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Rapid and onsite determination of the soil status and quality parameters holds a brighter potential for improving food security,
and minimizing waste of the excessive application of soil amendments hence reducing environmental pollution. In this study,
a pocket-sized shortwave NIR spectroscopy (740–1070 nm) and multivariate statistics were used to classify soil from diferent
land-use types and simultaneously predict nitrogen (N), phosphorus (P), potassium (K), calcium (Ca2+), magnesium (Mg2+), and
pH in Ghana. Diferent Algorithms. Linear discriminant analysis (LDA), support vector machine (SVM), and partial least squares
algorithms (full-range partial least square, FrPLS; interval partial least squares, IPLS; synergy interval partial least squares, Si-PLS)
were attempted for building a suitable classifcation and quantifcation model. Te models were assessed by the classifcation rate,
coefcient of determination (Rp

2), and root mean square error of prediction (RMSEP) in the prediction set. A total of 110 soil
samples from 0 to 15 cm, 15 to 30 cm, and 30 to 45 cm layers were collected from the feld of diferent land-use cropping systems.
Te results obtained showed that SVM had a 98.61% classifcation rate of the soil from the cropping system. While Si-PLS was
superior in predicting N, P, K, Mg2+, Ca2+, and pH. Te performance of the Si-PLS model for N, P, K, Mg2+, Ca2+, and pH were
0.571, 0.779, 0.910, 0.778, 0.826, and 0.904 for Rp

2 and 0.033%, 0.738 mg·kg−1, 0.117 cmol·kg−1, 0.654 cmol·kg−1, 3.0219 cmol·kg−1,
and 0.4760 pH unit for RMSEP, respectively. Te results revealed that the portable NIR spectroscopic technique could be used to
measure the soil status and some quality parameters. However, further studies are needed to proof its application. Tis could lead
to improving the yield and saving the cost of fertilizer application.

1. Introduction

Soil quality and soil fertility management play a signifcant
role in agricultural productivity and environmental

pollution control, and therefore, a rapid knowledge of the
soil quality status of the soil is a vital step. Te status of soils
is normally measured by analysing the soil using the tra-
ditional laboratory technique known as wet chemistry to
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provide useful information. Te wet chemistry approach
comes with its numerous challenges, such as it is expensive,
time consuming, involve chemical usage, often restricted to
fewer samples, or samples are bulked from an area to provide
representative composites and prompting the use of pedo-
transfer functions as a substitute [1, 2]. It is also known to
generate unwanted waste and destructive to the original soil
samples [3]. Above all, it is limited to the laboratory and
cannot be used in the feld where it is neededmost to provide
rapid and accurate results to assist in the promotion of
precision agriculture. Tis shows that an alternative tech-
nique is required in the face of promoting in situ de-
termination to encourage precision agriculture. Te
development of alternative measurement methods that are
accurate, rapid, and inexpensive is of great value [4].

NIR spectroscopy is an advanced analytical technique
that has gained ground in various felds including agricul-
ture. It provides many useful advantages over the traditional
analytical methods. Tese advantages include the following:
it is physical, nondestructive, rapid results, and no chemical
usage, hence environmentally friendly and inexpensive [2].
Research conducted by other researchers have revealed the
potential usefulness of NIR spectroscopy for soil analysis and
notable among them include the measurement of heavy
metals in soil [4], soil physical, chemical, and biochemical
properties [5], soil carbon and nitrogen [6, 7], discrimina-
tion of three major soil types [8] and discrimination of
organic matter in soil from grass and forest [9]. All these
aforementioned studies have proven that NIR spectroscopy
could provide the needed alternative for soil analysis.
However, all these studies involve the use of large NIR
machine that defeat the purpose of onsite usage. Hence,
there is little or no attempt to use a small NIR spectrometer
for simultaneous determinations of soil health properties.
However, due to the advances in computers and electronics,
portable or small NIR spectroscopy has been proposed and
developed coupled with chemometric. Tis could provide an
added advantage over the laboratory-based NIR spectros-
copy. However, up until now, little or no studies have been
done in Ghana on the use of pocket-sized user-friendly NIR
spectroscopy for soil analysis on the classifcation of diferent
land-use types and also for predicting soil health quality
parameters.

