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As an independent characteristic of electromagnetic radiation, the polarization of light is sensitive to the scattering and absorption
characteristics of the mineral particles. Te combination of polarization and infrared absorption spectroscopy is conducive to
rapidly and accurately detecting the SiO2 content of metallurgical sandstone deposits. In this study, the 8–14 μmpolarized infrared
absorption spectra and the grade of the sandstone ore samples were used to analyse the spectral characteristics of the sandstone
powder samples. Principal component analysis (PCA) and the successive projection algorithm (SPA) were used to reduce the
dimension of the original data, frst-order derivative, reciprocal logarithm, and multivariate scattering correction (MSC) data.
Ten, generalized regression neural network (GRNN), partial least squares regression (PLSR), and convolutional neural network
(CNN) were employed to establish a hyperspectral predictionmodel of SiO2 grade.Te results show that the quantitativemodel by
the PCA-CNN algorithm has the better prediction precision for the reciprocal logarithm data, with a coefcient of determination
(R2), root mean square error (RMSE), and ratio of performance to interquartile range (RPIQ) of 0.907, 0.023, and 5.11, re-
spectively. Tis method indicates that the polarized infrared absorption spectra and the PCA-CNN model can provide a more
robust and signifcant spectral interpretation than single infrared spectra, and it is expected to be applied to any high-purity quartz
deposit type for in situ and rapid analysis.

1. Introduction

Sandstone is a kind of consolidated sandy rock that is
silicon-rich and has high hardness and high melting point
[1]. Tis mineral usually includes siliceous, carbonate, iron,
gypsum, phosphate, and chlorite, of which the content of
quartz and siliceous cutting exceeds 95% with greater
transparency. Sandstone is widely utilized in glass, ceramics,
metallurgy, and foundry industries [2]. For example, the
quartz sandstone mine in Juanqiao town, Chizhou city,
Anhui Province, China, mainly contains limestone for fux,
dolomite, limestone for cement, limestone for construction
stone, and quartz sandstone for cement batching, and clay

minerals. Among them, the quartz sandstone is located in
the lower member of the Wutong formation of the upper
Devonian system, and can serve as a good quartz fux, and
the sandstone deposits in the lower section of the upper
Silurian Maoshan formation and the upper Devonian
Wutong formation also can serve as cement ingredients.
Terefore, the exploration and resource development of
quartz sandstone and associated raw material ore for cement
batching have a wide application prospect [3].

Traditional methods for the quartz sandstone ore grade
verifcation are mainly chemical detection methods, with
high detection accuracy but large workloads, cumbersome
operations, and high time costs. It is difcult to quickly
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determine the SiO2 content of the ore in real-time [4]. As is
known, target detection has evolved from chemical analysis
to characteristic spectral analysis and has been widely uti-
lized in the detection of metal and nonmetallic minerals
[5, 6]. Many researchers have used the Turbo FT infrared
spectroradiometer to test iron ore samples by thermal in-
frared spectroscopy, extracted many types of indexes, and
proved that the normalisation index had the highest cor-
relation with the SiO2 content of the samples [7, 8]. Te
micro-refectance and TIR emission spectra of the quartz
glass were collected by thermal infrared spectral radiometer
and showed that the SiO2 content had a good correlation
with the minimum emissivity position and the spectral
shoulder position [9]. Te emissivity and refectance spectra
of two series of alkaline and subalkaline silicate glasses were
also revealed to have the Christiansen spectral change as
a reference point with the relation of the SiO2 content, and
the greater the evolution of the composition, the shorter the
observed Christiansen characteristic wavelength [10]. Tese
studies mainly use the emissivity of long-wave infrared
spectra to establish the quantitative relationship of the SiO2
content, but the emissivity of mineral surfaces is easily af-
fected by environmental background radiation and various
mineral compositions such as iron, phosphate, and glau-
conite, and the precision and applicability of the model have
been further improved [11, 12]. Diferent from the emission,
polarization of light refects the vibration state when light
interacts with the medium. When light enters the mineral
surface, the change in polarization state is closely related to
the physical characteristics of the roughness of the mineral
surface, the size of the particles, the composition, the
morphology, and the distribution of the particles. Tese
characteristics can be used to detect the structure, category,
and composition content of the mineral surface [13, 14]. In
recent years, polarized infrared spectroscopy has shown
a polarization potential in the feld of mineral resources. A
near-infrared acousto-optic imaging spectro-polarimeter
was developed to obtain polarized refectance spectra of
gypsum and kaolin. Compared to the USGS spectra in the
mineral database, it was shown that the spectral resolution of
the spectropolarimeter is sufcient to distinguish the
characteristic spectral characteristics of the measured
minerals [15]. Polarized infrared spectroscopy was also used
to quantitatively analyze the H species in anisotropic
minerals of olivine and orthoclase crystals and it was found
that the total absorbance of two polarized spectra along two
vertical directions was constant in any given plane [16].
Polarized attenuated total refection infrared spectroscopy
was applied to extract the quantitative orientation mea-
surements of montmorillonite particles in clay minerals [17].
Furthermore, polarization modulated infrared refectance
absorption spectroscopy (PM-IRRAS), attenuated total
refectance-Fourier transformed infrared spectroscopy and
X-ray photoelectron spectroscopy were used to measure the
oxidation and formation of carbonate at the iron interface
and confrmed that the iron surface of CaCl2 was oxidized
faster than sodium chloride [18].

