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Organic carbon and total nitrogen are essential nutrients for plant growth.Te presence of these nutrients at acceptable levels can
create an optimal environment for the development of crops of interest.Te application of spectroscopic techniques and the use of
machine learning algorithms have made it possible to calibrate models capable of predicting the number of elements present in the
soil. One of these techniques is hyperspectral imaging, which captures portions of the electromagnetic spectrum where the
materials present in the soil can be diferentiated due to the vibrations of chemical bonds. Te objective of this research is to use
statistical models to predict OC and N in soils from hyperspectral images. Transformations were applied to spectral and chemical
data and the models used were Random Forest (RF) and Support Vector Machine (SVM). To select the best model, the values of
the coefcient of determination (R2), root mean square error of prediction (RMSEP), and the ratio of performance to deviation
(RPD) were considered. For OC, the values found for the RF model were an R2 of 0.87, an RMSEP of 0.10, and an RPD of 6.74; the
SVMmodel presented an R2 of 0.92, an RMSEP of 0.20, and an RPD of 3.56. For the variable N, the values found for the RF model
were an R2 of 0.79, an RMSEP of 0.03, and an RPD of 5.44; for the SVMmodel, they were an R2 of 0.87, an RMSEP of 0.08, and an
RPD of 2.76. Te RF model showed a better ft for both variables. Te SVM model also produced acceptable results. Te results
show that machine learning models are a good alternative for analysing soil-related variables.

1. Introduction

Precision agriculture is the science that develops techniques
that facilitate the process of obtaining results in the feld.
Tese techniques include technologies such as Remote
Sensing (RS) using satellites, in-feld sensors using un-
manned aerial vehicles (UAVs), and laboratory sensors [1].
Sensors can use hyperspectral imaging (HSI), which pro-
vides information through image pixels to identify the
materials that make up the soil [2]. HSI images capture the
portion of the electromagnetic spectrum corresponding to
the visible region (400–800 nm) and a portion of the near
infrared (NIR) and mid-infrared (MWIR) regions
(800–2500 nm).

Radiation absorbed by chemical bonds containing car-
bon or other nonmetals (C�H, N�H, S�H, C�O, and O�H)

is concentrated in the NIR spectral region; therefore, HSI
image data corresponding to this region provide in-
formation about the chemical composition of the sample [3].
When HSI images are acquired, they provide information in
the form of a three-dimensional hypercube, usually with
a large amount of data and multicollinearity between them
[4]. However, the processing and extraction of such in-
formation is complex and requires the application of al-
gorithms and multivariate transformations that are not
widely used in general statistics. Nevertheless, HSI imaging
ofers several advantages, such as high speed and ease of data
acquisition, and several machine learning algorithms are
available to calibrate this technique [5].

Organic carbon (OC) and nitrogen (N) play a key role in
plant nutrition, and the levels of these nutrients are syn-
onymous with soil fertility [6]; however, many farmers are
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unaware of the OC and N content of their agricultural soils
and consequently overapply amendments and fertilizers or,
on the contrary, do not supply the soil with the nutrients
it needs.

Recently, many authors have attempted to develop
equations using sensors and machine learning to calibrate
OC [7–9] andN [10–12] in soil.Te information provided by
such techniques has enabled researchers to determine and
interpret various soil properties at both feld and regional
scales; detailed information can be obtained that allows
quantitative analyses of soil constituents [1].

Machine learning models are components of a branch of
artifcial intelligence and can learn routines on their own.
Supervised learning is the process of training a machine
learning algorithm on questions and answers to make
a prediction. Tese machine learning algorithms can be
classifed as classifcation or regression algorithms. One of
the most used models is the Random Forest (RF), which is
a series of decision trees that act as a set of classifers; it can
be used to solve both regression and classifcation problems
[13]. Each of the decision trees in the RF model is con-
structed using diferent orders of data. One set of data is used
for calibration and another for testing. At the end of the RF
analysis, the regression prediction is calculated by averaging
the individual trees, and a majority vote for the correct
classifcation performs the model ranking. Others are
Support Vector Machine (SVM) models, which are based on
solving a convex quadratic optimization to obtain a globally
optimal solution that overcomes the extreme dilemma of
other machine learning techniques; SVM is a nonparametric
model and is considered a classifcation model capable of
dealing with high-dimensional data [14]. Te training and
evaluation of multivariate models allows the evaluation of
variables with high dimensionality, where the variables have
been masked and subjected to diferent transformations;
however, these processes must be performed iteratively due
to the large number of models that can be generated.