Tis research, therefore, seeks to investigate the feasi-
bility of applying pocket-sized NIR spectroscopic techniques
coupled with multivariate statistics by employing a variable-
wise selection protocol for the simultaneous classifcation
and detection of soil health properties to inform the stepwise
precision application of soil amendment. Te specifc ob-
jectives are to predict the identifcation of soil under dif-
ferent land-use types and determine N, P, K, pH, Ca2+, and
Mg2+ simultaneously by employing synergy interval variable
selection optimum.

2. Materials and Methods

2.1. Sample Collection. A total of 110 soil samples were
collected at diferent depth (0–15, 15–30, and 30–45 cm)
from diferent land-use types such as arable, native, pasture,

and plantation as describe by others [10]. Physically, any
rough stones and plant debris were removed before the soil
samples were air dried. Te soil samples were then in-
dividually uniformly ground, sieve through a 2mm sieved,
and then package in a well-labelled polythene bag before
analysis.

2.2. Sample Spectral Acquisition. Te spectrum of each
sample was obtained in the refectance mode using a pocket-
sized spectrometer (SCIO™) in a spectral range of
740 nm–1070 nm in a 1 nm resolution for spectra data re-
cording. To scan the samples, a 60 g sample was poured into
a glass container as seen in Figure 1 and scanned four times
after rotating it at 45o. Te whole process was carried out at
28−31°C and 65% relative humidity. Te raw dataset of 110
soil samples stored in the cloud based were downloaded
using a research license of SCIO lab and imported into
MATLAB version 9.5.0 (Mathworks Inc., USA). Te
downloaded raw dataset was divided into two subsets called
the calibration set (77 samples) for developing themodel and
the prediction set (33 samples) for evaluating the pre-
dictability of the developed model. To avoid bias in the
selection of members in each subset, the Kennard−Stone
algorithm was used in the partitioning of the dataset.

2.3. ReferenceMethods. Te pH of the soils was measured in
a 1 : 2.5 (w/v) soil: water ratio with a pH meter [11]. Total
nitrogen (N) was determined using the micro Kjeldahl di-
gestion method [12]. Available phosphorous in the soil was
determined following the Bray-1 acid method [13]. Ca, Mg,
and K were determined through extraction using the am-
monium acetate method at pH 7 [14]. All the analysis were
done in triplicates, and the measured soil chemical prop-
erties were statistically processed in terms of the range
(maximum to minimum values), mean, and standard de-
viation (SD) as seen in Table 1.

2.4. Mathematical Signal Treatments. In this study, fve
mathematical spectral signal pretreatments (MC, mean
centring; MSC, multiplicative scatter correction; SNV,
standard normal variate; FD, frst derivative; and SD, second
derivative) were comparatively used to obtain the best model
developed. In NIR modelling, it has become very necessary
to pretreat the raw data set with the best techniques and the
challenge, however, is there are several of them. It has,
therefore, become a huge task coupled with the fact that it
cannot be left-out. Spectral pretreatment is known to be an
efective method to reduce or eliminate the optical scattering
from diferent particles, reduce noises, and thereby improve
prediction accuracy and robustness of the developed model
[15]. Also, any interferences caused by light scattering,
baseline shift, and slope variations caused by the particle size
are causing unwanted signals to be removed [16]. MC uses
the principle of calculation of average; thus, this average
spectrum of the data set is calculated and this average is
subtracted from each spectrum of the acquired data [17].
SNV is normally used to remove scatter variation from the

2 Journal of Spectroscopy



light source in the spectral data by eliminating multiplicative
interferences and scatter [16, 18]. MSC is a unique pre-
processing technique that is normally used for the correction
of scattered light and to remove diferent inclinations of
spectral peak. For more information, refer to [19]. Also, FD
and SD derivatives spectra pretreatments are used to sep-
arate overlapping peaks and eliminate the baseline shift and
it is improved by using the Savitzky–Golay algorithm.