Te above research shows that the infrared polarization
spectrum detection technology can quickly obtain the infrared

polarization absorption spectrum information of minerals
and reveal the polymorphic characteristics of target objects,
but the quantitative detection of mineral content by this
technology has not been investigated in detail. Previous re-
search has shown that infrared spectra can detect Si-O bond
vibration spectra of silicate minerals and has a strong ability to
detect and identify rock-forming minerals [19]. Tis method
can be used not only to detect the fundamental frequency
vibration of SimOn, SO4

2-, CO3
2-, and PO4

3- but also to
identify nonwater-formingrock-forming minerals such as
silicate, sulphate, carbonate, phosphoric acid salts, oxides, and
hydroxides [20, 21]. Compared with the infrared spectrum
detection technology, mineral content is not only related to
the spectral characteristic band, but also closely related to the
polarization state and angle, which can reveal the mineral
physicochemical properties [22]. At the same time, this
technology can avoid the infuence of environmental back-
ground radiation, eliminate fares, prevent interference by
absorption caused by water vapour and carbon dioxide in the
atmosphere, greatly improve the contrast of target objects, and
improve the detection accuracy of the ore content [23, 24].

In the study, we aim to provide a novel approach to
estimate SiO2 grade. Considering that the vibration of Si-
O-Si bonds in the quartz sandstone minerals produces
a signifcant absorption characteristic in the 8–14 μm in-
frared spectrum region, such as a unique infrared absorption
peak that splits into a pair of strong double peaks at 9.6 μm to
10 μm [25, 26], we think it is feasible to use the polarized
infrared absorption spectrum to detect SiO2 from diferent
mineral components and accurately estimate the grade of
SiO2. By using the absorption characteristics of mineral
spectra, the prediction models of quartz sandstone minerals
will be established. To compress the dimension of the input
dataset, PCA and SPA characteristic bands screening will be
carried out. Ten, GRNN, PLSR, and CNN will be utilized to
determine the nonlinear relationship between the wave-
length position of these absorption spectra and SiO2 content
to improve the measurement precision [27]. When the
performance of the three models is compared, an optimal
quantitative prediction model will be obtained to estimate
the SiO2 grade of the quartz deposits.

2. Materials and Methods

2.1. Study Area and Mineral Samples. Te mining area is
located 17 km southwest of Chizhou city in China, and its
administrative division is under the jurisdiction of
Sanyou village, Juanqiao town, Guichi district. Te
Tongling–Jiujiang Railway, the Shanghai–Chongqing
expressway G50, and the G318 national road pass are
approximately 2-3 km northwest of the exploration area,
and there is a simple sand and stone road in the national
area to connect with the G318 road. Te investigation
area is approximately 22 km from Niutoushan Port and
the Yangtze River water transport terminal. Te tectonic
units of the mining area belong to the Yangtze para-
platform, lower Yangtze depression, arched fault-fold
belt along the river, and Anqing concave fault-fold
bundle. Te survey area is located in the northwest
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fank of the Bayi Reservoir backslope and the southeast
fank of the Shuangqiao oblique, with an overall
monoclinic structure. Te exposed strata in the area are
mainly derived from the Devonian Wutong group to the
Silurian Maoshan group, the Fengtou group, and the
Gaojiabian group, with a northeast stratigraphic trend,
a northwest inclination, and a dip angle between 15° and
52°. Te quartz sandstone and gravelly quartz sandstone
of the lower section of the Devonian upper Wutong
group are stable in distribution, with good outcrop
conditions and stable thickness. Te main mineral spe-
cies are quartz sandstone and other mineral species are
sandstone for building stones, dolomite, and chert. Te
scope of the mining area and Geological map is shown in
Figures 1(a) and 1(b).

