectral images are
needed to calibrate in black and white. After the imaging
system parameters are set and before the formal

experiment starts, the lens is pointed at the Te§on white
plate, and it is scanned to acquire the all-white calibration
image. After all, loquat hyperspectral image acquisition is
completed, and the lens covering is examined to obtain
the black plate image. �e black and white calibration is
shown as follows:

Ixy(λ) �
Rxy(λ) − Rdark(λ)
Rwhite(λ) − Rdark(λ)

, (1)

where Ixy(λ) is the corrected spectral data, Rxy(λ) is the
original spectral data, Rdark(λ) is the all-black spectral data,
and Rwhite(λ) is the all-white spectral data.

2.4. Least-Squares Support Vector Machine. �e least-
squares support vector machine (LS-SVM) is a kernel
function learning machine that the principle of Structural
Risk Minimization is followed [16]. It is an improvement of
the support vector machine (SVM) that the inequality
constraint of SVM is replaced by an equation constraint, the
sum of squared errors is used as the loss function, and the
quadratic programming problem is transformed into a
system of linear equations problem to improve the speed and
convergence accuracy of solving the problem.

Formula (2) is the discriminant equation of LS-SVM:

y(x) �∑
N

i�1
αiK x, xi( ) + b, (2)

where K(x, xi) is the kernel function, xi is the input vector,
αi is the Lagrangian operator, b is the deviation, and N is the
number of loquat samples.

(a) (b)

Figure 2: Loquat samples for (a) sound and (b) bruised.
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Figure 3: Schematic of hyperspectral imaging system.
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Figure 1: Free-fall collision device.
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2.5. Morphological Processing. Erosion, dilation, opening
operation, and closing operation are the basis of morpho-
logical �ltering, and they can be used to remove weak noises
and reduce the e�ect of strong noises [17]. Both morpho-
logical opening operation and morphological closing op-
eration can make the image homogeneities, and they can
eliminate light and dark features, respectively. �e cali-
bration of morphological opening operation is shown as the
following formula:

P ∘B �(P⊙B)⊕B. (3)

Similarly, the calibration of morphological closing op-
eration is shown as the following formula:

P · B �(P⊕B)⊙B, (4)

where P, B, ⊕, ⊙, ∘, and · are the input image, structuring
element, morphological dilation, erosion, opening, and
closing operations, respectively.

As the surface side of the loquat is curved and it cannot
be �xed directly on the drive, a tray is needed to be placed on
the drive to hold the loquat bringing the interference to the
subsequent image segmentation, so the subsequent mor-
phological operation is required to segment the loquat from
the whole picture to eliminate the in§uence by the tray.
Firstly, the image is binarized, and then the morphological
erosion algorithm is performed to eliminate the impact of
the tray. �e erosion operation is like a minimum value
�ltering operation, a convolution kernel (or template,
structure element) is used as the convolution when the edge
of the tray is eliminated, and the morphological corrosion
operation algorithm also erodes the loquat image, so the
expansion algorithm is needed to recover it. �e expansion
operation algorithm is the dyadic operation of the corrosion
operation algorithm, and it is a maximum �ltering opera-
tion. In this experiment, the morphological corrosion op-
eration algorithm and expansion operation algorithm are
performed by the convolution using structural elements of
§at discs with a radius of 5 pixels.

3. Results and Discussion

3.1. Spectra of All Samples. To eliminate the di�erences in
re§ectance caused by di�erent shapes of loquat surfaces, a
consistent spectral extraction area should be maintained.
�e spectral and image information of loquat samples are
collected by ENVI4.5 software. As the spectral data of in-
dividual pixel points are not representative, the average
spectral data of 200-pixel points are selected as spectra
features by the Rectangular Region of Interest (ROIs). �e
spectral data are preprocessed by Multiplicative Scatter
Correction (MSC) to eliminate the scattering e�ects of in-
homogeneous particle distribution and particle size [18].

�e re§ectance spectra of standard loquat samples and
di�erent bruising times under mild damage are shown in
Figure 4. �e spectral waveforms of several grades of loquat
are the same, and the peaks and troughs are also located at
the same wavelength point, with di�erent re§ectance. At the
same wavelength point in the region of 397.5 – 789.1 nm,

with the increase of the bumping time, the re§ectivity de-
creases, and the re§ectance of the normal loquat sample is
highest. Meanwhile, bruised tissues need a few hours to
become darkened and brownish due to the enzymatic or
chemical oxidation of phenolic compounds [1]. As the
bruise’s time increases, the darkened and brownish regions
of the bruise’s loquats and the re§ectance of ROIs decrease
However, in the region of 789.10–1014 nm, the re§ectance of
ROIs increases with the bruising time increase, and the
re§ectance of the normal loquat sample is lowest. �at’s
because that the bruised loquats are more likely to be in-
vaded by the appearance, water loss and risk of bacterial and
fungal contamination [19], and the enzymatic or chemical
oxidation of phenolic compounds, resulting in the internal
quality of loquat was changed with the increase of bruising
time. Generally speaking, the characteristics of the bruised
loquat are external features, and are detected in the visible
region (400–780 nm). Meanwhile, the near infrared region
(780–1000 nm) re§ected the internal defects of bruised lo-
quats, there are the di�erence of internal and external
characteristics in bruised loquats. As show in Figure 4, the
regions of 397.5–789.1 nm and 789.1–1014 nm re§ected the
external and internal defects in bruised loquats, respectively..