2.5. Quantifcation Models. Te partial least squares (PLSs)
algorithm is a well-known linear multivariate algorithm
proposed by Herman Wold for modelling complicated data
set [20]. It has recently found its use for analysing spectra
data with strong collinear, noise, and redundant variables.
However, the original PLS works on full spectrum and
involves a larger sample matrix which often has both useful
and unwanted information. To overcome this bottle neck in
the PLS model, other researchers have resorted to the
manual selection of diferent spectral regions to estimate
some chemical composition [21, 22]. Tis approach, how-
ever, is slow and cumbersome and requires a prior expe-
rienced knowledge about unique spectra selection. To solve
the aforementioned challenges associated to the PLS model,
the interval partial least squares (IPLSs) and synergy interval
partial least squares (Si-PLSs) models were proposed. For
IPLS, it works by splitting the spectra into smaller equi-
distant regions and they develop the model for each sub-
interval by the original PLS, while Si-PLS also split the data
set into a number of intervals and then calculate all possible

PLS models for all possible combinations of more than one
interval (two, three, and four intervals). Te best interval for
IPLS and Si-PLS are selected based on the lowest root mean
square error of calibration (RMSEC) for a single selected
interval and for a combination of intervals with the for the
best outcome is chosen respectively. Te results of the model
are normally evaluated by using three main parameters,
namely, the RMSECV, the root mean square error of pre-
diction (RMSEP), and the coefcient of determination (R2)
[23, 24]. Tese parameters are calculated by using the fol-
lowing equation:
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where n= the number of samples. yi= the reference mea-
surement results for sample i, yi = the estimated results of
the model for the sample i, and y= the mean of the reference
measurement results for all samples in the data set.

3. Results and Discussion

3.1. Spectral Data Presentation. Spectral profle obtained
contains useful information for modelling. Figure 2(a)
presents the raw spectra of soil samples from diferent land-
use types and this revealed several absorptions bands.
However, the spectra profle appears to show similarities
with no unique diferences when looked at with the naked
eyes. Furthermore, the spectra profle appears to have no
useful information and this, therefore, called for the use of
multivariate algorithms to assist in the building of qualitative
and quantitative models for predicting useful parameters of
interest. Also, the wavelength range (740–1070 nm) used
possesses unique functional groups such as C-H stretch, C-H
deformation, S-H, N-H, CH2, and CH3 that could corre-
spond to various parameters in soil such as N, P, K, pH, and
other distinct attributes (as seen in Table 1) that could be
useful for diferentiating the various soil types, as seen in
Figure 2(b). Te wet chemistry results obtained in this study
showed a wide range of chemical properties as seen in
Table 1, and this could be attributed to the wide array of land
use types for the study from which the samples were col-
lected. Te results obtained also agree with those of other
authors [10]. Furthermore, the relationship between the
spectral absorption wavelength and soil chemical compo-
sition (absorption of C-H, O-H and N-H bonds) made it
possible to quantify specifc soil health parameter of interest
using appropriate selection of the wavelength region [25],
and this could be attributed to the clear separation as ob-
served in Figure 2(b). Also, the organic matter present in the
samples used have distinct spectral fngerprints in the NIR

Table 1: Wet chemistry measurement of soil health properties.

Parameters No. of samples Ranges Mean STD

N (%) 77 0.010–0.26 0.059 0.040
33 0.015–0.18 0.063 0.042

P (mg·kg−1) 77 0.0045–3.99 0.769 1.230
33 0.0081–3.54 0.766 1.257

K (cmolc·kg−1) 77 0.020–0.90 0.199 0.202
33 0.020–0.74 0.200 0.228

Mg2+ (cmolc·kg−1) 77 0.16–3.99 0.873 0.788
33 0.08–3.54 1.043 0.978

Ca2+ (cmolc·g−1) 77 0.64–18.88 3.562 3.948
33 0.72–21.36 2.744 4.067

pH 77 4.83–7.57 6.233 0.781
33 4.81–7.39 5.935 0.599

Figure 1: Soil spectral data acquisition setup.
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region because the relatively strong absorption of overtone
and the combination modes relative to several functional
groups (CH: aliphatic, CO: carboxyl, NH: amine and amide)
are usually present in the organic compounds [26].