Te experimental samples were obtained from seven
trench exploration projects, which were divided into two
types of quartz fne sandstone and gravelly quartz sandstone
by natural type. Approximately 40 kg of fne quartz sand-
stone and 20 kg of gravel quartz sandstone were collected
from each trench. Te ore was crushed to a screen size
<2mm with the XPC 150×125 jaw crusher PE 60×100 jaw
crusher and 200×125 double-roll crusher in turn.
According to the results of the fne geological exploration,
the quartz sandstone and the gravel quartz sandstone were
prepared in a ratio of 2 :1 for the sample test. Trough the
ring cone method, the rock was piled fve times, mixed and
divided, sampled and bagged with 600 grams in each bag,
and sieved by a sieve with an aperture of 0.5mm. A three-
roll, four-barrel rod mill was then used to grind the upper
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Figure 1: (a) Location of the mining area in Juanqiao city, Guichi district, Chizhou city, Anhui province, China; (b) geological map of the
mining area; (c) part of the images of the quartz ore samples under the microscope.
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part of the screen. Te milled samples were combined with
the part under the sieve, and then the samples of diferent
grades were produced for spectral measurement. Te quartz
ore sample pictures under the microscope are shown in
Figure 1(c).

2.2. Data Acquisition

2.2.1. Measurement of SiO2 Grade of Samples. Table 1 shows
the grades of 65 SiO2 samples obtained by chemical de-
tection methods. Te lowest grade of raw ore samples is
70.67% after removal of impurities, and the highest grade is
98.36% after fotation process. Te samples have signifcant
diferences with a standard deviation of 7.9%.

2.2.2. Spectral Measurement of Samples. Te polarized in-
frared absorption spectra of the samples were measured on
an FT-IR spectrometer (Nicolet iS50, Termo Fisher Sci-
entifc Ltd) at room temperature. Te spectrometer has
a scanning range of 12800–350 cm−1, a resolution of less
than 0.09 cm−1. Te polarizer was placed in the beam path of
the spectrometer to modulate the polarization state of the
interfering infrared light. Te dark room was selected as the
test environment for the instrument. Before the test, the test
bench was cleaned with alcohol, and the background
measurement was performed after the test bench was dry.
Te sample was placed on the test bench and pressed with
the knob for the spectral measurement of the sample. During
the test, the polarization-modulated infrared light was in-
troduced to the sample surface, and the refected light was
sent to the mercury cadmium telluride (MCT) detector.
Finally, the fnal optical signal was processed to obtain the
polarized infrared absorption spectrum of the sample [28].

Te polarized infrared absorptivity is obtained by the
transmittance by following equation:

A � 1 − T − R, (1)

where A is the absorptivity, T is the transmittance, which is
the ratio of the transmission intensity (Iout) to the incident
intensity (Iin). Iout is to use the three polarization states of 0°,
60°, and 120° to calculate the Stokes components I, Q, and U,
and then the Mueller matrix is used to calculate the total Iout.
R is the refectivity, which is ignored and equals 0 here.

Te absorptivity spectra of the samples are shown in
Figure 2, and the main characteristics are described below:

(1) Te spectral absorption rate of the sample was be-
tween 0 and 36.8% in 8–14 μm, and the SiO2 grade
generally decreased with the increase of the sample
absorption rate.

(2) Te 8–10.5 μm band is a typical diagnostic charac-
teristic band of silica, which is attributed to the

tensile vibration of the Si-O bond. Two particularly
strong asymmetric absorption bands form near
9.8 μm, in addition to weak absorption bands near
the 8.6 μm and 9.0 μm bands.

(3) For the 12–14 μm band, there is also an asymmetric
absorption band near 12.7 μm, which is another
diagnostic characteristic band of silica. However, the
intermolecular force between the Si-O bonds is
smaller at this time [29].