Transformations are mathematical equations or for-
mulas that are applied to spectral data to reduce noise.
Transformations can improve assumptions when applying
statistical models and allow for easier comparisons among
the data being analysed. Examples of transformations in-
clude Absorbance, Savitzky–Golay (SG), Detrending,
Standard Normal Variance (SNV), and Multiplicative
Scatter Correction (MSC). Model ft or performance factors
are the mathematical criteria evaluated after the statistical
model is applied to determine its acceptability. One of the ft
factors for machine learning models is the coefcient of
determination or R2 (equation (1)) which relates the sum of
error squares to the sum of total squares and indicates the
proportion of variance in the response variable that is
explained by the predictor variables:
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Another factor is the root mean square error of pre-
diction or RMSEP (equation (2)) and indicates the diference
between the predicted and observed values:
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Te ratio of performance to deviation or RPD (equation (3))
is given by the standard deviation (sd) of the observed data over
the RMSEP. RPD values greater than 3 are considered excellent
in agricultural applications; values greater than 2 indicate good
model performance [15]. Authors such as Wadoux et al. [16]
consider an RPD >2 to be a good model in soil applications.

RPD �
sd

RMSEP
. (3)

2. Materials and Methods

2.1. Study Area. Soil sampling was carried out in the de-
partment of Antioquia, Colombia, specifcally in diferent
subregions and on farms growing fowers, cacao, and pas-
tures for beef and dairy cattle (Figure 1). Within the de-
partment, there are diferent thermal soils classifed as high,
medium, and low tropic, resulting in soils with highly
variable physical and chemical characteristics. Sample
processing and image acquisition were carried out at the
Faculty of Agricultural Sciences of the University of Anti-
oquia. 1998 soil samples were collected at a depth of 15 cm.
Te samples were collected between the years 2020 and 2023.

2.2. Chemistry Data. Each of the samples collected con-
tained two bags of soil. Tis material was mixed and ho-
mogenized to ensure sample uniformity. Half of each sample
was processed (dried, sieved to 2mm, and stored) in the
laboratory. Drying was performed in a forced air oven at
a temperature of 40°C for 48 h. Te other half of each soil
sample was sent to a wet chemistry laboratory where all soil
nutrients were analysed by the conventional method. Results
were obtained for the soil chemical variables OC and N,
which were analysed using the Walkley–Black and Kjeldahl
techniques, respectively. Tese analyses were used to cali-
brate the HSI cameras to the data.

2.3. Hyperspectral Image Data Acquisition. Dry soil samples
with a particle size of 2mmwere placed in a 10 and 20 cm3 tray.
Refectance values were corrected using a Zenith Lite TM 50%
R SG31XX difuse refectance target. Tis target was placed at
the front of the dish so that the cameras captured it at the
beginning of the procedure. Two cameras were used to capture
the images: a Hyspex Ⓡ Baldur V-1024 N (VNIR) with
a spectral resolution of 5.4 nm, a spatial resolution of 3289-
1024 pixels, and coverage of the spectral range from 485 to
955nm, and a Hyspex Baldur S-384 N (SWIR) with a spectral
resolution of 5.45nm, a spatial resolution of 1216-384 pixels,
and coverage of the spectral range from 951 to 2517nm.

2.4. Data Preprocessing. Image preprocessing was performed
using the Python 3.8.2 programming language [17] and the
SpectralPy, Spectral, andNumPy libraries.Te region of interest
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(ROI) was selected by coordinates within the image. A region
was selected in the centre of the image where the edges of the
dish were not included and where the sample was homoge-
neous. An average of the pixels of each band included in the
ROI was calculated. Pixels with refectance less than 0.10 and
greater than 0.90 were masked to eliminate shadows and
saturated pixels. Te overlapping bands were determined, and
the transition zone corresponding to band 951 was eliminated.
Te change between bands 955 and 957 was analysed, and
spectra with a change greater than 0.097 were eliminated.