3.2. Principal Component Analysis (PCA). Principle com-
ponent analysis ofers an unsupervised pattern recognition
tool in a dimensional space for observing any possible cluster
trends. It works by reducing the dimension of the data
matrix and translating useful information into interpretable
variables known as principal components (PCs). Figure 3(a)
shows the outcome of PCA and it revealed that there were
four distinct soil groups. All the samples clustered well along
the two PCS planes where PC1 and PC2 could explain
92.68% and 6.68% of the variance, respectively, giving a total
accumulative contribution of 99.37% variance for the 110
samples used in this study.Tis means the frst two principal
components (PC1 and PC2) cover the maximum in-
formation and provided the chemical compositional in-
formation in the NIR region for modelling. Soil samples
have considerable unique diferences in chemical properties
in accordance with their land use type. Since PCA is not
a classifcation tool, LDA and SVM multivariate classifca-
tion techniques were used for building a classifcationmodel.

3.3. Classifcation Model. Tere are several classifcation
algorithms and most often the selection of the ones to use is
a big challenge. In this experiment, linear discriminant
analysis (LDA) and the support vector machine (SVM) were
comparatively used. Tis was because every multivariate
classifcation model has its own strength and weakness.
From Table 2, it could be observed that the LDA model had
its optimum classifcation rate at 98.65% and 97.22% in the
calibration set and the prediction set, respectively, after the
FD preprocess technique was applied on the raw data. Tis

fnding supports the aforementioned fact that preprocessing
methods are known to improve modelling results as it
normally eliminates unwanted information, reduce noise,
improved accuracy, and enhance robustness of the de-
veloped classifcation model [15].

On the other hand, the SVM obtained the best results
comparatively at a classifcation rate of 99.32% and 98.61%
in the calibration and prediction sets, respectively, as seen in
Table 2. Also, among the preprocessing techniques used, and
MSC and FD improved the raw spectra data set, hence
enhanced the fnal classifcation rate. It could be explained
that MSC is unique in the correction of scattered light and to
remove diferent inclination of the spectral peak while FD
enhanced spectra separation. In this research, the MSC-
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Figure 2: Spectra profle (a) raw and (b) mean of soil samples from diferent land-use types.
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SVM/FD-SVM model was superior in the classifcation of
land use types. A cross-validated analysis was done, and
Figure 4 shows cross validation done using randomly se-
lected spectra to test the model. Among the samples used in
Figure 4, it was observed that only one sample was mis-
classifed.Tis sample was the one from the pasture land-use
type. It could be explained that the SVM created a hyper-
plane that allowed the separation in the higher dimension
feature space because the SVM is a transformational tool that
converts data from a low dimension input space to a high
dimension feature space [17].

Explaining the phenomenon of the accurate classifca-
tion is vital. Figure 5 reveals the total contribution of the
unique wavelengths that contributed to the neat separation
and classifcation of the land use types. At the frst com-
ponent, the major peak was found around 900 nm and this
corresponds to CH3 and CH2 at the third overtone [26]
associated with organic materials, while at the second and
third components, the major peaks were found around
800–830 nm, 850–875 nm, 925–950 nm, and 1000–1050 nm.
Tese wavelengths correspond with RNH2, ArCH, CH3,
CH2, and RONH2 [26] that are associated with chemical
properties like nitrogen, pH, organic carbons, and among
others in the soils used in this research.

