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Engineered wood products, such as cross-laminated timber (CLT), are becoming more popular in the designs of modern
sustainable buildings. Tis increased production of CLT requires more robust, yet less labour-intensive means to assess the
material characteristics of whole CLT panels. In exploring ways of improving efciency, this study explores multivariate image
analysis (MIA) via partial least squares discriminant analysis (PLS-DA) machine learning as a means to classify CLT material
features. CLT panels underwent nondestructive testing using near-infrared (NIR) hyperspectral imaging and X-ray computed
tomography (CT) analysis. MIA was performed on these results to build predictive models for wood features, such as fbre
alignment and knot type. Te models showed that it was possible to classify material features on the surface of CLT using NIR
alone; whilst when combined with X-ray data, it enhanced the predictive ability of material features throughout the CLT volume.
Tese frst results from such modelling have the potential to help map the chemical and physical material properties of CLT,
improving the manufacturing efciency of the product and allowing greater sustainability of engineered wood products.

1. Introduction

Te European Standard EN 16351 defnes cross-laminated
timber (CLT) as a structural panel composed of orthogonally
bonded layers of timber [1]. Owing to its compatibility with
prefabrication, its potential to integrate into large assem-
blies, and its unrivalled design fexibility, CLT is gaining
popularity as a sustainable building material in the global
construction space [2]. With inherent dimensional stability
coupled with high load-bearing capacity, CLT is superior to
conventional nonengineered construction timber [3]. From
a performance perspective, traditional wood buildings lag
behind concrete and steel buildings due to the natural
variance in material properties [3, 4]. CLT, which can be
assembled into multilayer, load-bearing structures, can
address some of the drawbacks of traditional timber and
pave the way for wood-based large and high-rise structures
that are more sustainable than steel and concrete

alternatives. However, the contribution of specifc material
characteristics infuenced by features, such as knots, to the
overall performance of CLT panels is not well understood
[5]. Tus, understanding the relationships between CLT
material characteristics and performance is critical to de-
fning applications, refning existing fabrication processes,
and minimising material wastage to maximise value-yield.
Te variance of panels can be reduced, and their overall
mechanical performance mean value can be enhanced [6].

Converting wood into engineered wood products like
CLT panels increases the value of the constituent wood,
which is a driving incentive to invest in new technologies
that refne CLTproperties. Not only does this enhance safety
and longevity of the product [7], it also provides a com-
petitive advantage over other market players [8]. Wood
quality is a function of the occurrence of wood-moulding
features and is dependent on their number, position, and
size. Knots, the most infuential nonhomogeneous features
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can be classifed using diferent strategies [9]. Valuable
handbooks on multivariate hyperspectral imaging and im-
age analysis have been published [10–13]. A variety of
strategies can be used for feature classifcation [9]; however,
to reduce variance of the product, measurement technology
for material assessment needs to be further developed [14].
Te fact that end users contact CLT manufacturers with
increasing frequency to enquire about appearance changes
that have occurred highlights the importance of the situa-
tion. In fact, inspectors are unsure as to how they should
evaluate CLT surfaces and link evaluation results with those
obtained from fnal inspection. Tis is especially challenging
as inspectors need to be able to provide realistic expectations
based on classifed wood features, like knots, increasing the
risk of costly claims cases pertaining to CLT [15].

Currently, diferent noncontact methods exist to assess
logs and lamellas for their quality [16]. However, there are no
noncontact inspection methods based on imaging that allow
continuous monitoring of the fnal CLT product. Image
processing based on surface data and X-ray computed to-
mography (CT) data can identify material variations,
boundaries, and dimensional changes in wood. Such image-
based systems can eliminate the need for contact mea-
surements, thus improving quality control and productivity
and, in turn, reducing material waste. One problem, how-
ever, is that the characteristic values adopted for structural
design are prone to substantial material variance. Numerous
parameters that infuence material quality are not taken into
consideration due to the natural complexity of wood, which
creates wide variances in these parameters [17]. However,
multivariate image analysis (MIA) via principal component
analysis has been successfully used for classifying features on
wood surfaces based on surface images obtained at diferent
wavelengths in the visible and near-infrared (NIR)
spectrum [18].