2.3. Spectral Transform

2.3.1. Reciprocal Logarithm. Te reciprocal logarithm is
a reprocessing method of the spectrum. It can reduce the
efect of light conditions on the spectrum and improve the
spectral diferences within a specifc region [30]. Te
transformation formula for spectral reciprocal logarithm
processing is expressed as follows:

Rλ � lg
1

Rλi

 , (2)

where Rλi is the original spectral data and Rλ is the spectral
data processed by reciprocal logarithm. Figure 3 shows the
spectral data of 65 samples.

2.3.2. Derivatives. Derivatives is a commonly spectral en-
hancement method and is very sensitive to spectral signal-
to-noise ratio. It can eliminate the infuence of baseline drift
or smooth background interference [31]. Figure 4 shows the
absorption spectra after the frst-order derivative. It can be
seen from the fgure that many characteristic peaks and
valleys are formed.

2.3.3. Multivariate Scattering Correction. Multivariate
scattering correction (MSC) can efectively eliminate spec-
tral diferences caused by diferent levels of scattering to
enhance the correlation between the spectrum and the data
[32]. Figure 5 shows the absorption spectra after the MSC.

Table 1: Descriptive statistics of samples.

Sample number
SiO2 grade (%)

Min Max Mean Standard deviation
65 70.67 98.36 82.29 7.90

Ab
so

rp
tiv

ity
 (%

)

0

5

10

15

20

25

30

35

40

9 10 11 12 13 148
Wavelength (µm)

Figure 2: Polarized infrared absorption spectra of the samples.
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2.4. Dimensional Reduction

2.4.1. Principal Component Analysis (PCA). PCA is a linear
dimension reduction method through a linear projection.
Tis method shines high-dimensional data on low-
dimensional space, uses as few data dimensions as possi-
ble to replace original information, and retains the char-
acteristics of most original data points [33]. Te absorption
spectra of the 8–14 μm band were selected by PCA, and the
original data, frst-order derivative data, reciprocal loga-
rithm data, and multivariate scattering correction data were
reduced. Te fve principal components with a cumulative
rate of more than 96% were selected to characterize the
original spectral data, as shown in Table 2.

2.4.2. Successive Projections Algorithm (SPA). SPA is a for-
ward variable selection algorithm that minimizes the collin-
earity of the vector space. It projects the wavelength to other
wavelengths, compares the projection vector size, selects the
wavelength with the largest projection vector, and then obtains
the fnal characteristic wavelength by the correction model
[34]. Te SPA uses the variable importance degree evaluation
method to extract the characteristic spectral variables. Te
results showed the number of characteristic variables of the
original data, frst-order derivative, inverted logarithm, and
multivariate scattering correction were all selected as 50.

2.5. Modelling Method

2.5.1. Generalized Regression Neural Network (GRNN).
Te GRNN has evolved from the radial base neural network
(RBF), a forward neural network with a four-layer structure.
Based on the maximum likelihood principle in probability
statistics, the nonlinear regression of the nonindependent
output variable y concerning the independent input variable x
is calculated to obtain the maximum probability of the event.
Tis network structure is simple and suitable for unstable data.
It can predict better when the sample data is smaller.

For the input variable X and Pi is output after the mode
layer neurone activation function.

Pi � exp −
X − Xi( 

T
X − Xi( 

2σ2
 , (3)

where Xi is the learning sample corresponding to the neuron
node in the pattern layer, representing the smoothing factor.
Next, Pi is calculated in two parts in the summation layer.
Te frst part calculates the sum of the inner product of the
pattern layer node and connection weight, and the second
part calculates the arithmetic summation of the Pi output
from the pattern layer.

SD � 
n

i�1
Pi,

SNj � 
n

i�1
wijPi.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)
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Figure 3: Absorption spectra by reciprocal logarithm.
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Figure 4: Absorption spectra by frst-order derivative.
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In equation (4), wij is the weight between the pattern
layer and the summation layer. Te predicted regression
value of the sample Yj is the result [35].

Yj �
SNj

SD

. (5)

2.5.2. Partial Least Squares Regression (PLSR).
Considering the modeling problem of dependent variables Y
and independent variables X, PLSR is an analytical method
that combines principal component regression withmultiple
linear stepwise regression.