3.4. Quantitative Models. Te spectral prediction of nitro-
gen, phosphorus, potassium, pH, calcium, and magnesium
were modelled by using diferent PLS and other wavelength
selection techniques (IPLS and Si-PLS). From the results
obtained by using the full PLS algorithm, frst derivative
spectra preprocessing performed better than the others in all
the soil quality parameters as seen in Table 3. Tis perfor-
mance could be due to frst derivatives spectra pre-
treatment’s ability in greatly defning the presence and
locations of hidden absorption bands [27]. Also, from Ta-
ble 4, the parameters measured did not show any well-de-
fned pattern for the preprocessing models' performance.
Te parameters measured did not show any well-defned
pattern for preprocessing model performance. Tus, mean
centring (MC) preprocessing was superior for nitrogen and
calcium, while frst derivative and SNV outperformed the
others for phosphorus, pH, and potassium. Generally, results

obtained by using Si-PLS showed an optimal performance
for all the parameters studied, as seen in Table 5. Specifcally,
FD preprocessing spectra treatment also enhanced the re-
sults of most quality parameters (N, P, and K), while MC
enhanced Calcium results and No preprocessing treatment
was needed for pH and magnesium.

Comparatively, as seen from Table 6, IPLS performed the
least followed by full PLS, while Si-PLS performed best for all
the parameters (N, P, K, Mg2+, Ca2+, and pH) studied. Tese
revelations could be explained by that each PLS type has its
unique properties. PLS performed on the full spectral region
of the soil samples and contained some irrelevant spectral
information which inevitably reduces the performance of the
PLS model, while IPLS actually overcome the challenges of
PLS by selecting a maximum region of interest to calibrate
the PLS model. However, only a single interval selection
gives way for the neglect of other useful spectral information.

Table 2: Identifcation rate of diferent land use classes by LDA and
SVM.

Models Preprocessing
Correct classifcation rates (%)

Calibration set (77) Prediction set (33)

LDA

RAW 93.20 94.44
MC 96.62 97.22
MSC 97.30 98.61
SNV 96.62 97.22
FD 98.65 97.22

SVM

RAW 95.83 96.87
MC 96.62 95.75
MSC 95.97 98.610
SNV 96.62 98.83
FD 99.32 98.61

Te bold values represents the best results.
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Table 3: Optimal selection of the preprocessing technique using the PLS model.

Parameters Models
Calibration set (77) Prediction set (33)

R2 RMSEC Bias R2 RMSEP Bias

N (%)

RAW 0.5597 0.0335 0.0038 0.5517 0.0349 0.0061
MSC 0.4886 0.0353 0.0040 0.7505 0.0276 0.0048
MC 0.5589 0.0335 0.0038 0.5829 0.0340 0.0059
SNV 0.4982 0.0350 0.0040 0.7510 0.0276 0.0048
FD 0.5606 0.0335 0.0038 0.7775 0.0263 0.0046

P (mg·kg−1)

RAW 0.7533 0.7596 0.0866 0.8121 0.7226 0.1258
MSC 0.7532 0.8039 0.0916 0.8322 0.6866 0.1195
MC 0.7818 0.7619 0.0868 0.8380 0.6757 0.1176
SNV 0.7633 0.7894 0.0900 0.8332 0.6847 0.1192
FD 0.7899 0.7494 0.0854 0.8384 0.6750 0.1175

K (cmolc·kg−1)

RAW 0.7894 0.1234 0.0141 0.6616 0.1690 0.0294
MSC 0.8445 0.1076 0.0123 0.8826 0.1060 0.0184
MC 0.8566 0.1037 0.0118 0.8701 0.1111 0.0193
SNV 0.8454 0.1073 0.0122 0.8872 0.1040 0.0181
FD 0.8781 0.0962 0.0110 0.8789 0.1075 0.0187

Mg2+ (cmolc·kg−1)

RAW 0.7437 0.5237 0.0597 0.8014 0.5765 0.1003
MSC 0.7208 0.5430 0.0619 0.7888 0.5924 0.1031
MC 0.7385 0.5282 0.0602 0.7946 0.5851 0.1019
SNV 0.7308 0.5347 0.0609 0.7898 0.5911 0.1029
FD 0.7119 0.5502 0.0627 0.8078 0.5681 0.0989

Ca2+ (cmolc·kg−1)