Te classifcation of knots based on X-ray data were
demonstrated using two methods with similar results:
a neural network model and a partial least squares projection
to latent structures (PLS) model [19]. Hyperspectral imaging
based on NIR spectroscopy, which allows for measurement
of a broad range of chemical and physical properties, is
promising for a wide range of industrial applications, in-
cluding assessment of wood [20]. Sandak et al. [21] used
hyperspectral imaging to develop models that quantify
changes in chemical composition of the wood surface, aid
process optimisation, and determine material properties.

NIR hyperspectral imaging calibrated with micro X-ray
densitometry has been used to determine the ratio of mature
to juvenile wood in pine [22]. Tis ratio is relevant for
structural wood applications because of the diferences in
material properties. However, it is worth noting that the
optimal NIR results were obtained when the transition
points between earlywood and latewood were assessed
separately through PLS discriminant analysis (PLS-DA). In
another study [23], the density and microfbril angles of
wood were determined with NIR hyperspectral imaging.Te
latter properties are invaluable as they are associated with
wood stifness and strength. In this instance, PLS regression
analysis was performed to determine the relationship

between X-ray densitometry and NIR spectroscopic data,
which facilitated the detection of annual growth ring fea-
tures in addition to heterogeneous features afecting wood
quality. Importantly, the PLS approach enabled the corre-
lation of NIR spectral data with density and microfbril
angle. NIR and X-ray scanning have also been used for
mapping the chemical and physical properties of end grain
Poplar round log disks [24].

For large-scale production of CLT products, more ac-
curate fnal quality control is required. Accurately predicting
the infuence of nonhomogeneous features on the me-
chanical properties of the fnished product can lead to
greater value-yield. When it comes to surface quality, CLT
used for visible surfaces has the highest requirement, and
thus, it is expected to have a homogeneous surface with
minimal dead knots of relatively small diameters [15].
Predictably, the second highest CLT surface quality corre-
sponding to industrial surfaces may exhibit more defects
than CLT used for visible surfaces, and the lowest quality
assigned to CLT used for nonvisible surfaces has the most
extreme defects, ranging from rot-attacked knots, knot
holes, and no limitations on knot diameters [15].

It is not uncommon for a single production line to
produce more than 100 000m3/year of CLT. In response to
the growing demand for CLT, the technology for quality
assessment needs to keep up with the pace of creation of the
large throughput CLT manufacturing facilities. Tus, non-
contact process assessment, such as that proposed in this
study, can add value to this growing industry. As the frst
novel CLT assessment based on pixel-level spectral image
data, this research is intended to inspire further studies and
potentially ofer practical image-based CLT assessment
techniques. Accurately and efciently identifying factors that
afect the properties of CLT requires classifcation of the
variables involved from a data-driven perspective. As such,
this research objective was to determine if multivariate
image analysis based on NIR and X-ray data can facilitate
enhanced classifcation of material features of CLT panels.

2. Materials and Methods

2.1. Materials. Te CLT panels used in this study were
composed of Norway spruce (Picea abies (L.) Karst.) and
were fabricated at the old industrial CLT production line
at Martinson, a part of Holmen Wood Products Sawmill
(Bygdsiljum, Sweden). Te panels were layered crosswise
and bonded with melamine-urea-formaldehyde (MUF)
adhesive (Cascomin 1247 with hardener 2526, Akzo
Nobel). Te adhesive was applied via an industrial line
spreader on one side of each wood layer. A total of 320 g/
m2 adhesive was applied. Te timber class corresponded
to C24 grade [25] and consisted mainly of sapwood. Prior
to use, CLT specimens were stored in a climate chamber
accredited by RISE until an equilibriummoisture content
of 12% was attained at a density of 480 kg/m3. Six
specimens were analysed; each specimen was a fve-
layered CLT. Specimens were assessed using two scan-
ning systems: NIR spectroscopy and X-ray CT. All CLT
specimens measured 30 mm × 95mm × 240 mm. Tree
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reference holes were drilled into each specimen’s upper
region. Using such reference features is good practice in
an exploratory image-based study to simplify the initial
control by ensuring that no data has been mirrored
between diferent scanning systems [9].

2.2. Methods and Instrumentation. Increasing the number
of variables generated from diferent wavelengths has the
advantage of enabling more rotation in multivariate
space. Tis was demonstrated by adding diferent flters
to a digital camera [26]. Tis research intended to assess
the efectiveness of MIA for building predictive models
based on combining NIR and X-ray data (Figure 1).