First, the frst component X1 is extracted from the in-
dependent variable set X, while the frst component Y1 is also
extracted from the dependent variable set Y. It is necessary to
ensure that X1 and Y1 retain the information of X and Y as
much as possible and have as much correlation as possible.

Next, a regression is established between the dependent
variable Y and X1. If the regression equation has reached
a satisfactory accuracy, the algorithm will terminate. Oth-
erwise, the second pair of components will be extracted until
satisfactory accuracy is achieved.

If n components X1, X2, ..., Xn are ultimately extracted
from the independent variable set X, PLSR will establish
a regression equation between the dependent variable Y and
X1, X2, ..., Xn. In this process, it is most important to de-
termine the number of selected components. Leave-one-out
cross validation is used to verify the established model
[36, 37].

2.5.3. Convolutional Neural Network (CNN). CNN is a high-
performance deep learning method. Trough multilayer
convolution and pooling operations, CNN can self-learn and
extract each local feature of the data and obtain the abstract
feature that is more efective than the explicit feature
[38, 39].

In this study, a one-dimensional convolutional network
was selected, and the convolution layer, the activation
function, the maximum pooling layer, the full connection
layer and other operators were established in the convolu-
tional neural network. First, the amount of spectral data is
reduced by spectral preprocessing and dimension reduction.
Te sample spectra are then converted into a one-
dimensional spectral information matrix, and a SiO2 pre-
diction model is established using the CNN structure. Te
size of the convolution kernel is set to 3×1, step size 1× 1,
and the number of convolution kernels is 16. After it, the

model is activated using the ReLU activation function. Te
pooling layer adopts the maximum pooling method and the
pooling step size is set to 2×1, and the ADAM optimizer is
used to optimize the prediction model. In CNN, convolution
layers can efectively extract spectral features, and the
grouping layer can greatly reduce redundancy of features
and accelerate network convergence [40].

2.6. Model Evaluation. R2, RMSE, and RPIQ were used to
evaluate the model precision. Te range of R2 is between
0 and 1. Te closer R2 is to 1, the more stable the model is
[41]. Te formula for R2 is expressed as follows:

R
2

� 1 −
i yi − yi( 

2

i y − yi( 
2 . (6)

RMSE is a typical indicator commonly used in regression
analysis, and the closer the value of RMSE to 0, the higher the
model accuracy of the model, indicating that the ft efect of
the model is good. RMSE is expressed as follows:

RMSE �

������������


n
i�1 yi − yi( 

2

n



. (7)

In equations (6) and (7), yi is the predicted value of the
sample, yi is the measured value of the sample, y is the mean
and n is the total number of samples.

RPIQ �
IQ

RMSE
,

IQ � Q3 − Q1.

(8)

RPIQ is the ratio of performance to the interquartile
range, IQ is the interquartile range, and Q3 and Q1 are the
third quartile and frst quartile of the sample measurements,
respectively.Te larger the RPIQ, the better the performance
of model [42]. When RPIQ≥ 4.05, the model is considered
excellent; when 3.37≤RPIQ< 4.05, the model is considered
good; when 2.7≤RPIQ< 3.37, the model is considered to
obtain an approximate quantitative simulation, and when
2.02≤RPIQ< 2.70, the model can distinguish between high
values and low values.

2.7. SiO2 Prediction Model Establishment and Verifcation.
Forty fve samples were selected as training samples and 20
samples as testing samples by random functions, as shown in
Table 3. Te 8–14 μm band sample absorption spectrum was
selected as the data source, and the dimensions of the

Table 2: Contributions of the top 5 principal components.

Number of principal
components

Cumulative contribution rate (%)
Original data First-order derivative Reciprocal logarithm MSC

PC01 0.957 0.797 0.946 0.727
PC02 0.990 0.901 0.991 0.900
PC03 0.995 0.939 0.996 0.961
PC04 0.998 0.955 0.998 0.980
PC05 0.999 0.969 0.999 0.989
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original spectral data, the frst-order derivative, the inverse
logarithm, and the MSC spectrum were reduced. Ten, the
principal component by dimension reduction and the
number of characteristic bands by SPA were selected as
independent variables (x), the SiO2 sample grade as a de-
pendent variable (y), and the PLSR, GRNN, and CNN al-
gorithms were selected to establish the quantitative
prediction model of the SiO2 grade, respectively. Te sta-
bility of the above model was determined by the coefcient
of determination (R2), and the accuracy was tested by the
root mean square error (RMSE) and the ratio of perfor-
mance to the inter-quartile range (RPIQ). Trough vali-
dation, the infuence of PLSR, GRNN, and CNN algorithm
and the feature variables selected by PCA and SPA were
analyzed in the diferent models, to obtain the best pre-
diction model for SiO2 grade in the study area. Te above
PLSR, GRNN, and CNN models were established through
MATLAB programming.