RAW 0.7629 2.5357 0.2890 0.7982 2.4129 0.4200
MSC 0.7605 2.5471 0.2903 0.8646 2.0127 0.3504
MC 0.7629 2.5359 0.2890 0.7973 2.4177 0.4209
SNV 0.7613 2.5434 0.2899 0.8697 1.9770 0.3442
FD 0.7830 2.4399 0.2780 0.7871 2.4706 0.4301

pH

RAW 0.8843 0.3624 0.0413 0.5972 0.4738 0.0825
MSC 0.8912 0.3521 0.0401 0.7667 0.3792 0.0660
MC 0.8708 0.3817 0.0435 0.5911 0.4765 0.0829
SNV 0.8914 0.3518 0.0401 0.7855 0.3655 0.0636
FD 0.8740 0.3773 0.0430 0.5927 0.4758 0.0828

Table 4: Optimal selection of the preprocessing technique using the IPLS model.

Parameters Models
Calibration set (77) Prediction set (33)

R2 RMSEC Bias R2 RMSEP Bias

N (%)

RAW 0.4576 0.0361 0.0006 0.4894 0.0390 −0.0137
MSC 0.4710 0.0358 0.0000 0.4891 0.0389 −0.0135
MC 0.4991 0.0351 0.0006 0.5138 0.0379 −0.0111
SNV 0.4477 0.0364 0.0000 0.4477 0.0401 −0.0131
FD 0.4231 0.0368 0.0012 0.4982 0.0383 −0.0119

P (mg·kg−1)

RAW 0.6194 0.9627 0.0102 0.6445 0.9611 −0.1017
MSC 0.5739 1.0074 0.0037 0.5636 1.1048 −0.3496
MC 0.5533 1.0256 0.0322 0.5973 1.0237 −0.2469
SNV 0.5157 1.0582 0.0073 0.5090 1.0876 −0.2161
FD 0.6740 0.9087 0.0127 0.7005 0.9029 0.1131

K (cmolc·kg−1)

RAW 0.6170 0.1586 0.0110 0.6229 0.1802 −0.0364
MSC 0.7890 0.1253 0.0020 0.7604 0.1700 −0.0864
MC 0.6977 0.1445 0.0010 0.6746 0.1767 −0.0569
SNV 0.8104 0.1184 0.0020 0.8268 0.1476 −0.0700
FD 0.7763 0.1275 0.0030 0.7221 0.1642 −0.0515

Mg2+ (cmolc·kg−1)

RAW 0.7702 0.5029 0.0008 0.7764 0.6087 −0.0252
MSC 0.5490 0.6597 0.0040 0.5817 0.7861 −0.0578
MC 0.6285 0.6141 0.0040 0.7510 0.6574 0.1355
SNV 0.5619 0.6557 0.0108 0.5504 0.8051 −0.0274
FD 0.5103 0.6760 0.0040 0.5544 0.8040 −0.0526
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Hence, it could be seen that IPLS performance declined
drastically. On the other hand, its counterpart (Si-PLS
model) uses the combination of more than one useful se-
lection of intervals to model the parameter of interest as in
the case of this study. Terefore, Si-PLS showed its own
superiority over PLS and IPLS because it overcame the
demerits showed by both techniques (full PLS and IPLS).

More specifcally, for nitrogen prediction, Si-PLS per-
formed best, as seen in Table 6. Te optimal spectral interval
selected were 770–784, 945–958, and 973–986 nm at 4 PLS

components, as seen in Figure 6(a). Tese spectra corre-
sponded to various absorption bands for the nitrogen
content in soil as these ranges are associated with RNH2
according to others [26]. Tese wavelengths are also asso-
ciated with C-H and N-H third overtones. For phosphorus,
the optimum selected wavelengths were 768–781, 894–907,
973–986, and 1058−1070 nm at 3 PLS components as seen in
Figure 6(b), which represents the third overtone region and
correspond to ArOH, CH3, and ArCH. Te mobilization of
phosphorus plays a vital role in capturing, storing, and

Table 4: Continued.