2.2.1. Near-Infrared Imaging. Images were acquired using
a hyperspectral short-wave infrared (SWIR) camera,
model SWIR 3 spectral camera line inspector HSB, with
a C-mount OLES15 15mm lens at f/2.0 aperture. Tis
multipurpose imaging system was manufactured by
Prediktera AB (Umeå, Sweden) and works in push-
broom mode, collecting data in the 1000–2500 nm
spectral region from specimens passing along on a con-
veyor belt. Te instrument was calibrated using a white
reference panel and a simulated dark reference, which
was done by temporarily closing the shutter. NIR
hyperspectral images originating from 384 spatial pixels
and 288 spectral bands were acquired; representing
a scanned feld of view (FOV) of 384 pixels × 677 pixels,
which corresponds to 165 mm × 291 mm. In turn, one
pixel data point corresponds to 0.43 mm × 0.43 mm × 288
spectral bands of the scanned CLT.

2.2.2. X-ray Computed Tomography Imaging. Te CT
scanner was a medical CT scanner with a sliding gantry on
rails that had been adapted for use with wood material,
namely, a Siemens Somatom Emotion Duo Sliding Gantry
CT 2006A H-SP-CR (Munich, Germany). Scan parameters
were prepared using convergence studies and were set to
110 kV, 67mAs, craniocaudal, reconstruction kernel B70s
L7T0 2, and the slice thickness for each scan was 2mm. After
each scan series, the scanner reconstructed greyscale images
of 512 pixels× 512 pixels, representing a scanned feld of
view (FOV) of 500mm× 500mm. One reconstructed den-
sity voxel exported from the Siemens clinical CT scanning
software corresponds to 0.98mm× 0.98mm× 2mm of the
scanned CLT.

2.3.Multivariate Image Analysis. All images were warped in
MATLAB 2017 (MathWorks, Inc., Natick, Massachusetts,
USA) to correspond to the same matrix size. Subsequently,
MIA was performed using Prediktera Evince Professional
version 2.7.5 (Umeå, Sweden) to create PLS-DAmodels.Te
software package provided by Evince is a multivariate image
analysis software intended for modelling, thus, it can be used
to import and merge all common image and data formats. In
the PLS-DA data matrix of CLT, transformed rows are the

pixels, i.e., observations under study, and columns are the
descriptors, i.e., spectra for the specimen material. PLS-DA
was used to extract potential data trends below the mean
noise level and to handle pixel observations with missing
data [9].

PLS-DA is a machine learning tool for feature selection and
classifcation [27]. In terms of artifcial intelligence (AI), this is
the equivalent of constructing a machine learning model based
on PLS [28]. To perform classifcation using PLS-DA on the
simulated CLTdata set, the data set was projected onto the latent
structure. Tis is the machine-learning equivalent of self-
prediction. PLS-DA was used as a supervised version of prin-
cipal component analysis (PCA) in the sense that it achieves
dimensionality reduction with classes for feature selection [29].
PCA was used as the typical starting point in multivariate data
analysis [30] to access fbre alignment and knot type, i.e., dead vs.
sound. Constructed PLS-DA models were used as a supervised
pattern-recognition technique to classify CLTspecimen features
into predefned classes. MIA was used to visually display of
results [31]. Te data matrix was scaled to unit variance as
generally recommended [30].

PLS-DA predictive modelling is a technique to process
and solve nonlinear classifcation problems. PLS started with
dimension reduction followed by development of prediction
models, i.e., discriminant analysis. PLS-DA exploits the
covariance [32]. PLS-DA is a modelling technique for di-
mension reduction and discrimination based on conven-
tional PLS regression; however, class membership was
predicted by themodel [33]. PLS-DA fnds latent variables in
the descriptor space that have a maximum covariance with
the predictor variables [34]. Pixel-based models of CLTwere
created where each pixel was considered as an observation
point in space. Te PLS-DA models’ pixels were predicted,
and classifcation pixels were generated.