3. Results and Discussion

3.1. SiO2 GradeModelling by PLSR. As shown in Table 4, the
PLSR quantitative prediction model after PCA and SPA
dimension reduction was slightly better than the PLSR
model without dimension reduction. After MSC treatment,
the grade quantitative prediction model was optimal by the
SPA-PLSR algorithmwith an R2, RMSE, and RPIQ of 0.8437,
0.030, and 3.92, respectively. Te R2 of the optimal result in
the nondimensional reduction data is 0.8051, and the R2 of
the optimal result of the data after PCA and SPA di-
mensional reduction is 0.7947 and 0.8437, respectively. Te
overall increase presents minimal fuctuation because PCA is
mainly designed to process a linear ftting and remove the
correlation between two variables, and when this correlation
is nonlinear, the PLSR is not adequate for the nonlinear
dependence and is less sensitive.

When selecting the SPA dimension reduction data as an
example, the models were verifed by the test data. Te
results are shown in Figure 6. Regarding the validation
results of the original spectral data, the frst-order derivative,
reciprocal logarithm, and MSC spectral preprocessing
methods, the 95% confdence intervals, and the 95% pre-
diction intervals of the four results are compared. Te MSC-
SPA-PLSR is signifcantly higher than the other three
methods in model prediction ability; R2 increases by 37.5%,
44.0%, and 9.4%, RPIQ by 56.8%, 26.9%, and 10.1%, RMSE
decreases by 36.2%, 21.1%, and 9.1%. Because preprocessed
data by MSC can greatly eliminate the infuence of baseline
ofset during the experiment, the characteristic spectral
information is highlighted and the signal-to-noise ratio is

also reduced, which is benefcial in improving the accuracy
of the prediction model.

3.2. SiO2GradeModeling byGRNN. As shown in Table 5, the
quantitative prediction model of the GRNN after dimension
reduction by PCA and SPA is signifcantly better than the
GRNNmodel without spectral dimension reduction, and the
PCA-GRNN model was better than the SPA-GRNN model
on the whole. Te quantitative prediction model established
by the original data-PCA-GRNN had the best efect, with R2,
RMSE, and RPIQ of 0.8844, 0.025, and 4.70, respectively.
Compared with the optimal model by SPA-GRNN, R2 of
PCA-GRNN was 0.9% higher. Tis fnding indicates that the
PCA-GRNN has good predictive power during nonlinear
regression. Second, the MSC model also had a good pre-
diction level, with all the R2 of the MSC-GRNN model
above 0.80.

For the PCA-GRNN model, the model was verifed by
the test data, and the results are shown in Figure 7. For the
validation results of original spectral data, frst-order de-
rivative, reciprocal logarithm, and MSC spectral data, the
model prediction results of the original data-PCA-GRNN
are signifcantly higher than those of the other threemethods
from the 95% confdence interval and 95% prediction in-
terval, R2 increases by 31.2%, 11.7%, and 6.8%, RPIQ by
37.4%, 35.8%, and 16.0%, and RMSE decreases by 37.5%,
26.5%, and 13.8%.

3.3. SiO2 GradeModelling by CNN. As shown in Table 6, the
R2 of the CNN model is more than 0.65. Combined with
Tables 4 and 5, the prediction efect of the original data-CNN
model is better than the original data-PLSR and the original
data-GRNN model on the whole. Compared to the two
models, R2 of the CNN increased by 14.5% and 73.2%, RMSE
decreased by 10% and 26.2%, and RPIQ increased by 11.1%
and 35.2%, respectively. CNN can extract and learn the
internal features of the spectral data through a convolution
operation and obtain a more efective and detailed local
abstract feature mapping, so the prediction efect is better
than the PLSR and GRNN models. After PCA and SPA
processing for CNN model, the overall prediction ability is

Table 3: Descriptive statistics of sample set.