Parameters Models
Calibration set (77) Prediction set (33)

R2 RMSEC Bias R2 RMSEP Bias

Ca2+ (cmolc·kg−1)

RAW 0.6073 3.1258 0.0313 0.5450 3.3710 −0.2670
MSC 0.7369 2.6520 0.0119 0.7346 2.8916 −0.9689
MC 0.7773 2.4693 0.0749 0.7868 2.5842 −0.7115
SNV 0.5755 3.2082 0.0242 0.5809 3.2835 −0.2832
FD 0.6646 2.9410 0.1847 0.6218 3.2138 −0.1248

pH

RAW 0.3762 0.7206 0.0440 0.3209 0.6363 0.2764
MSC 0.5937 0.6254 0.0048 0.6042 0.5648 0.0948
MC 0.5815 0.6316 0.0021 0.4628 0.5458 0.1008
SNV 0.5624 0.6425 0.0217 0.4477 0.5901 0.0398
FD 0.6887 0.5648 0.0407 0.5005 0.5301 0.1165

Table 5: Optimal selection of the preprocessing technique using the Si-PLS model.

Parameters Preprocessing
Calibration set (77) Prediction set (33)

R2 RMSEC Bias R2 RMSEP Bias

N (%)

RAW 0.5540 0.0337 0.0001 0.6571 0.0348 −0.0141
MSC 0.5158 0.0349 0.0012 0.5307 0.0378 −0.0130
MC 0.5549 0.0338 −0.001 0.3845 0.0414 −0.0139
SNV 0.5160 0.0348 0.0000 0.3220 0.0455 −0.0178
FD 0.5713 0.0333 0.0005 0.6993 0.0335 −0.0139

P (mg·kg−1)

RAW 0.7714 0.7809 0.0289 0.8382 0.6815 0.0870
MSC 0.7551 0.8025 0.0310 0.8129 0.7244 0.0432
MC 0.7779 0.7699 0.0438 0.8360 0.6880 0.0979
SNV 0.7549 0.8024 0.0304 0.7982 0.7573 −0.0289
FD 0.7796 0.7659 0.0284 0.8042 0.7381 0.0488

K (cmolc·kg−1)

RAW 0.9044 0.0859 0.0005 0.8496 0.1360 −0.0554
MSC 0.8921 0.0911 0.0032 0.8310 0.1318 −0.0355
MC 0.9092 0.0838 0.0001 0.8804 0.1254 −0.0501
SNV 0.8966 0.0892 0.0004 0.8593 0.1229 −0.0319
FD 0.9108 0.0833 0.0005 0.8980 0.1176 −0.0470

Mg2+(cmolc·kg−1)

RAW 0.8010 0.4699 0.0071 0.7586 0.6835 0.0178
MSC 0.7961 0.4809 0.0116 0.8205 0.5591 0.0532
MC 0.8066 0.4655 0.0066 0.7976 0.6100 0.0175
SNV 0.7893 0.4825 0.0028 0.8209 0.5704 0.0293
FD 0.7786 0.4929 0.0160 0.7613 0.6542 0.1097

Ca2+ (cmolc·kg−1)

RAW 0.8342 2.1857 0.1060 0.6470 3.0853 −0.1829
MSC 0.8160 2.3095 0.0142 0.3827 3.9873 −0.4315
MC 0.8317 2.2040 0.0507 0.6712 3.0206 −0.5359
SNV 0.8126 2.2983 0.0443 0.5245 3.4507 −0.0758
FD 0.8269 2.2286 0.0642 0.6662 3.0219 −0.4531