3. Training and Test of Statistical Models

Te raw data of the spectra were refectance values. Te
spectral signature of the soil samples is shown in Figure 2.

Te OC and N variables were transformed by
���
OC

√
and��

N
√

, which is a transformation that has a moderate efect and
is weaker than other transformations; it is used to reduce the
asymmetry to the right. Te spectral data were transformed
into absorbance values; other transformations were then
applied, including SNV, MSC, frst derivative of SG, and
detrend. Te Mahalanobis distance was applied to the
spectral data to detect outliers. No outliers were found, so all
data were retained. For the RFmodel, 500 and 800 trees were
used; for the SVM model, radial and linear methods were
used. 75% of the data was used for training and 25% for
testing the statistical models.

Te models were run using the statistical software R-
Project [4.2.2].Te randomForest and caret libraries [3] were
used to run the RF model, and the e1071 library [18] was
used for the SVMmodel.Te performance of themodels was
evaluated based on the R2, RMSEP, and RPDmetrics and the
absence of overuse between training and test data. Figure 3
shows the methodology applied to the soil samples and the
spectral information.

4. Results and Discussion

4.1. Characterization of the Variables Used in the Study.
According to the descriptive statistics applied to the data, the
mean was found to be 2.92%± 2.72 and 0.31%± 0.23 for OC
and N, respectively. For the transformed data, the mean and
median values are more similar, where the standard de-
viation of the data is signifcantly reduced. Te square root
transformation of the soil variables is expected to signif-
cantly improve the performance of the statistical models.
Te results are shown in Table 1.

Neither variable’s data show a normal distribution. Most
of the data are on the far left of the histogram. Te variables
represent nonsymmetric data (Figure 4).

Te average of the OC variable can refer to soils in warm
climates with ideal values or, on the contrary, to soils in cold
climates with low values. Tis research included soils be-
longing to all thermal soils; therefore, the OC values must be
analysed according to the area studied to determine whether
they are high, medium, or low. Te maximum OC values
found are associated with the high tropical zones of the
department, since the rate of mineralization of organic
matter is inversely proportional to temperature. Te average
value of N corresponds to overfertilized soil, since the
normal range for this nutrient is 0.1-0.2. Te analysis of the
data by subregions showed that the N values are high in
some areas of the high tropics of the department. Tis result
may be related to the high use of nitrogenous fertilizers in
dairy cattle production.

5. Statistical Models

In total, 96 statistical models were obtained: 48 models by RF
and 48 models by SVM for the two soil variables. Te value
of 96 was obtained by combining the two types of models
and diferent combinations of transformations and methods
for the two variables. For the models by RF, 500 and 800
trees were used; however, in the results, the internal vali-
dation method “cv” was used in the results, which is
a method to verify the efectiveness of a machine learning
model. Its function is to select a part of the dataset that is not
used to train the model, to be used later as test data. For the
SVMmodels, the linear and radial methods were used. Only
the models with the highest performance for each of the soil
variables are shown.
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Figure 2: Spectral signature of the collected soil samples at refectance
values.
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Figure 1: Map points where the soil samples were collected in the
department of Antioquia, Colombia.
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Table 2 shows the results of the RF and SVM models for
the OC variable. In general, high ft values were obtained
with all transformations and RF models. In all models,
a better ft was obtained when the soil OC variable was
transformed. In addition, better performance was obtained
for all models and transformations using 800 trees. Te
model that showed better performance was the application
of the absorbance transformation and

���
OC

√
, where an R2 of

0.87 was obtained for the test data group, the RMSEP was
0.10, which is one of the lowest values obtained in the present
study, and the RPD was 6.74, which was the highest value for
the models studied. In addition, the model did not show
overftting as R2 of the test data was the same as that of the
training data. Although the coefcients of determination are
lower than those of the SVM models, excellent fts were
obtained for RMSEP and RPD.

Sample
processing

Hyperspectral
imaging

Data
preprocessing

Validation of
statistical models

Laboratoy
analysis

Figure 3: Sequential chart of the methodology used in this research.

Table 1: Descriptive statistics of the investigated soil variables.