3. Results and Discussion

3.1. Rationale for Proposed Methodology to Assess Cross-
Laminated Timber. Scheepers et al. [35] confrmed that
wood features afecting stifness can be identifed and
visualised using multivariate models based on NIR surface
measurement data. In a more recent study, Sciuto et al. [36]
investigated surface material properties of stone masonry
utilising only surface data. Measurements were based on
pixel-level matrix data from a hyperspectral push broom
system, surface point measurements from a portable NIR
probe, and a portable X-ray fuorescence spectrometer to
collect point-wise surface data. Specifcally, data matrix
pertaining to the whole surface was populated with multi-
spectrum pixel image data. In selected regions on the sur-
face, measurements with a higher level of detail were
performed to improve spatial resolution and extend the
wavelength band through a sensor-fusion approach [36].

Tis study pertaining to CLT is founded on a similar
principle and is based on measurements from specifc re-
gions of the specimen. However, it stands out in that
measurements are performed on the surface all the way
through the volume of the specimen, utilising both internal
and surface features of CLT. Tis was made possible by
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correlating high spatial resolution NIR surface spectral data
with X-ray data. Tis fusion of techniques essentially ex-
pands the accessible wavelength range to study CLT, as X-rays
have shorter wavelengths than NIR. Te distinction of this
study is in utilising both the internal and surface material
features of CLT. Te following sections ofer analysis of the
results and discuss whether a fusion approach based on NIR
and X-ray measurements is feasible to assess CLT panels.

3.2. Principal Component Analysis and Partial Least Squares
Discriminant Analysis. With the aid of PCA based on NIR
data, descriptive models were developed to project the entire
data set onto diferent subspaces to fnd trends of correla-
tions. Te models identifed clusters of materials with the
same characteristics based on their spectral signatures. Te
frst component of PCA contour plots obtained in this study
distinguished between diferent fbre alignments, repre-
sented as longitudinal 0° layers and transverse 90° layers of
CLT specimens in Figure 2. Tese contour plots visualised
the spatial resolution of specifc wood anatomical features in
the frst and second components of CLT. Knots result in
interruption of both continuity and orientation of fbres.Te
second component of the PCA contour plot took this a step
further by separating knots from clear wood (Figure 2).

PLS-DA, based on the classes “knot” and “clear wood,”
predicted knots in an external test set composed of CLT
panels. It is worth noting that this test data set was not

included in the model’s training; as such, it acts as an external
validation of the model’s efectiveness.Te predicted knot can
be seen in Figure 3, where the PLS-DA scatter plot shows that
clear wood is negatively correlated with the knot cluster.

Te PLS-DA model based on NIR can be trained to
predict diferent types of knots within a CLT specimen
volume when X-ray data are correlated with the model. Tis
is useful to enhance the detection of wood features hidden
below the CLT surface. By combining NIR and X-ray
measurements, the spectral wavelength range of the anal-
ysis is extended, which facilitates the detection of a broader
range of material features. Measuring a small region in high
detail and correlating it to the whole of a specimen’s bulk
volume invariably extends the model’s ability to identify
correlated material features. In this case, NIR provides an
increased level of regional spatial detail as opposed to the
overall volume context provided by X-ray.

Te PCA contour plot separates knots from clear wood
in a specimen bulk volume. It also diferentiates between
dead and sound knots, with the former appearing dark blue
and the latter, red (Figure 4(b)). Dead and sound knots are
challenging to diferentiate when using only X-ray data
because the primary diference between the two types is
chemical composition. Te chemical composition of knots
difers from that of clear wood [37]. In general, depending
on the soundness of a knot, colour varies; dead knots appear
darker overall [38].

An examination of the PCA scatter plot revealed that the
knot cluster was separate from the rest of the specimen
cluster, indicating opposite characteristics. In the PLS-DA
scatter plot, the knot cluster separates in the frst and second
components. A single CLT specimen represents millions of
values and was sufcient to train the model to identify
material features in the training specimen as well as other
specimens. Te CLT specimens were composed of diferent
wood pieces glued together in a longitudinal and trans-
versely stacked arrangement, increasing the odds that more
material features are captured. In general, it is good practice
to train the PLS-DA model on several specimens. It is also
essential to have an experimental design that captures as
many wood features as possible during the model training
phase to ensure realistic and robust prediction in real-world
situations.

Te PLS-DA predictability for the frst and second
components regarding the three models, namely, X-ray,
NIR, and NIR correlated with X-ray, is summarised in
Table 1.