3.2. Extraction of Color Features. In this paper, the binarized
template is used to remove the background to reduce noise
for further extraction of color features [20]. �e RGB fea-
tures are the average gray values of the corresponding R, G,
and B channels. Similarly, the HSI features are the average
gray values of the corresponding H, S, and I channels. In real
life, RGB features are superimposed in di�erent degrees to
produce a rich and wide range of colors, but it is di�cult to
describe the data accurately. However, the HSI color features
are from the human visual system to describe color; the
performances of hue, luminance, and saturation can bemore
clearly described by it.
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Figure 4: Spectral of samples with di�erent bruise time.
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Based on the above analysis, it is found that the model
based on the RGB and HSI features combined with spectral
information may have well classification results. Further-
more, the features of RGB and HSI combined with spectral
information are used to establish the discriminant model.

3.3. Classification of LDA, SVM, and LS-SVM Models.
Loquat samples of 6 h, 12 h, 24 h, and 36 h after bruising are
divided into four groups, and they are labeled 1, 2, 3, and 4,
with 100 samples in each group. -e experimental samples
are divided into modeling set and prediction set at the ratio
of 3 :1 by the Kennard-Stonemethod. As the grayscale values
of the standard image are significant, the numerical values of
spectral information are minor, so all of the features need to
be normalized to reduce errors. Furthermore, the four
qualitative analysis models are established by spectral in-
formation, RGB features combined with spectral informa-
tion, HSI features combined with spectral information, and
mixed features combined with spectral information, and the
flowchart of loquat image information processing is shown
in Figure 5.

Linear discriminant analysis (LDA) is one of the most
common algorithms for supervised classification [21], and
the basic idea of it is to transform the sample data into a
new feature space by projection so that the distance be-
tween classes is maximized and the distance between
samples within a class is minimized. LDA can be used to
reduce the dimensionality of the feature space to a certain
extent, and it also can be used to effectively extract clas-
sification information. In this study, LDA is used to
evaluate the groups of storage time at 6 h, 12 h, 24 h, and
36 h. From all the classification results of the models of
LDA, as shown in Table 1, it is found that the accuracy of
the groups of storage time at 6 h and 36 h is more than the
groups of storage time at 12 h and 24 h.-e total accuracy is

76%, 81%, 80%, and 85% for storage time at 6 h, 12 h, 24 h,
and 36 h, respectively. -e results show that the accuracy of
the spectral model can be increased by RGB and HSI color
features, so the mixed-spectral features are determined as
the optimal features.

Support vector machine (SVM) is a new machine
learning method derived and developed on the basis of
statistical theory, whose theory comes from the processing of
data for classification. Numerous studies have shown that
SVM can show certain advantages in solving small sample
data and nonlinear data, such as its generalization ability and
prediction ability [22]. In this study, SVM is used to evaluate
the groups of storage time at 6 h, 12 h, 24 h, and 36 h. From
all the classification results of the models of SVM, as shown
in Table 1, it is found that the accuracy of storage time at 36 h
is the highest. -e total accuracy rate increases with the
increase of characteristic variables, and the overall accuracy
is 78%, 79%, 82%, and 87% for storage time at 6 h, 12 h, 24 h,
and 36 h, respectively. -e results show that RGB and HSI
color features can effectively enhance the model discrimi-
nation ability.

-e least-squares support vector machine (LS-SVM) is
derived from the SVM algorithm, and it has the advantages
of the SVM algorithm. -e basic idea is to find the optimal
classification hyperplane by mapping the input vector to a
high-dimensional space through the kernel function. -e
inequality constraint is converted into solving linear
equations to accelerate the solution speed [15]. In this study,
LS-SVM is used to evaluate the groups of storage time at 6,
12, 24, and 36 h. From all the classification results of the
models of LS-SVM, as shown in Table 1, it is found that the
accuracy of the groups of storage time at 6 h and 36 h is more
than the groups of storage time at 12 h and 24 h. -e total
accuracy rate increases with the increase of characteristic
variables, and the overall accuracy is 79%, 95%, 89%, and
96% for storage time at 6, 12, 24, and 36 h, respectively. -e
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Figure 5: Flowchart of loquat image information processing.
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Table 1: Classi�cation results of LDA, SVM, LS-SVM Model.