Component Mean Median Min Max sd CV
OC 2.92 2.92 0.08 15.5 2.72 93.2���
OC

√
1.55 1.36 0.28 3.93 0.70 45

N 0.31 0.23 0.01 1.28 0.23 74.8��
N

√
0.52 0.48 0.10 1.13 0.19 35.5
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Figure 4: Histogram of the behaviour of the data of the variables OC and total N.
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Te RF model performed better than the SVMmodel for
the OC variable. None of the models showed overftting for
the validation data. Te best performing RF model was the
one that used the transformation of the frst derivative of the
SG of the spectral data and the transformation for

���
OC

√
.

Based on a literature review, Vargas et al. [19] concluded
that the RF and SVM algorithms are useful for determining
the OC in soil. Tese algorithms have also been studied by
other authors. Pouladi et al. [20] used RF models to de-
termine the prediction of soil organic matter, which can be
directly related to the OC content through a conversion
factor.Tey found anR2 of 0.89 and an RMSEP of 4.20.Teir
relatively large error may be because the study was con-
ducted with relatively few samples.Te RMSEP values found
by these authors are much higher than those found in the
present investigation. Yang et al. [21] have also conducted
studies using RF models to determine the OC in harsh
climates, where the maximum ft of the model was 0.71 and
the RMSEP was 0.48, which are still close to the ft obtained
in the present work. Hong et al. [5], who used HSI images in
conjunction with RF models to determine OC in soil, ob-
tained an R2 value of 0.79 and an RMSEP of 0.18, like the
values obtained in the present investigation. Te research
carried out by Nawar and Mouazen [22] shows that RF
models are an excellent method for calculating OC and N in
soil; these authors found fts as high as 0.97 using cross-
validation of the algorithm, an RPD of 5.58, and an RMSEP
of 0.01; these values were found using a set of 528 data points
distributed over several European countries.

Table 3 shows the results obtained for the N variables
when the RF and SVM models were applied. Although the
RF models had a lower R2, the RPD obtained was the best
among all models and the RMSEP was the lowest among the
models. Terefore, the model that showed that the highest
performance and its ftting factors are excellent when used
with the frst derivative SG transformation. Te results
obtained for this model were an R2 of 0.79 for the training
and test data, an RMSEP of 0.03, and an RPD of 5.44.

For the soil variable N, a better performance of the SVM
model was obtained using a combination of the frst de-
rivative SG transformation and

��
N

√
with the radial method.

Te SVM algorithm gave the best results for the de-
termination of OC and N when combined with diferent
transformations. For this model, Datta et al. [23] obtained
a good ft when using the bands with the highest correlation
in the spectrum for the OC variable, obtaining an R2 of 0.90,
which is like the R2 value obtained in the present study.
However, Aldana et al. [24] ftted the SVM model and
obtained an R2 of 0.95 and an RMSEP of 0.21 for OC, which
confrms our results for the same variable. Meng et al. [25]
also applied SVM models and obtained an R2 of 0.80, an
RMSEP of 3.20, and an RPD of 1.71. Although their co-
efcient of determination is like that found in the present
study, the other ft values difer signifcantly from those in
the present work, possibly due to the diference in the
number of samples between the studies. Authors such as
Vargas et al. [19], through a systematic review, concluded
that SVM models are the most suitable machine learning
algorithms to determine variables such as organic matter

and N in soils because they achieve better performance than
other multivariate models.

Figure 5 shows all predicted and ftted data obtained
using the RF algorithm for the two variables of interest.
Tese plots correspond to the models with the spectral data
transformed using the frst derivative SG transformation and
the square root of the soil variables. Tat is, it refers to the
best RF model observed for each variable.

5.1. Correlation of Spectral Bands. After applying the model,
we performed a correlation analysis between the spectral
bands and the OC and N variables (Table 4). Te correlation
analysis was applied to the transformed and untransformed
databases, and the bands that gave a better result, with
correlations above 0.60 and −0.60, were selected. A small
number of bands were found to correlate with nutrients.Te
detrend transformation resulted in a greater number of band
ranges for OC and N. For OC and N, a strong correlation
was observed between the band ranges from 500 to 900 nm,
which includes portions of the visible and NIR regions, and
from 1300 to 1950 nm, which is in the NIR region.