3.3. Implications. A multipurpose imaging system has the
potential to be used on production lines in real time. As
such, the image-based technology assessment proposed in
this study can be extended to the product development of
CLT. It has been demonstrated that the NIR model could
identify features of CLTspecimens passing along a conveyor
belt in real time. Tis proposition is consistent with other
research felds which also propose the use of NIR as a po-
tential tool for online process control in industrial
applications [39].

Hyperspectral
near-infrared

X-ray computed
tomography

Wavelength
1000–2500 nm

Wavelength
0.02–0.003 nm

Figure 1: (a) Scanning cross-laminated timber (CLT) specimens
with hyperspectral near-infrared (NIR) surface measurements, (b)
X-ray computed tomography (CT) surface and internal bulk
measurements, (c) projection of surface NIR data with layers in the
cube representing diferent spectral bands, and (d) density of
specimen volume from X-ray.
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Combining NIR with X-ray imaging can enhance the
ability of predictive models to identify material features.
With additional research, this strategy has the potential
for use in an automatic fnal quality control system to
assess whether the CLT manufacturing process meets
expectations. NIR and X-ray could also potentially
provide the necessary material-passport certifcation
information regarding chemical and physical properties
for such CLT. Te evaluation of acquired data should not
be limited to variables that describe the material’s
structure alone but also include those capable of pre-
dicting mechanical properties of the fnalised product.

Te continuous production of CLT panels involves
systems that transform a considerable amount of raw ma-
terial into certifed products. With further research, such
systems could potentially beneft from the integration of
a feedback loop into the process-adaptive process control.
Tis will facilitate the instant identifcation and resolution of
technical issues and the continuous monitoring of product
characteristics. Such actions may involve accessing param-
eters related to adhesive bond line quality, moisture content
variance, drying defects, milling defects, and material mis-
alignments to deliver thorough process control of the
fnalised CLT. To ensure CLT panels meet consistent cer-
tifcation requirements, further research to develop and
implement nondestructive monitoring technologies for the
industry is essential. Image-based systems based on NIR and
X-ray, like the one discussed in this study, are paving the way
for production-ready systems that can identify problems and
measure material properties in real-time quality control
systems.

Beyond the timber industry, combinations of NIR and
visible-spectrum cameras have been used to monitor
polymer flms at a macroscopic scale to identify localised
defects that are related to the material’s mechanical prop-
erties [40]. Another study on predicting tensile properties in

flm biopolymers also proposed using NIR spectroscopy as
a predictor for nondestructive assessment of the flm’s
mechanical properties [41]. X-ray scanning of oversized

Figure 2: (a) Predicted RGB image; (b) the frst principal com-
ponent analysis (PCA) contour plot component distinguished
longitudinal 0° and transverse 90° layers in cross-laminated timber
(CLT); and (c) the second PCA contour plot component de-
termined a knot.
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Figure 3: (a) Partial least squares discriminant analysis (PLS-DA)
model scatter plot shows that the knot is separated from clear wood
and transverse layers are negatively correlated to longitudinal
layers, (b) predicted RGB image, and (c) a predicted knot.
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objects is currently in use in various applications, such as the
inspection of shipping containers. Cargo X-ray screening
systems have found extensive use in the customs control of
containers carrying merchandise. Recently, however, in-
terest has grown in using these scanning systems for more
versatile purposes, driving additional technical development
[42]. A typical cargo X-ray screening system exists as a drive-
through X-ray scanner that allows real-time container val-
idation. Te system is modular and designed for integration
into existing trafc management systems. A rotating X-ray
source for scanning shipping containers has been designed
theoretically [43]. However, current cargo transmission X-
ray line scanners [44] seem to be of greater relevance to the
development of quality control hardware for larger CLT
production lines. At this stage, this is a grand vision that
requires further research studies to meet industrial re-
quirements. Nevertheless, this technique has the potential as
a data-driven assessment tool in industrial processing thanks
to its versatility. Tis research, the frst CLT assessment
based on pixel-level spectral data, is intended as a screening
study to hopefully inspire further research in the feld.

4. Conclusions

With the growing market share of cross-laminated timber
(CLT) in the construction industry, there is a need for
a more comprehensive quality inspection of fnished
products. Tere is currently no comprehensive method for
continuously monitoring the quality of fnished CLT
products, so there is a potential to minimise material waste
in CLT fabrication. Based on current practices, the crucial
process of quality control in CLT fabrication is severely
compromised. Considering the economics of CLT, further
developments are necessary to implement noncontact and
nondestructive inspection. Tis research presents a strategy
to predict material features properties of fnished CLT, with
the potential to be expanded with further variables to form
a comprehensive quality control system.