pH

RAW 0.9043 0.3317 0.0004 0.6465 0.4760 −0.0369
MSC 0.8790 0.3709 0.0052 0.5749 0.5162 0.0465
MC 0.8927 0.3505 0.0093 0.5445 0.558 −0.0577
SNV 0.8767 0.3755 0.0050 0.5931 0.5324 −0.0753
FD 0.8901 0.3543 0.0071 0.5796 0.5105 −0.0040
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Figure 6: Optimal wavelength range selection of Si-PLS prediction for soil properties: (a) nitrogen, (b) phosphorus, (c) potassium, (d) pH,
(e) calcium, and (f) magnesium.
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converting the sun’s energy into biomolecules, such as
adenosine triphosphate (ATP) that drives biochemical re-
action (photosynthesis). While for potassium, the optimal
spectra range was found around 846–860, 876–890, 921–935,
and 996–1010 nm with 7 PLS components in the second
overtone region, which represents ArCH and CH in the
electromagnetic wave as seen in Figure 6(c). Potassium
supports transporting and forming sugars and starch
through the plant. It is also vital in water regulation in plant.
Te total pH in soil is very important because it infuences
several soil factors afecting plant growth such as soil
structure, soil bacteria, and nutrient availability among
others and it is described as the master soil variable [28]. In
this study, the optimum spectra tool selected four unique
wavelengths for pH were 810–823, 824–837, 922–935, and
1019–1031 nm at 7 PLS components, as shown in
Figure 6(d). Tese wavelengths represent C-H3, C-H2, C-H,
and O-H corresponding to acidity [26]. It is particularly
important to rapidly determine soil pH onsite as it readily
gives a hint of the soil condition and the expected direction
of many soil processes and can also be applied for nutrient
cycling for plant nutrition and soil remediation [28]. For the
optimum modelling of calcium and magnesium
(Figures 6(e) and 6(f )), the Si-PLS method selected 756–770,
801–815, 936–950, and 981–995 nm at 8 PLS component and
768–781, 824–836, 967–979, and 1019–1030 nm at 12 PLS
component, respectively. Ca2+ and Mg2+ are micronutrients
required by plants for growth though in minute quantities.
More specifcally, Ca2+ is a component of plant cell that
maintains cell walls strength and improves the fruit set and
quality. Also, it has a positive efect on soil properties by
improving the soil structure by enabling nitrogen-fxing
bacteria on the roots of leguminous plants to capture at-
mospheric nitrogen into the soil. Mg2+, on the other hand, is
an essential component of chlorophyll molecule; therefore, it
is essential for photosynthesis in plant. Notably, Ca2+ and
Mg2+ levels and their balances are two important factors
afecting the growth of plant [29]. Furthermore, heavy
metals do not absorb NIR; however, such constituents which
do not absorb NIR radiation can be predicted owing to their
correlation with other spectrally active parameters [30, 31].
Also, the fndings in this study were similar to those of other
researchers [31, 32]. And, as can be seen from Table 6, the
results means that the model could be used acceptably for
screening and other “approximate” calibration and the range
0.83–0.90 could be usable with caution for most applica-
tions, including research [33].

4. Conclusion

For the frst time, this work has revealed that pocket-sized
NIR spectroscopy in the range of 740–1080 nm could be used
onsite to diferentiate soils of diferent land used types and
N, P, K, Mg2+, Ca2+, and pH simultaneously. Te systematic
comparison of diferent PLS calibration models for the
prediction of soil health parameters revealed that the ef-
cient spectral interval showed its superiority in measuring N,
P, K, Mg2+, Ca2+, and pH in soils with the coefcient of
correlation ranging from 0.699 to 0.898 and RMSEP between

0.033 and 3.02 in the prediction set. Tis means that for the
models developed, the nitrogen model could be acceptable
for very rough to rough screening, while the other could also
be acceptable for screening, other “approximate” calibration,
and usable with caution for most applications, including
research [33]. Tese fndings mean that portable NIR
spectroscopy could be used for the rapid prediction of the
soil status and quality parameters simultaneously with
caution. However, more studies are needed to proof the
robustness of the fndings as it has a huge possibility of
reducing the use of the time-wasting wet chemistry tech-
nique. It could also assist in making precision fertilizer
application a reality in resource-poor communities, espe-
cially in developing countries. Also, this study only provides
a feasibility study of using portable NIRS, and further studies
are therefore required at diferent geographical locations and
wide land-use types.
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