Te correlation between the spectral bands and the OC
content in the soil is related to the presence of carbon and
other elements. In their study carried out to determine the
OC in soil using hyperspectral images, Aichi et al. [26] found
a high correlation of OC with the range of bands between
400 and 680 nm. In addition, they correlated the concave
spectral signature of the soil with a high OC content between
the bands at 400 and 950 nm, which was corroborated by the
present study because the set of all spectral signatures of the
soil resulted in this behaviour. Meng et al. [25] studied the
behaviour of soil OC and found that the bandsmost sensitive
to the presence of carbon are in the visible region of the
spectrum, which confrms the results of the present in-
vestigation, where most of the correlated bands were also
found in the visible region. Te presence of OC in the visible
region of the spectrum can also lead to strong correlations

Table 2: Results of adjustment factors for the SVM and RF models
for the soil OC variable.

Model Method Transformation R2 train R2 test RPD
SVM Radial 1° der SG+

���
OC

√
0.87 0.92 3.56

SVM Radial Det +
���
OC

√
0.85 0.90 3.23

SVM Linear 1° der SG+
���
OC

√
0.88 0.90 3.13

RF 800 trees 1° der SG+
���
OC

√
0.87 0.87 6.74

RF 800 trees MSC+
���
OC

√
0.82 0.82 5.95

RF 800 trees Det +
���
OC

√
0.83 0.83 5.94

Table 3: Results of adjustment factors for the SVM and RF models
for the soil total N variable.

Model Method Transformation R2 train R2 test RPD
SVM Radial 1° der SG+

��
N

√
0.81 0.87 2.76

SVM Linear 1° der SG+
��
N

√
0.82 0.84 2.54

SVM Linear Det +
��
N

√
0.80 0.83 2.40

RF 800 trees 1° der SG+
��
N

√
0.79 0.79 5.44

RF 800 trees Det +
��
N

√
0.76 0.76 5.03

RF 800 trees MSC+
��
N

√
0.75 0.75 5.00
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because of the relationship between the color of the soil
(dark) and its presence in large amounts [20, 27]. Several
authors have found a signifcant relationship between
wavelength and the OC of soil. Strong correlations were
found in the visible region: in the bands from 550 to 700 nm
[28] and between the bands at 526 and 587 nm [29]. Tese
fndings support our results, as we found medium and high
correlations in the refectance data in the 566–852 nm
spectral range. A high correlation was also observed between
OC and refectance produced near 490 nm [30]. Tis band
showed a high correlation in our research; however, it was
detected when the detrend transformation was applied to the
spectral data.

Regarding the bands of the spectrum correlated with the
variable N, authors such as Patel et al. [31] observed strong
absorption peaks near 1400, 1900, 2200, and 2350 nm. In the
present study, correlated bands were found between 1412 and
1420 nm, in addition to some bands near 1900nm. Also,
Tahmasbian et al. [32] also found bands highly correlated with
the N content, such as the bands between 400 and 900 nm.
Tese bands were also found to be correlated in our research.

6. Conclusions

Te results of this study show that the RF and SVMmachine
learning models can be useful for predicting soil OC and N
variables.Te SVMmodel behaves better than the RFmodel,
as indicated by the better R2, RMSEP, and RPD values of the

ft to the SVM model. Using the spectral band trans-
formations in this case, the absorbance and the frst de-
rivative of SG in combination with the machine learning
models can result in a better ft andmore accurate prediction
of the OC and N data. Few spectral bands with high cor-
relation under the study variables were observed; however,
we found certain bands where the correlation is high. Tese
band ranges should allow researchers to work with specifc
areas of the spectrum in relation to diferent soil nutrients.
Te use of HSI can help reduce the use of conventional
techniques, which currently have numerous drawbacks.
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Table 4: Bands with moderately high correlations for the soil OC
and total N variables.

Transformation Bands correlated (nm)
Refectance 566–879
Absorbance 544–934
SNV 495–506, 733–842, 1410, 1415
Detrend 490–550, 652–836, 1377–1426, 2059–2081
MSC 1410, 1415, 1417
1° der SG 528–593, 815, 932, 1923–1933
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