Sample set Number
SiO2 grade (%)

Min Max Mean Standard
deviation

Train set 45 70.67 98.36 82.28 8.31
Validation
set 20 72.60 96.16 82.33 7.08

Table 4: Assessment of the PLSR prediction results.

Input variable R2 RMSE RPIQ
Original data 0.5948 0.050 2.35
First-order derivative 0.6211 0.049 2.40
Reciprocal logarithm 0.7579 0.034 3.46
MSC 0.8051 0.033 3.56
Original data-PCA 0.6369 0.046 2.55
First-order derivative-PCA 0.6484 0.045 2.61
Reciprocal logarithm-PCA 0.7674 0.034 3.46
MSC-PCA 0.7947 0.033 3.56
Original data-SPA 0.6138 0.047 2.50
First-order derivative-SPA 0.5860 0.038 3.09
Reciprocal logarithm-SPA 0.7712 0.033 3.56
MSC-SPA 0.8437 0.030 3.92
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not improved much, but the R2 of the model is above 0.70.
Te R2 of PCA-CNN models is greater than 0.75.

For the PCA-CNNmodel, themodel was verifed by the test
data. Te results are shown in Figure 8. Among all models, the
reciprocal logarithm-PCA-CNN prediction model has the best
efect. From the 95% confdence interval and 95% prediction
interval, the prediction results of the reciprocal logarithm-
PCA-CNNmodel are signifcantly higher than those of the other
three preprocessing methods. Te R2, RMSE, and RPIQ of
reciprocal logarithm-PCA-CNN are 0.9065, 0.023, and 5.11,
respectively. Second, the PCA-CNN model after MSC also has
a good prediction level. R2, RMSE, and RPIQ of MSC-
PCA-CNNwere 0.8450, 0.028, and 4.20, respectively. Compared
with the optimal model of PLSR, GRNN, and R2 increases by
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Figure 6: Prediction of the SPA-PLSR model: (a) original data; (b) frst-order derivative; (c) reciprocal logarithm; and (d) MSC.Te black
and red lines show the 1 :1 relationship and the model trend.TeMSC-SPA-PLSRmodel falls within the largest number of points within the
95% confdence band.

Table 5: Assessment of the GRNN prediction results.

Input variable R2 RMSE RPIQ
Original data 0.3932 0.061 1.93
First-order derivative 0.5983 0.045 2.61
Reciprocal logarithm 0.5388 0.051 2.30
MSC 0.8722 0.026 4.52
Original data-PCA 0.8844 0.025 4.70
First-order derivative-PCA 0.6741 0.04 2.94
Reciprocal logarithm-PCA 0.7917 0.034 3.46
MSC-PCA 0.8284 0.029 4.05
Original data-SPA 0.4422 0.057 2.06
First-order derivative-SPA 0.6592 0.041 2.87
Reciprocal logarithm-SPA 0.5222 0.052 2.26
MSC-SPA 0.8646 0.026 4.52
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7.44% and 2.50%, RMSE decreases by 23.33% and 8.0%, and
RPIQ increases by 30.36% and 8.72%. Te spectral band dif-
ference can be enhanced by the reciprocal logarithm. Te
prediction ability of the model can be further improved by
extracting PCA features and the unique network structure of the
CNN network, but the predicted value of the CNN model was
underestimated to some extent.

3.4. ComparativeAnalysis of theModel Results. It can be seen
from the four predicted model results that PLSR, as a linear
estimation method, cannot pass all the regression associa-
tions through each regression data point, that is, the non-
linear ft cannot be performed. However, the GRNN has
a strong nonlinear mapping ability and a good learning
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Figure 7: Prediction of PCA-GRNNmodel: (a) original data; (b) frst-order derivative; (c) reciprocal logarithm; and (d)MSC.Te black and
red lines show the 1 :1 relationship and the model trend. Te original data-PCA-GRNN model falls within the largest number of points
within the 95% confdence band.

Table 6: Assessment of the CNN prediction results.