It was shown that a data-driven machine learning
method based on multivariate image analysis (MIA) via
partial least squares discriminant analysis (PLS-DA) can be
used to classify CLT panel material features.

(1) Te model based on near-infrared (NIR) alone could
predict material features on the surface of CLT; when
combined with X-ray computed tomography (CT), it
enhanced the predictive ability of material features in
CLT’s volume.

(2) MIA conducted on CLT can predict wood features
such as fbre alignment and knot type, i.e., dead
vs. sound.

(3) Combining NIR and X-ray exploits two diferent
wavelength ranges, enabling useful insights per-
taining to material properties for CLT from a broad
spectral range.

(4) Tis proposed method of assessment based on pixel-
level spectral data allows for a versatile data-driven
detection of material properties of CLT.
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Figure 4: Model based on hyperspectral near-infrared (NIR)
surface data and X-ray computed tomography (CT) volume data:
(a) knot cluster in black partial least squares discriminant analysis
(PLS-DA) scatter plot; (b) contour plot shows knots in a specimen
volume; and (c) predicted dead knots.

Table 1: Partial least squares discriminant analysis (PLS-DA)
models assessing the predictability of the frst and second com-
ponents based on three diferent imaged datasets; Near-infrared
(NIR), X-ray computed tomography (CT) and NIR correlated with
X-ray CT.

PLS-DA t [1] (%) t [2] (%) Sum of t [1] and
t [2]

NIR 67.1 24.0 91.1
X-ray CT 27.6 16.5 44.1
NIR correlated with X-ray
CT 45.7 13.7 59.4
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Technical Contexts, Trätek, Houston, Texas, USA, 1986.

[18] O. Hagman, “Prediction of wood quality features by multi-
variate models based on scanning techniques,” Licentiate
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1993.

[19] P. O. G. Hagman and S. A. Grundberg, “Classifcation of Scots
pine (Pinus sylvestris) knots in density images from CT
scanned logs,” Holz als Roh-und Werkstof, vol. 53, no. 1,
pp. 75–81, 1995.

[20] S. Tsuchikawa, “A review of recent near infrared research for
wood and paper,” Applied Spectroscopy Reviews, vol. 42, no. 1,
pp. 43–71, 2007.

[21] J. Sandak, A. Sandak, and R. Meder, “Assessing trees, wood
and derived products with near infrared spectroscopy: hints
and tips,” Journal of Near Infrared Spectroscopy, vol. 24, no. 6,
pp. 485–505, 2016.

[22] A. Ruano, A. Zitek, B. Hinterstoisser, and E. Hermoso, “NIR
hyperspectral imaging (NIR-HI) and μXRD for determination
of the transition between juvenile and mature wood of Pinus
sylvestris L,” Holzforschung, vol. 73, no. 7, pp. 621–627, 2019.

[23] T.Ma, T. Inagaki, and S. Tsuchikawa, “Calibration of SilviScan
data of Cryptomeria japonica wood concerning density and
microfbril angles with NIR hyperspectral imaging with high
spatial resolution,” Holzforschung, vol. 71, no. 4, pp. 341–347,
2017.

[24] N. Defoirdt, A. Sen, J. Dhaene et al., “A generic platform for
hyperspectral mapping of wood,” Wood Science and Tech-
nology, vol. 51, no. 4, pp. 887–907, 2017.

[25] European Committee for Standardization, “Structural timber
– strength classes,” European Committee for Standardization,
Brussels, Belgium, Standard No. EN 338:2016, 2016.

[26] P. Geladi and J. Linderholm, “Alternative ways of achieving
near infrared information in feld images: a tentative ap-
proach,” NIR News, vol. 26, no. 8, pp. 7–10, 2015.

[27] D. Ruiz-Perez, H. Guan, P. Madhivanan, K. Mathee, and
G. Narasimhan, “So you think you can PLS-DA?” BMC
Bioinformatics, vol. 21, no. S1, pp. 2–10, 2020.

Journal of Spectroscopy 7



[28] L. Olofsson, “Machine learning for appearance grading of
sawn timber using cameras and X-ray computed tomogra-
phy,” Doctoral dissertation, Luleå University of Technology
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