Model Features Variables
Bruising time (h)

Total (%)
6 (%) 12 (%) 24 (%) 36 (%)

LDA

Spectral 176 76 68 72 88 76
RGB-spectral 179 84 80 72 88 81
HSI-spectral 179 76 76 76 92 80
Mixed-spectral 182 76 72 92 100 85

SVM

Spectral 176 76 68 80 88 78
RGB-spectral 179 76 72 72 96 79
HSI-spectral 179 72 80 80 96 82
Mixed-spectral 182 80 84 84 100 87

LS-SVM

Spectral 176 88 68 68 92 79
RGB-spectral 179 96 96 88 100 95
HSI-spectral 179 92 84 88 92 89
Mixed-spectral 182 100 92 92 100 96
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results show that RGB and HSI color features can e�ectively
enhance the model discrimination ability.

Based on the classi�cation outcomes for all 16 combi-
nations of 4 features and 4 bruising times by the above three
methods (i.e., the LDA, SVM, and LS-SVMmodel) shown in
Table 1, the optimal feature and model for the bruised
recognition are determined.

3.4. LS-SVM Model Optimizations. Based on the classi�ca-
tion results for all 4 features by the above three methods (i.e.,
the LDA, SVM, and LS-SVMmodel), it is found that the LS-
SVM model based on mixed-spectral feature is the best for
the bruised recognition. However, the model performance is

evaluated by full-band data in the above analysis. In fact, this
method is not suitable for use in rapid, automated, and in-
line sorting in a large loquat production environment, so the
model is necessary to be optimized. �e variable �ltering
methods are used to reduce the dimensionality of spectral
data, including uninformative variable elimination (UVE),
successive projections algorithm (SPA), competitive adap-
tive reweighted sampling (CARS), and genetic algorithm
(GA) [23]. In this paper, the LS-SVM model is optimized by
UVE, SPA, CARS, and GA, respectively, the number of
spectral variables is reduced from 176 to 38, 10, 30, and 4,
respectively, and the results are shown in Figure 6.

As shown in Table 2, the mixed color features combined
with the optimized variables of spectral information are

Table 2: Model optimization results by UVE, SPA, CARS, and GA.

Method Variables Accuracy (%)
Raw 176 96
UVE 38 92
SPA 10 86
CARS 30 91
GA 4 81
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used to be established, and it is found that the accuracy of
all the optimized models is not as good as the Raw-Mixed-
spectral-LS-SVM model. Compared with the number of
spectral variables, it is found that the detection accuracy
increases with the number of variables due to the fact that
the features are lost in dimensionality reduction. Generally
speaking, the spectral information reflects the character-
istics of the sample, so the more characteristic bands after
selection, the higher the accuracy of the model. However,
sometimes there is redundancy between adjacent spectra in
the spectral region. Using wavelength selection method to
eliminate redundancy is helpful to improve the accuracy of
prediction model [24]. Based on different data, the number
of characteristic wavelengths obtained by using the same
wavelength selection method is also different, so the per-
formance of the established model is also different. In this
paper, the UVE, SPA, CARS, and GA methods are used to
optimize the model, respectively, the accuracy of the model
optimized by UVE is the highest, and the overall accuracy
of it is 92%. Although the accuracy of the optimized model
is reduced, it saves a lot of detection time. Consequently, it
also lays a foundation for future studies about detecting
bruising time with a rapid and nondestructive
measurement.

Four kinds of optimized models are compared, the
results are shown in Figure 7, and it is found that the
misclassification is mainly caused by classes (b) and (c).-e
UVE-LS-SVM model based on mixed-spectral can identify
the class (a) and (d) samples perfectly. When it is used to
distinguish class (b) samples, one sample is misclassified
into class (a), four samples are misclassified into class (c),
and one sample is misclassified into class (d). When it is
used to distinguish class (c) samples, two samples are
misclassified into class (b). Based on the above analysis
results, the accuracy of class (b) should be increased in
future studies.

4. Conclusions

-is study demonstrates that the combined spectral infor-
mation and color features method can be used to accurately
detect the storage time of mild bruise’s loquat. In this paper,
the models based on spectral information, RGB features
combined with spectral information, HSI features combined
with spectral information, and HSI features combining both
spectral information and RGB features are established, re-
spectively; it is found that the LS-SVM model based on
mixed-spectral is the best, and the overall accuracy is 96%.
Furthermore, the LS-SVMmodel based on mixed-spectral is
optimized by UVE, SPA, CARS, and GA, respectively; it is
found that the performance of UVE-LS-SVM is best, the
overall accuracy is 92%, and the number of feature variables
accounts for 21.59% of the total wavelength. -is study
provides a theoretical basis for subsequent qualitative dis-
crimination of fruits by the combined hyperspectral spectral
information and color features method. Consequently, it
also lays a foundation for future studies about detecting
bruising time with a rapid, accurate, and nondestructive
measurement.
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