Input variable R2 RMSE RPIQ
Original data 0.6811 0.045 2.61
First-order derivative 0.7404 0.036 3.26
Reciprocal logarithm 0.7025 0.045 2.61
MSC 0.7416 0.036 3.26
Original data-PCA 0.7742 0.033 3.56
First-order derivative-PCA 0.8143 0.031 3.79
Reciprocal logarithm-PCA 0.9065 0.023 5.11
MSC-PCA 0.8450 0.028 4.20
Original data-SPA 0.8081 0.031 3.79
First-order derivative-SPA 0.7035 0.038 3.09
Reciprocal logarithm-SPA 0.8100 0.033 3.56
MSC-SPA 0.8156 0.030 3.92
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speed. Te network converges to optimized regression with
more sample size agglomeration to avoid the impact of
insufcient sample data on the prediction efect to some
extent. Meanwhile, for a small amount of unstable data, the
GRNN can adjust the spread parameters to ensure the ex-
cellent prediction ability of the network [43]. Terefore, in
the process of building GRNN, it is necessary to select an
appropriate spread value. Te size of the spread value has
a signifcant impact on the approximation result of the
network. Te smaller the spread value, the better the ap-
proximation of the neural network to the sample data. Te
larger the spread value, the smoother the neural network
approximates the sample data, but the network output error
will also increase accordingly.

As a high-performance prediction model, CNN out-
performs the PLSR algorithm and the GRNN algorithm overall,
even without dimension reduction of the spectral data, and the
R2 of the prediction model is above 0.65. CNN has a strong
ability to capture and deep learning and can efectively simplify
the spectral data preprocessing process and achieve a better
regression efect. In addition, the network composition of CNN
can reduce the interference of irrelevant data, improve the
robustness and practical generalization ability of the model, and
have a more stable spectral prediction efect. Compared with
CNN, the traditional prediction model does not have the data
feature analysis and extraction process of CNN and requires
manual screening and more pre-processing of spectral data
before training, so the model performance is inferior to CNN.
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Figure 8: Prediction of the PCA-CNN model: (a) original data; (b) frst-order derivative; (c) reciprocal logarithm; and (d) MSC. Te black
and red lines show the 1 :1 relationship and the model trend.Te reciprocal logarithm-PCA-GRNNmodel falls within the largest number of
points within the 95% confdence band.
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In the dimension reduction, PCA is valuable for the
model prediction results and learning efciency. Compared
to SPA, the prediction results after PCA dimension re-
duction were signifcantly improved. PCA efectively com-
presses the redundancy information from the data and
retains the original characteristics of the data to the greatest
extent in the linear projection process, and the loss of in-
formation from the absorption spectrum information is
minimal [44]. On the other hand, SPA adopts an un-
supervised method in the feature selection process. Al-
though SPA variables maximise the explanation of the
independent variable space, the selection of the initial fea-
tures of the prediction model is random, resulting in
a limited ability to interpret the variables [45]. Terefore,
after data pre-processing, the PCA-CNNmodel not only can
meet the prediction requirements of high precision and high
efciency, but can also greatly improve the efciency of
the model.

 . Conclusions

Tis paper used polarized infrared absorption spectroscopy and
machine learning to predict the SiO2 grade of quartz sandstone.
TePLSR,GRNN, andCNNmodelswere compared to improve
the accuracy of the SiO2 grade prediction.Te conclusions are as
follows:

Quartz sandstone samples have strong polarized infrared
absorption characteristics in the 8–14μm infrared band, and the
polarized spectral absorption rate falls between 0 and 36.8%.Te
SiO2 grade generally decreased with increasing absorptivity.

MSC and reciprocal logarithm in data preprocessing can
efectively enhance the feature diferences between two
bands. Meanwhile, the PCA dimension reduction can ef-
fectively solve the data redundancy phenomenon and im-
prove the model efciency. Second, SPA can efectively pick
out characteristic variables in spectral extraction.

Compared with PLSR and GRNN, PCA-CNN algorithm
has achieved the optimal prediction accuracy. It is suitable to
solve the nonlinear optimization problem of extracting SiO2
grade with good deep learning ability, but the predicted
value of the PCA-CNN model had some underestimation.
Based on spectral characteristics and the number of sample
data sets, optimizing CNN parameters may be an important
direction for the quantitative prediction of the grade of SiO2
in the future.

It can be seen that the PCA-CNN prediction model
provides an efective method for the SiO2 grade of quartz
sandstone and can be dedicated to predicting the SiO2 grade
from laboratory research to aerial and satellite images.
However, considering that the genesis of most sandstone
mines is relatively complex and has many associated min-
erals, the accuracy and stability of the model need further
evaluation [46].
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